TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO
 ABSTRACT iii

 LIST OF TABLES viii

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xii

1. INTRODUCTION 1

 1.1 PROJECT DESCRIPTION

2. SYSTEM STUDY
 11

 2.1 FEASABILITY STUDY

 2.2 EXISTING SYSTEM

 2.3 PROPOSED SYSTEM

3

 SYSTEM SPECIFICATION 14

 3.1 SOFTWARE REQUIREMENTS

 3.2 HARDWARE REQUIREMENTS

4

 LANGUAGE SPECIFICATION 15

 4.1 FEATURES OF VB .NET

 4.2 FEATURES OF SQL SERVER 2000

5

 SYSTEM DESIGN

 32

 5.1 INPUT DESIGN

 5.2 OUTPUT DESIGN

 5.3 DATABASE DESIGN

 5.4 DATA FLOW DIAGRAM

 5.5 SYSTEM FLOW DIAGRAM

6

 SYSTEM TESTING AND MAINTENANCE 58

 6.1 UNIT TESTING

 6.2 INTEGRATION TESTING

 6.3 VALIDATION

7

 SYSTEM IMPLEMENTATION

 59

 7.1 SCOPE FOR FUTURE DEVELOPMENT

8

 CONCLUSION

 60

9

 BIBLIOGRAPHY

 62

 APPENDIX

· SCREEN SHOT

· DATA TABLE STRUCTURE

· SAMPLE CODING

 LIST OF FIGURES

FIGURE NO NAME PAGE NO

1 .NET FRAMEWORK 10

2 INTEROPERABILITY 12

3 WEB CONTROLS
Credit Card Fraud Detection Using

Hidden Markov Model

Abstract:

 Now a day the usage of credit cards has dramatically increased. As credit card becomes the most popular mode of payment for both online as well as regular purchase, cases of fraud associated with it are also rising. In this paper, we model the sequence of operations in credit card transaction processing using a Hidden Markov Model (HMM) and show how it can be used for the detection of frauds. An HMM is initially trained with the normal behavior of a cardholder. If an incoming credit card transaction is not accepted by the trained HMM with sufficiently high probability, it is considered to be fraudulent. At the same time, we try to ensure that genuine transactions are not rejected. We present detailed experimental results to show the effectiveness of our approach and compare it with other techniques available in the literature

 Introduction

Credit-card-based purchases can be categorized into two types: 1) physical card and 2) virtual card. In a physical-card based purchase, the cardholder presents his card physically to a merchant for making a payment. To carry out fraudulent transactions in this kind of purchase, an attacker has to steal the credit card. If the cardholder does not realize the loss of card, it can lead to a substantial financial loss to the credit card company. In the second kind of purchase, only some important information about a card (card number, expiration date, secure code) is required to make the payment. Such purchases are normally done on the Internet or over the telephone. To commit fraud in these types of purchases, a fraudster simply needs to know the card details. Most of the time, the genuine cardholder is not aware that someone else has seen or stolen his card information. The only way to detect this kind of fraud is to analyze the spending patterns on every card and to figure out any inconsistency with respect to the “usual” spending patterns. Fraud detection based on the analysis of existing purchase data of cardholder is a promising way to reduce the rate of successful credit card frauds. Since humans tend to exhibit specific behaviorist profiles, every cardholder can be represented by a set of patterns containing information about the typical purchase category, the time since the last purchase, the amount of money spent, etc. Deviation from such patterns is a potential threat to the system.

1.1proJECT DESCRIPTION

 The project entitled as “CREDIT CARD FRAUD DETECTION USING HIDDEN MARKOV MODEL” developed using .NET using C#. Modules display as follows.

 Modules

1. New card

2. Login

3. Security information

4. Transaction

5. Verification
 Module Description

New card

In this module, the customer gives there information to enroll a new card. The information is all about there contact details. They can create there own login and password for there future use of the card.

Login

In Login Form module presents site visitors with a form with username and password fields. If the user enters a valid username/password combination they will be granted access to additional resources on website. Which additional resources they will have access to can be configured separately.

Security information

In Security information module it will get the information detail and its store’s in database. If the card lost then the Security information module form arise. It has a set of question where the user has to answer the correctly to move to the transaction section. It contain informational privacy and informational self-determination are addressed squarely by the invention affording persons and entities a trusted means to user, secure, search, process, and exchange personal and/or confidential information.

Transaction

The method and apparatus for pre-authorizing transactions includes providing a communications device to a vendor and a credit card owner. The credit card owner initiates a credit card transaction by communicating to a credit card number, and storing therein, a distinguishing piece of information that characterizes a specific transaction to be made by an authorized user of the credit card at a later time. The information is accepted as "network data" in the data base only if a correct personal identification code (PIC) is used with the communication. The "network data" will serve to later authorize that specific transaction. The credit card owner or other authorized user can then only make that specific transaction with the credit card. Because the transaction is pre-authorized, the vendor does not need to see or transmit a PIC.

Verification

Verification information is provided with respect to a transaction between an initiating party and a verification-seeking party, the verification information being given by a third, verifying party, based on confidential information in the possession of the initiating party. In verification the process will seeks card number and if the card number is correct the relevant process will be executed. If the number is wrong, mail will be sent to the user saying the card no has been block and he can’t do the further transaction.

2. SYSTEM STUDY

2.1 FEASIBILITY STUDY
 The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are

· ECONOMICAL FEASIBILITY
· TECHNICAL FEASIBILITY
· SOCIAL FEASIBILITY
ECONOMICAL FEASIBILITY
 This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY
 This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.
SOCIAL FEASIBILITY
 The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.
2.2 EXISTING SYSTEM

In case of the existing system the fraud is detected after the fraud is done that is, the fraud is detected after the complaint of the card holder. And so the card holder faced a lot of trouble before the investigation finish. And also as all the transaction is maintained in a log, we need to maintain a huge data. And also now a days lot of online purchase are made so we don’t know the person how is using the card online, we just capture the IP address for verification purpose. So there need a help from the cyber crime to investigate the fraud. To avoid the entire above disadvantage we propose the system to detect the fraud in a best and easy way.

2.3 PROPOSED SYSTEM

 In proposed system, we present a Hidden Markov Model (HMM).Which does not require fraud signatures and yet is able to detect frauds by considering a cardholder’s spending habit. Card transaction processing sequence by the stochastic process of an HMM. The details of items purchased in Individual transactions are usually not known to any Fraud Detection System(FDS) running at the bank that issues credit cards to the cardholders. Hence, we feel that HMM is an ideal choice for addressing this problem. Another important advantage of the HMM-based approach is a drastic reduction in the number of False Positives transactions identified as malicious by an FDS although they are actually genuine. An FDS runs at a credit card issuing bank. Each incoming transaction is submitted to the FDS for verification. FDS receives the card details and the value of purchase to verify, whether the transaction is genuine or not. The types of goods that are bought in that transaction are not known to the FDS. It tries to find any anomaly in the transaction based on the spending profile of the cardholder, shipping address, and billing address, etc. If the FDS confirms the transaction to be of fraud, it raises an alarm, and the issuing bank declines the transaction.
3. SYSTEM SPECIFICATION
3.1 Hardware CONFIGURATION
· SYSTEM

: Pentium IV 2.4 GHz

· HARD DISK

: 40 GB

· FLOPPY DRIVE
: 1.44 MB

· MONITOR

: 15 VGA colour

· MOUSE

: Logitech.
· RAM

: 256 MB
3.2 Software CONFIGURATION
· Operating system
:- Windows XP Professional

· Front End

: - Asp .Net 2.0.

· Coding Language
:- Visual C# .Net
· Back-End

: - Sql Server 2000.
4. LANGAUGE SPECIFICATION
4.1 features OF. net

Microsoft .NET is a set of Microsoft software technologies for rapidly building and integrating XML Web services, Microsoft Windows-based applications, and Web solutions. The .NET Framework is a language-neutral platform for writing programs that can easily and securely interoperate. There’s no language barrier with .NET: there are numerous languages available to the developer including Managed C++, C#, Visual Basic and Java Script. The .NET framework provides the foundation for components to interact seamlessly, whether locally or remotely on different platforms. It standardizes common data types and communications protocols so that components created in different languages can easily interoperate.

 “.NET” is also the collective name given to various software components built upon the .NET platform. These will be both products (Visual Studio.NET and Windows.NET Server, for instance) and services (like Passport, .NET My Services, and so on).

THE .NET FRAMEWORK

The .NET Framework has two main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.
The CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are
· Conversion from a low-level assembler-style language, called Intermediate Language (IL), into code native to the platform being executed on.

· Memory management, notably including garbage collection.

· Checking and enforcing security restrictions on the running code.

· Loading and executing programs, with version control and other such features.

· The following features of the .NET framework are also worth description:
Managed Code
The code that targets .NET, and which contains certain extra

Information - “metadata” - to describe itself. Whilst both managed and unmanaged code can run in the runtime, only managed code contains the information that allows the CLR to guarantee, for instance, safe execution and interoperability.

Managed Data

 With Managed Code comes Managed Data. CLR provides memory allocation and Deal location facilities, and garbage collection. Some .NET languages use Managed Data by default, such as C#, Visual Basic.NET and JScript.NET, whereas others, namely C++, do not. Targeting CLR can, depending on the language you’re using, impose certain constraints on the features available. As with managed and unmanaged code, one can have both managed and unmanaged data in .NET applications - data that doesn’t get garbage collected but instead is looked after by unmanaged code.

Common Type System

 The CLR uses something called the Common Type System (CTS) to strictly enforce type-safety. This ensures that all classes are compatible with each other, by describing types in a common way. CTS define how types work within the runtime, which enables types in one language to interoperate with types in another language, including cross-language exception handling. As well as ensuring that types are only used in appropriate ways, the runtime also ensures that code doesn’t attempt to access memory that hasn’t been allocated to it.

Common Language Specification

 The CLR provides built-in support for language interoperability. To ensure that you can develop managed code that can be fully used by developers using any programming language, a set of language features and rules for using them called the Common Language Specification (CLS) has been defined. Components that follow these rules and expose only CLS features are considered CLS-compliant.

THE CLASS LIBRARY

.NET provides a single-rooted hierarchy of classes, containing over 7000 types. The root of the namespace is called System; this contains basic types like Byte, Double, Boolean, and String, as well as Object. All objects derive from System. Object. As well as objects, there are value types. Value types can be allocated on the stack, which can provide useful flexibility. There are also efficient means of converting value types to object types if and when necessary.

The set of classes is pretty comprehensive, providing collections, file, screen, and network I/O, threading, and so on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or namespaces), each providing distinct areas of functionality, with dependencies between the namespaces kept to a minimum.

LANGUAGES SUPPORTED BY .NET

The multi-language capability of the .NET Framework and Visual Studio .NET enables developers to use their existing programming skills to build all types of applications and XML Web services. The .NET framework supports new versions of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C++), but there are also a number of new additions to the family.
Visual Basic .NET has been updated to include many new and improved language features that make it a powerful object-oriented programming language. These features include inheritance, interfaces, and overloading, among others. Visual Basic also now supports structured exception handling, custom attributes and also supports multi-threading.
Visual Basic .NET is also CLS compliant, which means that any CLS-compliant language can use the classes, objects, and components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming are just some of the enhancements made to the C++ language. Managed Extensions simplify the task of migrating existing C++ applications to the new .NET Framework.
C# is Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid Application Development”. Unlike other languages, its specification is just the grammar of the language. It has no standard library of its own, and instead has been designed with the intention of using the .NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition for Java-language developers into the world of XML Web Services and dramatically improves the interoperability of Java-language programs with existing software written in a variety of other programming languages.

Active State has created Visual Perl and Visual Python, which enable .NET-aware applications to be built in either Perl or Python. Both products can be integrated into the Visual Studio .NET environment. Visual Perl includes support for Active State’s Perl Dev Kit.
Other languages for which .NET compilers are available include

· FORTRAN

· COBOL

· Eiffel
Fig1 .Net Framework
	 ASP.NET

 XML WEB SERVICES
	 Windows Forms

	 Base Class Libraries

	 Common Language Runtime

	 Operating System

4.2 FEATURES OF C#. NET
C#.NET is also compliant with CLS (Common Language Specification) and supports structured exception handling. CLS is set of rules and constructs that are supported by the CLR (Common Language Runtime). CLR is the runtime environment provided by the .NET Framework; it manages the execution of the code and also makes the development process easier by providing services.

C#.NET is a CLS-compliant language. Any objects, classes, or components that created in C#.NET can be used in any other CLS-compliant language. In addition, we can use objects, classes, and components created in other CLS-compliant languages in C#.NET .The use of CLS ensures complete interoperability among applications, regardless of the languages used to create the application.

CONSTRUCTORS AND DESTRUCTORS:

 Constructors are used to initialize objects, whereas destructors are used to destroy them. In other words, destructors are used to release the resources allocated to the object. In C#.NET the sub finalize procedure is available. The sub finalize procedure is used to complete the tasks that must be performed when an object is destroyed. The sub finalize procedure is called automatically when an object is destroyed. In addition, the sub finalize procedure can be called only from the class it belongs to or from derived classes.
GARBAGE COLLECTION
 Garbage Collection is another new feature in C#.NET. The .NET Framework monitors allocated resources, such as objects and variables. In addition, the .NET Framework automatically releases memory for reuse by destroying objects that are no longer in use.

In C#.NET, the garbage collector checks for the objects that are not currently in use by applications. When the garbage collector comes across an object that is marked for garbage collection, it releases the memory occupied by the object.
OVERLOADING
Overloading is another feature in C#. Overloading enables us to define multiple procedures with the same name, where each procedure has a different set of arguments. Besides using overloading for procedures, we can use it for constructors and properties in a class.

MULTITHREADING:

C#.NET also supports multithreading. An application that supports multithreading can handle multiple tasks simultaneously, we can use multithreading to decrease the time taken by an application to respond to user interaction.

STRUCTURED EXCEPTION HANDLING

C#.NET supports structured handling, which enables us to detect and remove errors at runtime. In C#.NET, we need to use Try…Catch…Finally statements to create exception handlers. Using Try…Catch…Finally statements, we can create robust and effective exception handlers to improve the performance of our application.

THE .NET FRAMEWORK
 The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet.

 Objectives of. NET FRAMEWORK
1. To provide a consistent object-oriented programming environment whether object codes is stored and executed locally on Internet-distributed, or executed remotely.

2. To provide a code-execution environment to minimizes software deployment and guarantees safe execution of code.

3. Eliminates the performance problems.

There are different types of application, such as Windows-based applications and Web-based applications.

6. SYSTEM DESIGN
 Module diagram

UML Diagrams
 Use case diagram
 [image: image1.emf]Transaction

Login

Store Info

Verification

User

New Card

 Class diagram

[image: image2.emf]Transaction.

card_no

user_name

verification()

transaction()

Verification.

Security_ans

card_details

verify()

Login.

user_name

password

login()

Security Info

security_qst

security_ans

card_info

 Object diagram

 State diagram
[image: image3.emf]Login

Request

Add

Information

Transa

ction

 Activity diagram

[image: image4.emf]Security

Account

New Account

Login.

Purchase.

Pay

Verification

CheckSec

Complete

Transaction

No

Yes

 Sequence diagram
[image: image5.emf]New AccountLoginTransactionVerificationSecurityComplete

Transaction

User Info

Login Info

Transaction Details

Security Info

Verification Details

 Collaboration Diagram
[image: image6.emf]New Account

Transaction

Verification

Login

Security

Complete Transaction

1: User Info

2: Login Info

3: Transaction Details

5: Verification Details

4: Security Info

 Component Diagram

[image: image7.emf]User

Account

details

Transactio

n

Verification

Security

Detail

 E-R diagram

Dataflow diagram

Project Flow Diagram

 System Architecture

6. SYSTEM TESTING AND MAINTENANCE

Testing is vital to the success of the system. System testing makes a logical assumption that if all parts of the system are correct, the goal will be successfully achieved. In the testing process we test the actual system in an organization and gather errors from the new system operates in full efficiency as stated. System testing is the stage of implementation, which is aimed to ensuring that the system works accurately and efficiently.

 In the testing process we test the actual system in an organization and gather errors from the new system and take initiatives to correct the same. All the front-end and back-end connectivity are tested to be sure that the new system operates in full efficiency as stated. System testing is the stage of implementation, which is aimed at ensuring that the system works accurately and efficiently.

 The main objective of testing is to uncover errors from the system. For the uncovering process we have to give proper input data to the system. So we should have more conscious to give input data. It is important to give correct inputs to efficient testing.

 Testing is done for each module. After testing all the modules, the modules are integrated and testing of the final system is done with the test data, specially designed to show that the system will operate successfully in all its aspects conditions. Thus the system testing is a confirmation that all is correct and an opportunity to show the user that the system works. Inadequate testing or non-testing leads to errors that may appear few months later.

This will create two problems

Time delay between the cause and appearance of the problem. The effect of the system errors on files and records within the system.

The purpose of the system testing is to consider all the likely variations to which it will be suggested and push the system to its limits.

 The testing process focuses on logical intervals of the software ensuring that all the statements have been tested and on the function intervals (i.e.,) conducting tests to uncover errors and ensure that defined inputs will produce actual results that agree with the required results. Testing has to be done using the two common steps Unit testing and Integration testing. In the project system testing is made as follows:

The procedure level testing is made first. By giving improper inputs, the errors occurred are noted and eliminated. This is the final step in system life cycle. Here we implement the tested error-free system into real-life environment and make necessary changes, which runs in an online fashion. Here system maintenance is done every months or year based on company policies, and is checked for errors like runtime errors, long run errors and other maintenances like table verification and reports.

6.1. UNIT TESTING
 Unit testing verification efforts on the smallest unit of software design, module. This is known as “Module Testing”. The modules are tested separately. This testing is carried out during programming stage itself. In these testing steps, each module is found to be working satisfactorily as regard to the expected output from the module.

6.2. INTEGRATION TESTING

 Integration testing is a systematic technique for constructing tests to uncover error associated within the interface. In the project, all the modules are combined and then the entire programmer is tested as a whole. In the integration-testing step, all the error uncovered is corrected for the next testing steps.

7. SYSTEM IMPLEMENTATION

 Implementation is the stage of the project when the theoretical design is turned out into a working system. Thus it can be considered to be the most critical stage in achieving a successful new system and in giving the user, confidence that the new system will work and be effective.

 The implementation stage involves careful planning, investigation of the existing system and it’s constraints on implementation, designing of methods to achieve changeover and evaluation of changeover methods.

 Implementation is the process of converting a new system design into operation. It is the phase that focuses on user training, site preparation and file conversion for installing a candidate system. The important factor that should be considered here is that the conversion should not disrupt the functioning of the organization.

7.1 SCOPE FOR FUTURE ENHANCEMENTS

 The project has covered almost all the requirements. Further requirements and improvements can easily be done since the coding is mainly structured or modular in nature. Improvements can be appended by changing the existing modules or adding new modules. One important development that can be added to the project in future is file level backup, which is presently done for folder level.
CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed an application of HMM in credit card fraud detection. The different steps in creditcard transaction processing are represented as the underlying stochastic process of an HMM. We have used the ranges of transaction amount as the observation symbols,whereas the types of item have been considered to be states of the HMM. We have suggested a method for finding the spending profile of cardholders, as well as application of this knowledge in deciding the value of observation

symbols and initial estimate of the model parameters. It has also been explained how the HMM can detect whether an incoming transaction is fraudulent or not. Experimental results show the performance and effectiveness of our system and demonstrate the usefulness of learning the

spending profile of the cardholders. Comparative studies reveal that the Accuracy of the system is close to 80 percent over a wide variation in the input data. The system is also scalable for handling large volumes of transactions.
 9. REFERENCES
LITERATURE REVIEW

Ghosh and Reilly have proposed credit card fraud detection with a neural network. They have built a detection system, which is trained on a large sample of labeled credit card account transactions. These transactions contain example fraud cases due to lost cards, stolen cards, application fraud, counterfeit fraud, mail-order fraud, and nonreceived issue (NRI) fraud. Recently, Syeda et al. have used parallel granular neural networks (PGNNs) for improving the speed of data mining and knowledge discovery process in credit card fraud detection. A complete system has been implemented for this purpose. Stolfo et al. suggest a credit card fraud detection system (FDS) using metalearning techniques to learn models of fraudulent credit card transactions. Metalearning is a general strategy that provides a means for combining and integrating a number of separately built classifiers or models. A metaclassifier is thus trained on the correlation of the predictions of the base classifiers. The same group has also worked on a cost-based model for fraud and intrusion detection . They use Java agents for Metalearning (JAM), which is a distributed data mining system for credit card fraud detection. A number of important performance metrics like True Positive—False Positive (TP-FP) spread and accuracy have been defined by them. Aleskerov et al. present CARDWATCH, a database mining system used for credit card fraud detection. The system, based on a neural learning module, provides an interface to a variety of commercial databases. Kim and Kim have identified skewed distribution of data and mix of legitimate and fraudulent transactions as the two main reasons for the cmplexity of credit card fraud detection . Based on this observation, they use fraud density of real transaction data as a confidence value and generate the weighted fraud score to reduce the number of misdetections. Fan et al. suggest the application of distributed data mining in credit card fraud detection. Brause et al. have developed an approach that involves advanced data mining techniques and neural network algorithms to obtain high fraud coverage. Chiu and Tsai have proposed Web services and data mining techniques to establish a collaborative scheme for fraud detection in the banking industry. With this scheme, participating banks share knowledge about the fraud patterns in a heterogeneous and distributed environment. To establish a smooth channel of data exchange, Web services techniques such as XML, SOAP, and WSDL are used. Phua et al. have done an extensive survey of existing data-mining-based FDSs and published a comprehensive report. Prodromidis and Stolfo use an agent-based approach with distributed learning for detecting frauds in credit card transactions. It is based on artificial intelligence and combines inductive learning algorithms and metalearning methods for achieving higher accuracy. Phua .suggest the use of metaclassifier similar to infrauddetectionproblems.TheyconsidernaiveBayesian, C4.5, and Back Propagation neural networks as the base classifiers. A metaclassifier is used to determine which classifier should be considered based on skewness of data. Although they do not directly use credit card fraud detection as the target application, their approach is quite generic. Vatsa et al. have recently proposed a game-theoretic approach to credit card fraud detection. They model the interaction between anattackerandanFDSas a ltistagegamebetween two players, each trying to maximize his payoff. The problem with most of the abovementioned approaches is that they require labeled data for both genuine,

as well as fraudulent transactions, to train the classifiers. Getting real-world fraud data is one of the biggest problems associated with credit card fraud detection. Also, these approaches cannot detect new kinds of frauds for which labeled data is not available. In contrast, we present a Hidden Markov Model (HMM)-based credit card FDS, which does

not require fraud signatures and yet is able to detect frauds by considering a cardholder’s spending habit.Wemodel a credit card transaction processing sequence by the stochastic

process of an HMM. The details of items purchased in individual transactions are usually not known to an FDS running at the bank that issues credit cards to the cardholders. This can be represented as the underlying finite Markov chain, which is not observable. The transactions can only be observed through the other stochastic process that produces the sequence of the amount of money spent in each transaction. Hence, we feel that HMM is an ideal choice for addressing this problem. Another important advantage of the HMM-based approach is a drastic reduction in the number of False Positives (FPs)—transactions identified as malicious by an FDS although they are actually genuine. Since the number of genuine transactions is a few orders of magnitude higher than the number of malicious transactions, an FDS should be designed in such a way that the number of FPs is as low as possible.
 Techniques and Algorithm Used

 HMM Model

To map the credit card transaction processing operation in terms of an HMM, we start by first deciding the observation symbols in our model.Wequantize the purchase values x into M price ranges V1; V2; . . . VM, forming the observation symbols at the issuing bank. The actual price range for each symbol is configurable based on the spending habit of individual cardholders. These price ranges can be determined dynamically by applying a clustering algorithm on the values of each cardholder’s transactions, as shown in Section 5.2. We use Vk, k ¼ 1; 2; . . .M, to represent both the observation symbol, as well as the corresponding price range.

 In this work, we consider only three price ranges, namely, low (l), medium (m), and high(h). Our set of observation symbols is, therefore, V ¼ fl; m; hg making M ¼ 3. For example, let l=(0, $100], m =($100,$500], and h=($500, credit card limit]. If a cardholder performs a transaction of $190, then the corresponding observation symbol is m.
A credit cardholder makes different kinds of purchases of different amounts over a period of time. One possibility is to consider the sequence of transaction amounts and look for deviations in them. However, the sequence of types of purchase is more stable compared to the sequence of transaction amounts. The reason is that, a cardholder makes purchases depending on his need for procuring different types of items over a period of time. This, in turn, generates a sequence of transaction amounts. Each individual transaction amount usually depends on the corresponding type of purchase. Hence, we consider the transition in the type of purchase as state transition in our model. The type of each purchase is linked to the line of business of the corresponding merchant. This information about the merchant’s line of business is not known to the issuing bank running the FDS. Thus, the type of purchase of the cardholder is hidden from the FDS. The set of all possible types of purchase and, equivalently, the set of all possible lines of business of merchants forms the set of hidden states of the HMM. It should be noted at this stage that the line of business of the merchant is known to the acquiring bank, since this information is furnished at the time of registration of a merchant. Also, some merchants may be dealing in various types of commodities (For example, Wal-Mart, K-Mart, or Target sells tens of thousands of different items). Such types of line of business are considered as Miscellaneous, and we do not attempt to determine the actual types of items purchased

in these transactions. Any assumption about availability of this information with the issuing bank and, hence, with the FDS, is not practical and, therefore, would not have been valid.
 Advantages

Highly Security from unauthorized use of credit card

1. Avoids fraud usage of card through online transactions.

2. Detect if card used by others if card lost.

 Applications

All the applications using credit cards.

BIBLIOGRAPHY
[1] “Global Consumer Attitude Towards On-Line Shopping,”

http://www2.acnielsen.com/reports/documents/2005_cc_online

shopping.pdf, Mar. 2007.

[2] D.J. Hand, G. Blunt, M.G. Kelly, and N.M. Adams, “Data Mining

for Fun and Profit,” Statistical Science, vol. 15, no. 2, pp. 111-131,

2000.

[3] “Statistics for General and On-Line Card Fraud,” http://www.

epaynews.com/statistics/fraud.html, Mar. 2007.

[4] S. Ghosh and D.L. Reilly, “Credit Card Fraud Detection with a

Neural-Network,” Proc. 27th Hawaii Int’l Conf. System Sciences:

Information Systems: Decision Support and Knowledge-Based Systems,

vol. 3, pp. 621-630, 1994.

[5] M. Syeda, Y.Q. Zhang, and Y. Pan, “Parallel Granular Networks

for Fast Credit Card Fraud Detection,” Proc. IEEE Int’l Conf. Fuzzy

Systems, pp. 572-577, 2002.

[6] S.J. Stolfo, D.W. Fan, W. Lee, A.L. Prodromidis, and P.K. Chan,

“Credit Card Fraud Detection Using Meta-Learning: Issues and

Initial Results,” Proc. AAAI Workshop AI Methods in Fraud and Risk

Management, pp. 83-90, 1997.

[7] S.J. Stolfo, D.W. Fan, W. Lee, A. Prodromidis, and P.K. Chan,

“Cost-Based Modeling for Fraud and Intrusion Detection: Results

from the JAM Project,” Proc. DARPA Information Survivability Conf.

and Exposition, vol. 2, pp. 130-144, 2000.

[8] E. Aleskerov, B. Freisleben, and B. Rao, “CARDWATCH: A

Neural Network Based Database Mining System for Credit Card

Fraud Detection,” Proc. IEEE/IAFE: Computational Intelligence for

Financial Eng., pp. 220-226, 1997.

[9] M.J. Kim and T.S. Kim, “A Neural Classifier with Fraud Density

Map for Effective Credit Card Fraud Detection,” Proc. Int’l Conf.

Intelligent Data Eng. and Automated Learning, pp. 378-383, 2002.

[10] W. Fan, A.L. Prodromidis, and S.J. Stolfo, “Distributed Data

Mining in Credit Card Fraud Detection,” IEEE Intelligent Systems,

vol. 14, no. 6, pp. 67-74, 1999.

[11] R. Brause, T. Langsdorf, and M. Hepp, “Neural Data Mining for

Credit Card Fraud Detection,” Proc. IEEE Int’l Conf. Tools with

Artificial Intelligence, pp. 103-106, 1999.

[12] C. Chiu and C. Tsai, “A Web Services-Based Collaborative Scheme

for Credit Card Fraud Detection,” Proc. IEEE Int’l Conf.

e-Technology, e-Commerce and e-Service, pp. 177-181, 2004.

[13] C. Phua, V. Lee, K. Smith, and R. Gayler, “A Comprehensive

Survey of Data Mining-Based Fraud Detection Research,” http://

www.bsys.monash.edu.au/people/cphua/, Mar. 2007.

[14] S. Stolfo and A.L. Prodromidis, “Agent-Based Distributed Learning

Applied to Fraud Detection,” Technical Report CUCS-014-99,

Columbia Univ., 1999.

[15] C. Phua, D. Alahakoon, and V. Lee, “Minority Report in Fraud

Detection: Classification of Skewed Data,” ACM SIGKDD Explorations

Newsletter, vol. 6, no. 1, pp. 50-59, 2004.

[16] V. Vatsa, S. Sural, and A.K. Majumdar, “A Game-theoretic

Approach to Credit Card Fraud Detection,” Proc. First Int’l Conf.

Information Systems Security, pp. 263-276, 2005.

[17] S. Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion

Detection,” ACM Trans. Information and System Security, vol. 3,

no. 3, pp. 186-205, 2000.

[18] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition,” Proc. IEEE, vol. 77, no. 2,

pp. 257-286, 1989.

[19] S.S. Joshi and V.V. Phoha, “Investigating Hidden Markov Models

Capabilities in Anomaly Detection,” Proc. 43rd ACM Ann. Southeast

Regional Conf., vol. 1, pp. 98-103, 2005.

[20] S.B. Cho and H.J. Park, “Efficient Anomaly Detection by Modeling

Privilege Flows Using Hidden Markov Model,” Computer and

Security, vol. 22, no. 1, pp. 45-55, 2003.

[21] D. Ourston, S. Matzner, W. Stump, and B. Hopkins, “Applications

of Hidden Markov Models to Detecting Multi-Stage Network

Attacks,” Proc. 36th Ann. Hawaii Int’l Conf. System Sciences, vol. 9,

pp. 334-344, 2003.

[22] X.D. Hoang, J. Hu, and P. Bertok, “A Multi-Layer Model for

Anomaly Intrusion Detection Using Program Sequences of System

Calls,” Proc. 11th IEEE Int’l Conf. Networks, pp. 531-536, 2003.

[23] T. Lane, “Hidden Markov Models for Human/Computer Interface

Modeling,” Proc. Int’l Joint Conf. Artificial Intelligence, Workshop

Learning about Users, pp. 35-44, 1999.

[24] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An

Introduction to Cluster Analysis, Wiley Series in Probability and

Math. Statistics, 1990.

[25] K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and

Computer Science Applications, second ed. John Wiley & Sons, 2001.

[26] J. Banks, J.S. Carson II, B.L. Nelson, and D.M. Nicol, Discrete-Event

System Simulation, fourth ed. Prentice Hall, 2004.
 Credit Card Fraud Detection Using

 Hidden Markov Model

Screen Shot:

New Card:

[image: image8.png]
Login

[image: image9.png]
 DATA ACCESS CLASS :
using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

/// <summary>

/// Summary description for DataAccess

/// </summary>

public class DataAccess

{

 public SqlConnection cn;

 public SqlCommand cmd;

 public SqlDataReader dr;

 public SqlDataAdapter da;

 public DataSet ds = new DataSet();

 public DataAccess()

 { }

 public void DBOpen()

 {

 cn = new SqlConnection(ConfigurationManager.AppSettings["connect"]);

 cn.Open();

 }

 public void DBClose()

 {

 cn.Close();

 }

 public void DBCmdOpen(string query)

 {

 DBOpen();

 cmd = new SqlCommand(query, cn);

 cmd.ExecuteNonQuery();

 }

 public void DBCmdClose()

 {

 cmd = null;

 cn.Close();

 }

 public void DBReaderOpen(string query)

 {

 DBOpen();

 cmd = new SqlCommand(query, cn);

 dr= cmd.ExecuteReader();

 }

 public void DBReaderClose()

 {

 cmd = null;

 dr.Close();

 cn.Close();

 }

 public void DBDataAdapter(string query, GridView gvControl)

 {

 DBOpen();

 cmd = new SqlCommand(query ,cn);

 da = new SqlDataAdapter(cmd);

 ds = new DataSet();

 da.Fill(ds);

 gvControl.DataSource = ds;

 gvControl.DataBind();

 DBClose();

 }

}

New Card

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public partial class pgNewCard : System.Web.UI.Page

{

 DataAccess data = new DataAccess();

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void btnSubmit_Click(object sender, EventArgs e)

 {

 data.DBOpen();

 data.cmd = new SqlCommand("card_SP", data.cn);

 data.cmd.CommandType = CommandType.StoredProcedure;

 data.cmd.Parameters.Add(new SqlParameter("@cardNo", txtCardNo.Text));

 data.cmd.Parameters.Add(new SqlParameter("@CreditLimit", Convert.ToInt32(txtAmt.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@holderName", txtACName.Text));

 data.cmd.Parameters.Add(new SqlParameter("@HolderAddress", txtAddress.Text));

 data.cmd.Parameters.Add(new SqlParameter("@BankName", txtBankName.Text));

 data.cmd.Parameters.Add(new SqlParameter("@ACNO", txtACNO.Text));

 try

 {

 data.cmd.ExecuteNonQuery();

 }

 catch (Exception ex)

 {

 Response.Write("<script>alert('Not a Vaild Card Number')</script>");

 data.DBCmdClose();

 }

 data.DBCmdClose();

 txtCardNo.Text = "";

 txtAmt.Text = "";

 txtACName.Text = "";

 txtAddress.Text = "";

 txtBankName.Text = "";

 txtACNO.Text = "";

 Response.Redirect("pgNewUser.aspx");

 }

 protected void txtCardNo_TextChanged(object sender, EventArgs e)

 {

 data.DBReaderOpen("select * from card where cardNo='" + txtCardNo.Text + "'");

 if (data.dr.HasRows)

 {

 txtCardNo.Focus();

 lblerror.Visible = true;

 btnSubmit.Enabled = false;

 }

 else

 {

 txtACNO.Focus();

 btnSubmit.Enabled = true;

 }

 }

}

Login

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

public partial class pgLogin : System.Web.UI.Page

{

 DataAccess data = new DataAccess();

 protected void Page_Load(object sender, EventArgs e)

 {

 Session.Clear();

 Session.Clear();

 }

 protected void btnLogin_Click(object sender, EventArgs e)

 {

 data.DBReaderOpen("Select * from Login where Uname='" + txtUName.Text + "' and pwd = '" + txtPass.Text + "'");

 if (data.dr.HasRows)

 {

 data.dr.Read();

 string roll = data.dr["Roll"].ToString();

 if (roll.ToString() == "Admin")

 {

 Response.Redirect("pgadmin.aspx");

 }

 else

 {

 Session["uid"] = data.dr["uid"].ToString();

 Response.Redirect("pgUsers.aspx");

 }

 }

 else

 {

 Label3.Visible = true;

 }

 }

 protected void btnCancel_Click(object sender, EventArgs e)

 {

 Response.Redirect("pgHome.aspx");

 }

}

Admin’s Home Page

[image: image10.png]
using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public partial class pgAdmin : System.Web.UI.Page

{

 DataAccess data = new DataAccess();

 protected void Page_Load(object sender, EventArgs e)

 {

 gvUsers.Visible = false;

 }

 protected void lbtnViewPro_Click(object sender, EventArgs e)

 {

 gvUsers.Visible = true;

 data.DBDataAdapter("Select cardNo as 'CARD NUMBER',holdername as Name,holderaddress as ADDRESS,creditLimit as 'CREDIT LIMIT',Acno as 'ACCOUNT NO',Bankname as 'BANK NAME' from card", gvUsers);

 }

 protected void lbtnBlockedUser_Click(object sender, EventArgs e)

 {

 gvUsers.Visible = true;

 data.DBDataAdapter("Select cardNo as 'CARD NUMBER',holdername as Name,holderaddress as ADDRESS,Acno as 'ACCOUNT NO',Bankname as 'BANK NAME',placeoftransaction as 'PLACE OF TRANSACTION',placeid as 'PLACE ID',amount as AMOUNT,datetime as 'DATE TIME' from fraud", gvUsers);

 }

}

Security

[image: image11.png]
using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public partial class pgSecurity : System.Web.UI.Page

{

 DataAccess data = new DataAccess();

 protected void Page_Load(object sender, EventArgs e)

 {

 Session["uid"] = "100";

 txtUId.Text = Session["uid"].ToString();

 }

 protected void btnSubmit_Click(object sender, EventArgs e)

 {

 data.DBOpen();

 data.cmd = new SqlCommand("security_SP", data.cn);

 data.cmd.CommandType = CommandType.StoredProcedure;

 data.cmd.Parameters.Add(new SqlParameter("@mode", 1));

 data.cmd.Parameters.Add(new SqlParameter("@uid", Convert.ToInt32(txtUId.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@SecQues1", ddlQ1.SelectedItem.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecAnswer1", txtAns1.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecQues2", ddlQ2.SelectedItem.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecAnswer2", txtAns2.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecQues3", ddlQ3.SelectedItem.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecAnswer3", txtAns3.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecQues4", ddlQ3.SelectedItem.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecAnswer4", txtAns4.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecQues5", ddlQ3.SelectedItem.Text));

 data.cmd.Parameters.Add(new SqlParameter("@SecAnswer5", txtAns5.Text));

 data.cmd.Parameters.Add(new SqlParameter("@Email", txtEmail.Text));

 data.cmd.Parameters.Add(new SqlParameter("@DOB", Convert.ToDateTime(txtDOB.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@gender", ddlGender.SelectedItem.Text));

 data.cmd.ExecuteNonQuery();

 data.DBCmdClose();

 Response.Redirect("pgLogin.aspx");

 }

}

New User

[image: image12.png]

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public partial class pgNewUser : System.Web.UI.Page

{

 DataAccess data = new DataAccess();

 protected void Page_Load(object sender, EventArgs e)

 {

 txtCardNo.Focus();

 }

 protected void btnAvail_Click(object sender, EventArgs e)

 {

 data.DBReaderOpen("select * from Login where UName='" + txtLogin.Text + "'");

 if (data.dr.HasRows)

 {

 lblAvail.Text = "UserName Not Available";

 lblAvail.Visible = true;

 txtLogin.Focus();

 }

 else

 {

 lblAvail.Text = "UserName Available";

 lblAvail.Visible = true;

 txtPass.Focus();

 }

 }

 protected void txtCardNo_TextChanged(object sender, EventArgs e)

 {

 data.DBReaderOpen("select * from userinfo where cardNo='" + txtCardNo.Text + "'");

 if (data.dr.HasRows)

 {

 lblError.Text = "Sorry The Card Number Already Exisit";

 lblError.Visible = true;

 txtCardNo.Focus();

 rblTerms.Enabled = false;

 }

 else

 {

 lblError.Visible = false;

 rblTerms.Enabled = true;

 txtFName.Focus();

 }

 }

 protected void btnCancel_Click(object sender, EventArgs e)

 {

 }

protected void btnSub_Click(object sender, EventArgs e)

{

 if (Convert.ToInt32(rblTerms.SelectedItem.Value) == 1)

 {

 int uid = 0;

 data.DBReaderOpen("select max(Uid)from userinfo");

 if (data.dr.HasRows)

 {

 data.dr.Read();

 string ss = data.dr[0].ToString();

 if (ss == "")

 {

 uid = 101;

 }

 else

 {

 uid = Convert.ToInt32(ss.ToString()) + 1;

 }

 }

 data.DBOpen();

 data.cmd = new SqlCommand("userInfo_SP", data.cn);

 data.cmd.CommandType = CommandType.StoredProcedure;

 data.cmd.Parameters.Add(new SqlParameter("@mode", 1));

 data.cmd.Parameters.Add(new SqlParameter("@FirstName", txtFName.Text));

 data.cmd.Parameters.Add(new SqlParameter("@LastName", txtLName.Text));

 data.cmd.Parameters.Add(new SqlParameter("@Uid", uid));

 data.cmd.Parameters.Add(new SqlParameter("@UName", txtLogin.Text));

 data.cmd.Parameters.Add(new SqlParameter("@pwd", txtPass.Text));

 data.cmd.Parameters.Add(new SqlParameter("@Email", txtEmail.Text));

 data.cmd.Parameters.Add(new SqlParameter("@DOB", Convert.ToDateTime(txtDate.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@Gender", ddlGender.SelectedItem.ToString()));

 data.cmd.Parameters.Add(new SqlParameter("@address1", txtAdd1.Text));

 data.cmd.Parameters.Add(new SqlParameter("@address2", txtAdd2.Text));

 data.cmd.Parameters.Add(new SqlParameter("@city ", txtCity.Text));

 data.cmd.Parameters.Add(new SqlParameter("@state", txtState.Text));

 data.cmd.Parameters.Add(new SqlParameter("@country", txtCountry.Text));

 data.cmd.Parameters.Add(new SqlParameter("@pincode", Convert.ToInt32(txtPin.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@phone", Convert.ToInt32(txtPhone.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@CardNo", txtCardNo.Text));

 try

 {

 data.cmd.ExecuteNonQuery();

 }

 catch (Exception ex)

 {

 }

 data.DBCmdClose();

 Session["Uid"] = uid;

 Response.Redirect("pgSecurity.aspx");

 }

 else

 {

 lblError.Text = "You Must Accept the Terms and Conditions";

 lblError.Visible = true;

 }

}

[image: image13.png]
using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public partial class pgTransaction : System.Web.UI.Page

{

 DataAccess data = new DataAccess();

 int CreditLimit = 0;

 int sumAmount = 0;

 bool Amt = false;

 bool Place = false;

 protected void Page_Load(object sender, EventArgs e)

 {

 txtCardNo.Focus();

 lblError.Visible = false;

 txtAmt.Text = Session["amt"].ToString();

 }

 protected void txtCardNo_TextChanged(object sender, EventArgs e)

 {

 //TO check the user is blocked user or not

 data.DBCmdOpen("Select * from fraud where cardNo='" + txtCardNo.Text + "'");

 data.dr = data.cmd.ExecuteReader();

 if (data.dr.HasRows)

 {

 lblError.Text= "Sorry Your Account Was Disabled";

 lblError.Visible = true;

 data.DBReaderClose();

 }

 else

 {

 data.DBReaderClose();

 data.DBCmdOpen("Select * from card where cardNo='" + txtCardNo.Text + "'");

 data.dr = data.cmd.ExecuteReader();

 if (data.dr.HasRows)

 {

 data.dr.Read();

 txtACNO.Text = data.dr["ACNO"].ToString();

 txtACName.Text = data.dr["holderName"].ToString();

 txtBankName.Text = data.dr["BankName"].ToString();

 txtAddress.Text = data.dr["holderAddress"].ToString();

 txtPalce.Focus();

 btnSubmit.Enabled = true;

 }

 else

 {

 lblError.Text = "Sorry Invalid Card Number";

 lblError.Visible = true;

 txtCardNo.Focus();

 btnSubmit.Enabled = false;

 }

 data.DBReaderClose();

 }

 }

 protected void btnSubmit_Click(object sender, EventArgs e)

 {

 //To Sum The Total Amount made By the Card Holder

 data.DBCmdOpen("select sum(amount) from account where cardNo='" + txtCardNo.Text + "'");

 data.dr = data.cmd.ExecuteReader();

 if (data.dr.HasRows)

 {

 data.dr.Read();

 if (data.dr[0].ToString() == "")

 {

 sumAmount = 0;

 }

 else

 {

 sumAmount = Convert.ToInt32(data.dr[0].ToString());

 }

 }

 data.DBReaderClose();

 //To Find Whether the CreditLimit is Exceed

 data.DBCmdOpen("select * from card where cardNo='" + txtCardNo.Text + "'");

 data.dr = data.cmd.ExecuteReader();

 if (data.dr.HasRows)

 {

 data.dr.Read();

 CreditLimit = Convert.ToInt32(data.dr["CreditLimit"].ToString());

 }

 data.DBReaderClose();

 // To Verify Genuine User Or Not

 data.DBCmdOpen("select count(cardNo) from account where cardNo='" + txtCardNo.Text + "'");

 data.dr = data.cmd.ExecuteReader();

 if (data.dr.HasRows)

 {

 data.dr.Read();

 if (data.dr[0].ToString() == "")

 {

 insertData();

 }

 else

 {

 int count = Convert.ToInt32(data.dr[0].ToString());

 data.DBReaderClose();

 if (count <= 3)

 {

 insertData();

 }

 else

 {

 int tranAmt = Convert.ToInt32(txtAmt.Text);

 string trnPlace = txtPalce.Text;

 //To Get all the transaction palce and amount to verify the current transction

 data.DBReaderOpen("Select * from account where cardNo='" + txtCardNo.Text + "'");

 if (data.dr.HasRows)

 {

 while (data.dr.Read())

 {

 if (data.dr["PlaceofTransaction"].ToString() == txtPalce.Text)

 {

 Place = true;

 break;

 }

 }

 }

 data.DBReaderClose();

 data.DBReaderOpen("select min(amount) as Min ,max(amount) as max from account where cardNo='" + txtCardNo.Text + "'");

 if (data.dr.HasRows)

 {

 data.dr.Read();

 {

 int min = Convert.ToInt32(data.dr["Min"].ToString());

 int max = Convert.ToInt32(data.dr["Max"].ToString());

 if (min <= Convert.ToInt32(txtAmt.Text) && max >= Convert.ToInt32(txtAmt.Text))

 {

 Amt = true;

 }

 }

 }

 if (Amt && Place)

 {

 insertData();

 }

 else if (Amt)

 {

 insertData();

 }

 else

 {

 data.DBReaderOpen("Select uid from userInfo where cardNo='" + txtCardNo.Text + "'");

 if (data.dr.HasRows)

 {

 data.dr.Read();

 {

 Session["TranUid"] = data.dr["uid"].ToString();

 Session["CardNo"] = txtCardNo.Text;

 Session["AccountNo"] = txtACNO.Text;

 Session["BankName"] = txtBankName.Text;

 Session["HolderName"] = txtACName.Text;

 Session["Address"] = txtAddress.Text;

 Session["Place"] = txtPalce.Text;

 Session["PlaceId"] = txtPlaceId.Text;

 Session["Amt"] = txtAmt.Text;

 Session["SumAmount"] = sumAmount;

 Session["creditLimit"] = CreditLimit;

 Response.Redirect("pgVerification.aspx");

 }

 }

 }

 }

 }

 }

 }

 void insertData()

 {

 if (Convert.ToInt32(txtAmt.Text) + sumAmount <= CreditLimit)

 {

 data.DBOpen();

 data.cmd = new SqlCommand("Account_SP", data.cn);

 data.cmd.CommandType = CommandType.StoredProcedure;

 data.cmd.Parameters.Add(new SqlParameter("@cardNo", txtCardNo.Text));

 data.cmd.Parameters.Add(new SqlParameter("@holderName", txtACName.Text));

 data.cmd.Parameters.Add(new SqlParameter("@HolderAddress", txtAddress.Text));

 data.cmd.Parameters.Add(new SqlParameter("@ACNO", txtACNO.Text));

 data.cmd.Parameters.Add(new SqlParameter("@BankName", txtBankName.Text));

 data.cmd.Parameters.Add(new SqlParameter("@PlaceofTransaction", txtPalce.Text));

 data.cmd.Parameters.Add(new SqlParameter("@PlaceId", Convert.ToInt32(txtPlaceId.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@Amount", Convert.ToInt32(txtAmt.Text)));

 data.cmd.Parameters.Add(new SqlParameter("@DateTime", DateTime.Now));

 data.cmd.ExecuteNonQuery();

 data.DBCmdClose();

 }

 else

 {

 lblError.Text = "Sorry You are Exceed the Credit Limit";

 lblError.Visible = true;

 }

 txtPalce.Text = "";

 txtPlaceId.Text = "";

 txtCardNo.Text = "";

 txtBankName.Text = "";

 txtAmt.Text = "";

 txtAddress.Text = "";

 txtACNO.Text = "";

 txtACName.Text = "";

 }

}

VERIFICATION

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Web.Mail;

using System.Data.SqlClient;

public partial class pgVerification : System.Web.UI.Page

{

 DataAccess data = new DataAccess();

 string ans1 = "";

 string ans2 = "";

 string ans3 = "";

 string ans4 = "";

 string ans5 = "";

 string email = "";

 DateTime dob;

 string gender = "";

 protected void Page_Load(object sender, EventArgs e)

 {

 txtUId.Text = Session["TranUid"].ToString();

 data.DBReaderOpen("select * from security where uid=" + Convert.ToInt32(Session["TranUid"].ToString()));

 if (data.dr.HasRows)

 {

 data.dr.Read();

 txtQ1.Text = data.dr["SecQues1"].ToString();

 txtQ2.Text = data.dr["SecQues2"].ToString();

 txtQ3.Text = data.dr["SecQues3"].ToString();

 txtQ4.Text = data.dr["SecQues4"].ToString();

 txtQ5.Text = data.dr["SecQues5"].ToString();

 ans1 = data.dr["SecAnswer1"].ToString();

 ans2 = data.dr["SecAnswer2"].ToString();

 ans3 = data.dr["SecAnswer3"].ToString();

 ans4 = data.dr["SecAnswer4"].ToString();

 ans5 = data.dr["SecAnswer5"].ToString();

 email = data.dr["EMail"].ToString();

 gender = data.dr["gender"].ToString();

 dob = Convert.ToDateTime(data.dr["DOB"].ToString());

 }

 else

 {

 Response.Write("<script> alert('You Are Exceed The Credit Limit')</script>");

 }

 data.DBReaderClose();

 }

 protected void btnSubmit_Click(object sender, EventArgs e)

 {

 if (email == txtEmail.Text && gender == ddlGender.SelectedItem.Text && dob == Convert.ToDateTime(txtDOB.Text) && ans1 == txtAns1.Text && ans2 == txtAns2.Text && ans3 == txtAns3.Text && ans4 == txtAns4.Text && ans5 == txtAns5.Text)

 {

 if (Convert.ToInt32(Session["SumAmount"].ToString()) + Convert.ToInt32(Session["Amt"].ToString()) <= Convert.ToInt32(Session["creditLimit"].ToString()))

 {

 data.DBOpen();

 data.cmd = new SqlCommand("Account_SP", data.cn);

 data.cmd.CommandType = CommandType.StoredProcedure;

 data.cmd.Parameters.Add(new SqlParameter("@cardNo", Session["CardNo"].ToString()));

 data.cmd.Parameters.Add(new SqlParameter("@holderName", Session["HolderName"].ToString()));

 data.cmd.Parameters.Add(new SqlParameter("@HolderAddress", Session["Address"].ToString()));

 data.cmd.Parameters.Add(new SqlParameter("@ACNO", Session["AccountNo"].ToString()));

 data.cmd.Parameters.Add(new SqlParameter("@BankName", Session["BankName"].ToString()));

 data.cmd.Parameters.Add(new SqlParameter("@PlaceofTransaction", Session["Place"].ToString()));

 data.cmd.Parameters.Add(new SqlParameter("@PlaceId", Convert.ToInt32(Session["PlaceId"].ToString())));

 data.cmd.Parameters.Add(new SqlParameter("@Amount", Convert.ToInt32(Session["Amt"].ToString())));

 data.cmd.Parameters.Add(new SqlParameter("@DateTime", DateTime.Now));

 data.cmd.ExecuteNonQuery();

 data.DBCmdClose();

 Response.Redirect("pgTransaction.aspx");

 }

 }

 else

 {

 Response.Write("<script> alert('One or Some Of Your Answer Was Wrong So This Transaction Will Be Abort') </script>");

 Response.Write("<script> alert('TO View Your Answers Login To Your Account') </script>");

 data.DBReaderOpen("Select email from UserInfo Where Uid=" + Convert.ToInt32(Session["TranUid"].ToString()));

 data.dr.Read();

 string TOEmail = data.dr["Email"].ToString();

 data.DBReaderClose();

 SmtpMail.Send("jmsatheesh@gmail.com",TOEmail, "Unusal Transaction Made", "Unusal Transaction Made");

 data.DBCmdOpen("exec fraudTran_SP '"+ Session["CardNo"].ToString() +"','"+ Session["HolderName"].ToString() +"','" + Session["Address"].ToString()+ "',' "+ Session["AccountNo"].ToString() +"','"+Session["BankName"].ToString() +"','" +Session["Place"].ToString()+"',"+Convert.ToInt32(Session["PlaceId"].ToString())+","+Convert.ToInt32(Session["Amt"].ToString())+",'"+DateTime.Now+"'");

 data.DBCmdClose();

 }

 }

 }

Login

Transaction

Complete Transaction

Verification

Security Info

 Stop

Verification

 Security Information

 Transaction

 Login

 New Card

 Start

User

Security

Account Details

Security details

Account History

 HAS

Security

Transaction

 HAS

Account Details

 HAS

Verification

Card No.

Account Details

Login

User

Transaction

Verification

Security

Complete Transaction

Start Transaction

Verification

Security

Account Area

User

User

User

User

Login Details

Login

Transaction

Account Details

Verification

Security

Complete n

