MeeGo-A Linux Based OS

CHAPTER 1

MeeGo
1.1 INTRODUCTION:

On February 15, 2010, the world’s largest chip manufacturer, Intel, and the world’s largest mobile handset manufacturer, Nokia, announced joining their existing open source projects (Moblin and Maemo respectively) to form a new project called MeeGo, hosted at the Linux Foundation. Since announcement of the project, the project has had multiple releases and progressed significantly.

This article provides an introduction to the MeeGo project, an overview of the MeeGo project for the new comers, a brief overview of the MeeGo architecture, the benefits the MeeGo platform offers to the various players in the ecosystem, in addition to a review of the features in the latest MeeGo 1.1 release announced on October 28, 2010.

MeeGo integrates the experience and skills of two significant development ecosystems, versed in communications and computing technologies. The MeeGo project believes these two pillars form the technical foundations for next generation platforms and usages in the mobile and device platforms space.
1.2 Maemo Background :
The Maemo project, initially created by Nokia, provided a Linux-based software stack that runs on mobile devices. The Maemo platform is built in large parts of open source components and its SDK provides an open development environment for applications on top of the Maemo platform.
A series of Nokia Internet Tablets with touch screen have been built with the Maemo platform. The latest Maemo device was the Nokia N900, powered by Maemo 5, that introduced a completely redesigned finger-touch UI, cellular phone feature, and live multicasting on the Maemo dashboard.

[image: image1.emf] [image: image2.emf]
Fig.1.1:Nokia Tablet
1.3 Moblin Background :
The Moblin project, short for Mobile Linux, is Intel’s open source initiative created to develop software for smartphones, netbooks, mobile internet devices (MIDs), and in-vehicle infotainment (IVI) systems, and other mobile devices. It is an optimized Linux-based platform for small computing devices. It runs on Intel Atom, an inexpensive chip with low power requirements. A unique characteristic to devices running Moblin is that they can boot up quickly and can be online within a few seconds.

[image: image3.emf]
Fig.1.2:Screenshot of the MOBLIN 2.1 media panel
1.4 MeeGo:

Fig.1.3:Screenshot ofMeeGo

MeeGo is an open collaborative project between the project founders (Nokia and Intel), the open source community, and various commercial and non-commercial partners, with the goal of accelerating the adoption of Linux on a magnitude of client devices and enriching the technical Linux platform as the platform of choice for mobile computing devices.MeeGo is a Linux-based operating system, built for the next-generation of computing devices across multiple hardware architectures. Different from other mobile operating systems, MeeGo is an open source platform governed by best practices of open source development and includes:

1. Core operating system

2. User Interface (UI) libraries and tools

3. Reference user experiences for multiples devices

4. Standard set of application programming interfaces (APIs) across all target device types

5. A software development kit (SDK) that enables application developers to develop, install,and debug and run applications, either on reference devices or in an emulated environment.

6. Performance optimizations and features which enable rich computational and graphically oriented applications and connected services development

7. No-compromise internet standards support delivering the best web experiences

8. Easy to use, flexible and powerful UI/app development environment based on Qt

9.Open source project organization managed by the Linux Foundation
10. State of the Art Linux stack optimized for the size and capabilities of small footprint platforms and mobile devices, but delivering broad linux software application compatibility.
MeeGo supports a magnitude of mobile client devices (handsets, connected TVs, in-vehicle infotainment, netbooks, and tablets) and provides choice and flexibility to create and deliver a uniquely differentiated service offering. It is a very unique project in that it is aligned closely with upstream projects as MeeGo requires that submitted patches also be submitted to the appropriate upstream project and be on a path for acceptance. This development model has the great effect of improving all upstream open source projects used in MeeGo and guarantees a unified technical approach lead by the upstream projects.

[image: image6.emf]
Fig.1.4: MeeGo, powering a number of different devices
MeeGo currently targets platforms such as netbooks/entry-level desktops, handheld computing and communications devices, in-vehicle infotainment devices, connected TVs, and media phones. All of these platforms have common user requirements in communications, application, and internet services in a portable or small form factor. The MeeGo project will continue to expand platform support as new features are incorporated and new form factors emerge in the market.

1.5 MeeGo v1.1 Core Software Platform:
The MeeGo Core 1.1 release provides a common base operating system for the user experiences of all supported device categories. It provides a complete set of enabling technologies for mobile computing. The MeeGo stack contains Linux Kernel 2.6.35, X.org server 1.9.0, Web Runtime, Qt 4.7,and Qt Mobility 1.0.2, supporting the contacts, location, messaging, multimedia, and sensor and service frameworks. It also includes a number of leading edge components, such as the oFono telephony stack, the ConnMan connection manager, the Tracker data indexer, the Telepathy

real-time communications framework, the Buteo sync framework, and many more. These technologies are brought to application developers through the MeeGo API, which is based on Qt and other technologies, such as the MeeGo Touch Framework. Furthermore, with the latest Qt version 4.7, the MeeGo developer experience is now enhanced with the introduction of QML, the easy to use scripting technology for animated, touch-enabled GUI apps.
	Key Feature
	Explanation
	Related Upstream Project

	Complete MeeGo CompliancePackages
	Ensures compatibility
	n/a

	Ensures compatibility
	Includes support for the Intel Atom microarchitecture, and run-time library functions optimized for the Intel SSSE3 instruction set series family
	http://gcc.gnu.org/gcc-4.5/

	Linux kernel 2.6.35
	Includes support for the Intel Atom processor Z6xx series family
	http://kernel.org/

	X.org Server 1.9.0 and Mesa 7.9
	Improves 2D and 3D graphics

Performance
	http://www.x.org/wiki/ and

http://www.mesa3d.org/

	Qt 4.7 and Qt-mobility 1.0.2
	Provides a rich set of APIs for

creating compelling applications

that include location, sensors,

contacts, and messaging
	http://developer.qt.nokia.com/
http://developer.qt.nokia.com/

	QtWebKit 2.1

	Qt port of WebKit
	http://developer.qt.nokia.com/

wiki/QtWebKit

	Connman connection manager
	Provides support for static IPV6,

dhcp-lib, and vpn
	http://connman.net/

	New Ofono telephony stack
	Provides support for the telephony functionality
	http://ofono.org/

	Pulseaudio
	Provides support for the audio

Functionality
	http://www.pulseaudio.org/

	Gstreamer 0.10.30 with liborc

support
	Improves performance
	http://www.gstreamer.net/

	Zypper/libzypp Package

Management

	Provides full package

management functionalities such

as repository access, dependency solving, package installation, etc.
	http://en.opensuse.org/

Portal:Zypper

	Udisks and upower
	Replaces the deprecated

devicekit-disks and devicekitpower
	http://freedesktop.org/wiki/

Software/udisks and http:// upower.freedesktop.org/

	Buteo synchronization framework

and Personal Information

Management
	Based on Tracker
	http://projects.gnome.org/tracker

	DeviceKit and udev
	Used for interacting with hardware devices
	http://fedoraproject.org/wiki/

	Sensor Framework
	Allows developers to take

advantage of platform sensors,

such as accelerometers, compasses, and gyroscopes
	(part of Qt)

	Universal Plug and Play (gUPnP)
	Support for gUPnp providing

easy to use, efficient, and flexible

framework for creating devices

and control points
	http://gupnp.org/

	BTRFS
	Next generation file system aimed at implementing advanced

features while focusing on fault

tolerance, repair, and easy administration.
	https://btrfs.wiki.kernel.org/

Table.1.1: MeeGo v1.1 Core Software Platform Key Feature List
1.6 MeeGo v1.1 Netbook User Experience:
The MeeGo v1.1 Netbook UX provides a complete set of core applications and offers a visually rich netbook user experience, that is optimized for power and performance, all built on the latest open source technologies. Some of the key features include:

• Integrated touch support

• Easy to use applications

• Instant access to the core applications from the MeeGo home screen (a.k.a. Myzone)

• Aggregation of the social networking content, which allows you to view your social

• networking activities on one screen as they occur, easily interact with your friends, and update your status and site information for a fast and rich Internet experience: the MeeGo

Netbook UX integrates Google Chrome or, if you prefer a fully open source browser solution,

Google Chromium is also provided.
[image: image7.emf]
Fig.1.5: Devices screen
[image: image8.emf]
Fig.1.6: People screen

[image: image9.emf]
Fig.1.7: Status screen

[image: image10.emf]
Fig.1.8: Zones screen

[image: image11.emf]
Fig.1.9: Printing screen
[image: image12.emf]
Fig.1.10: Settings screen

1.7 MeeGo v1.1 IVI UX:
In-Vehicle Infotainment (IVI) systems are devices that deliver navigation, entertainment, and networked computing services in vehicles, such as cars, trucks, planes, boats, and buses.

Automotive manufacturers, in particular, are increasingly viewing IVI systems as a key differentiator in their products. Drivers and passengers are coming to expect, in their vehicles, the same type of innovations they see in other devices, such as mobile computers and handsets. As vehicles become connected to the Internet, the demand for Internet-based entertainment applications and services increases and MeeGo strives to accelerate the pace of innovation in IVI.

The MeeGo IVI software platform is designed to enable rich Internet and multimedia consumer experiences for vehicles. Table 1.2 provides a quick overview of the key features available in the MeeGo 1.1 IVI release.

	Key Feature
	Explanation

	Sample IVI home

screen and taskbar
	The taskbar is designed with Automotive Center Console HMI requirements in mind

	Text-to-speech (TTS)
	TTS is supported using Festival Speech Synthesis and is enabled by default in ivihome menu navigation.

	Speech recognition

	Initial speech recognition has been added to ivihome using the integrated PocketSphinx 0.6.1 package. It is a lightweight, cross-platform engine that is builtusing the latest Sphinx speech recognition toolkit. PocketSphinx provides a GStreamer plugin, allowing the application to create a pipeline to parse the human voice, based on words defined in the dictionary. Voice

commands for ivihome have been pre-defined for navigating the scroll menus.

	MeeGo Touch

Framework (MTF)

integration

	The MTF integration includes sample applications which include, but are not limited to: video player, song player, photo viewer, hands free dialer, and settings management.

	Open source

automotive projects

	Several packages from open source automotive projects are available from the repository for audio management, resource management, persistent storage Several packages from open source automotive projects are available from the

repository for audio management, resource management, persistent storage

Table 1.2: MeeGo IVI v1.1 Key Feature List

[image: image13.emf]
Fig.1.11: MeeGo IVI home screen with the taskbar

1.8 MeeGo v1.1 Handsets UX:
Today’s users are demanding more powerful and feature-rich devices to take with them on the go. Next generation smartphones allow users to enjoy a rich and dynamic Internet experience, watch HD movies, and multi-task like never before on a small form factor device. The MeeGo platform is specifically designed to enable the application and services ecosystem for these mobile, rich Internet and media-centric devices.

The MeeGo v1.1 Handsets UX (Figure 12) provides a technology snapshot that offers key handset technologies, such as cellular, connectivity, sensors, and mobile browsing, as well as a basic development UX for voice calling, SMS messaging, web browsing, music and video playback, photo viewing, and connection management. With this project release, developers will be able to work on future device and user experience software development, while simultaneously participating in the MeeGo project to complete the Handset UX in the upcoming 1.2 release.

[image: image14.emf][image: image15.emf]
Fig.1.12: MeeGo handset dialer and home apps
CHAPTER 2

MeeGo Architecture

2.1 MeeGo Software Architecture Overview :

The MeeGo platform has been carefully created to provide the components necessary for the best device user experience. The MeeGo platform architecture can be viewed in three different ways:

· Layer view: Shows the separation of different layers and user experience (UX) verticals.
· Domain view: Shows the grouping of subsystems into architecture domains, based on similarities in technology and functionality.
· API view: Shows the grouping of MeeGo API into functional areas.
2.1.1 MeeGo Architecture Layer View:

The Layer view consists of three layers:
· User Experience

· Application API

· Core OS layers.

· The user experience layer contains the UX verticals.
It provides reference user experiences for multiple platform segments. MeeGo 1.1 contains reference user experiences for handhelds and netbooks.
The User experience layer provides the Application Framework for each device profile. Netbook UX uses Clutter and MX Libraries. The Handset UX uses MeeGo Touch Framework with haptics, gestures, and input methods

· Application API layer contains the MeeGo API.
It provides the interface for application development. The current release includes Qt 4.7, Qt mobility 1.0, Open GL ES 1.1, and Open GL ES 2.0.

· Core OS layer contains all the middleware/OS service domains and the hardware adaptation services. It includes the Linux kernel and all the middleware needed to define hardware and usage model independent API for building both native applications and web run time applications. The Hardware Adaptation API is for adapting MeeGo to support various hardware architectures.

Fig.2.1:MeeGo layer View Architecture
MeeGo Core OS architecture is grouped into domains, based on functionality in that area:

· Security - Security framework and enablers

· Data Management - Meta-data storage

· Software Management - Package Management and software lifecycle

· System - Device State and Resource Policy Managmeent, Sensor, Context

· Location - Location Framework

· Graphics - X11, OpenGL, input and Display drivers

· Essentials - System essential libraries

· Multimedia - Multimedia related enablers and drivers

· Personal Information Management - Calendar, Contacts, Backup, and Sync

· Communication - VOIP, IM, Presence, Cellular Telephony, and IP Connectivity

· Qt - Qt, QtWRT, Qt Mobility

· Kernel - Linux Kernel and core drivers

2.1.2 MeeGo Architecture API View:

The API view illustrates the contents of MeeGo API.

Fig.2.2:MeeGo API View Architecture
MeeGo API is based on:

· Qt

· Qt Mobility
Qt: Qt provides application developers with the functionality to build applications with state-of-the-art graphical user interfaces. Qt is fully object-oriented, easily extensible, and allows true component programming.

Qt mobility: Qt Mobility delivers a set of APIs to Qt, with features that are well known from the mobile device world. However, these APIs allow the developer to, with ease, use features from one framework and apply them to phones, netbooks, and non-mobile personal computers.
2.1.3 MeeGo Architecture Domain View:
The Domain view expands each domain and details the subsystems required to provide that functionality.

Fig.2.3:MeeGo Domain View Architecture
Security (*): Security domain is responsible of security deployment across the system. It provides enablers for platform security and user identity.

· Accounts - Provides a storage solution for user accounts. Applications which need to store and access user settings for the service they provide over a user account will use the Accounts API. Instant messaging, e-mail, calendar, and sharing are examples of such applications.

· Single Sign-On - Responsible for providing secure storage for credentials and framework for authentication plugins to different services

· Integrity Protection Framework - Integrity protection of executables, configuration, and data files.

· Certfificate Manager - Services for storing and validation of security certificates for various purposes (such as email, wifi, and browsing).

· Software Distribution Security - Security aspects of software distribution including new application installations and updates.

· Access Control Framework - Access control enforcement and access control policy for the device

· Security Adaptation - Platform specific abstraction of security and crypto services.

Data Management: Data Management domain provides services for extracting and managing file meta-data (for example to support extracting and searching metadata for media files). The Data Management domain includes the following subsystem:

· Content Framework - Tracker provides indexing, meta-data extraction, and search capabilities for a variety of data types, including media files, and documents.

Software Management: Software Management domain is responsible for package manager and its backend functionality.

· Package Manager - PackageKit uses distribution package management tools to make installing and updating software on devices easier. It is a system activated daemon meaning that it is only run when the user is using the tools, and quits when it is no longer used.

System: System domain is responsible for device state/mode handling, time management, policy control, startup services, and sensor abstraction.
· System Control - Device state and time management

· Resource Policy - Plugin based framework for audio, video, and system policy management.

· Startup Services - Components related to system startup.

· Context Framework - High level API to numerous context properties of the device.

· Sensor Framework - Provides an interface to hardware sensors through logical sensors.

· Sensor Adaptation - Sensor specific plugins for sensor framework

· Device Mode Adaptation - Hardware abstraction layer for device mode related information (such as watchdogs, temperature sensors)

· Haptics and Vibra Adaptation - Hardware abstraction layer for vibra and haptics devices
Location: Location domain provides location services.
Location Framework - GeoClue provides location data combined from number of sources, such as GPS, GSM cell, or wifi network.

· Location Adaptation - Hardware abstraction layer for location source devices such as GPS

Kernel: Kernel domain contains Linux kernel and device drivers.

· Linux Kernel - Linux kernel 2.6.35 or newer.

Personal Information Management: Personal Information Management domain enables managing user data on the device, including managing calendar, contacts, tasks, and retrieving data about the device context (such as device position, cable status). The domain includes the following subsystems:

· Calendar Engine - Calendar engine provides an interface for accessing calendar data.

· Contacts Engine - Contacts engine provides an interface for accessing contact data.

· Email Engine - Email engine provides an interface for accessing emails.

· Backup Framework (*)
· Syncronization Framework - Synchronizing calendar, email, and contacts data between different devices via various transport layers like USB and Bluetooth

Multimedia: Multimedia domain provides audio and video playback, streaming, and imaging functionality to the system. In general, the domain takes care of the actual audio and video data handling (retrieval, demuxing, decoding and encoding, seeking, etc.). The domain includes the following subsystems:
· Imaging and Video Adaptation - Platform specific codecs and containers for GStreamer

· Camera Adaptation - Platform specific codecs and containers for GStreamer. Adaptation interface is CameraBin.

· UPnP - Universal Plug and Play provides a UPnP stack, the UPnP profile for audio and video.

· Gstreamer - GStreamer, through its plugins, provides playback, streaming, and imaging functionality to the system.

· Audio Adaptation - Platform specific modules for PulseAudio

· Pulse Audio - The audio subsystem handles audio inputs, post and pre processing, and outputs in a system. The purpose is to provide a proxy between audio applications and audio hardware.

Essentials: Essentials domain provides all system essential packages.

· Base Essentials - Fundamental system tools and libraries

Communications: Communications domain provides Cellular and IP Telephony, Instant Messaging, Presence, Bluetooth, and Internet Connectivity services.

· IP Telephony, Instant Messaging and Presence - Telepathy is a modular communications framework that enables real-time communication via pluggable protocol backends.

· Cellular Framework - oFono provides cellular telephony stack and services in MeeGo. Plugin based architecture supports multiple platforms and modems.

· ConnMan - Connection Manager provides services for managing internet connections.

· Bluetooth - The Bluetooth subsystem consists of the Linux Bluetooth stack BlueZ, as well as related extensions.

· Communication Adaptation - Platform specific modules for WiFi and Bluetooth devices and oFono plugins for different platforms and modems.

Qt: Qt domain contains cross platform toolkits such as Qt, Qt Mobility, Qt WebKit, and Qt WebRuntime.

· Qt - Qt application and UI toolkit.

· Qt Mobility - Qt Mobility APIs for MeeGo.

· Qt Webkit - MeeGo provides Qt Webkit as a layout engine. It renders web content (HTML, XML, XHTML, SVG, CSS, JavaScript, etc.) for on-screen display within applications.

· Web Runtime - Provides an execution environment for Web Widgets and extends the standard JavaScript environment with device-specific APIs providing access to other subsystems.

Graphics: Graphics domain enables the core 2D and 3D graphics capabilities for the platform, including support for rendering internationalized text and taking advantage of underlying hardware platform acceleration for graphics. The Graphics domain includes the following subsystems:

· Font Management - Service to locate fonts within the system and select them according to requirements specified by applications

· Input Adaptation - Input adaptation abstracts the hardware behind drivers and exposes an input event interface for user space. Hardware buttons, qwerty keyboard, and touch screen are provided as input devices. Typical HW buttons are: power button, camera, volume up, and volume down.

· X11 - Implementation of the X11 Window system with architecture specific drivers, patches and configuration.

· OpenGL ES - Provides Khronos interfaces and implementation of OpenGL, OpenGLES and EGL. Includes also platform specific implementation of GL/ES driver and libraries.

· Display and Graphics Adaptation - Framebuffer and display panel related platform specific abstraction.

2.1.4 Hardware Adaptation Software:
There are multiple software components that a hardware vendor must provide for MeeGo to run successfully on their platform architecture, including platform kernel drivers, core architecture additions, kernel configuration, X software additions and configuration, modem support, and hardware specific media components. These specific software components are called the hardware adaptation software and are detailed below.The MeeGo Core OS defines interfaces for platform dependent hardware. It's the responsibility of a chipset's hardware adaptation software to implement these interfaces. The hardware adaptation software is divided into to the following adaptation subsystems:

· Security
· Sensor
· Device Mode
· Haptics and Vibra
· Audio
· Camera
· Imaging and Video
· Location
· Cellular
· Connectivity
· Input
· Display and Graphics
CHAPTER 3

MeeGo APPLICATION PROGRAMMING INTERFACE

3.1 MeeGo API:
MeeGo 1.1 includes the official MeeGo API based on Qt 4.7 and Qt mobility 1.0. It also includes framework and middleware components along with some preview technologies as described in the Platform API. Click the links below to access these areas.

[image: image19.png]/; 2tf
7 Extension
API

y

MeeGo API

Y /4

Fig.3.1:MeeGo API

The MeeGo API includes the development libraries to use when creating applications for MeeGo-based platforms. These APIs are stable and will be forward compatible. Applications that use the MeeGo API will be MeeGo compliant and able to run on MeeGo-based platforms today and in the future.
3.1.1 Overview:
The MeeGo API is focused on application development. It contains a sufficient toolset for most application development projects.

3.1.2 MeeGo API Services:
The MeeGo API services contain MeeGo API categorised according to function. This categorisation makes it easier to find APIs to use for a particular function in the application. In some cases, it may be necessary to identify the originating libraries of the APIs you. Therefore, for each API, the originating library is also identified in the rightmost column of the tables on the service pages.

	MeeGo API services

	Service
	Content

	Application Frameworks
	Frameworks for building application UIs

	Communications
	Social and human interaction, connectivity and networking.

	Graphics
	Generating and rendering 2D and 3D graphics

	Location
	Identifying geographical location of the device or, for example, landmarks.

	Multimedia
	Media playback and recording, streaming

	Personal Information Management
	Personal information, such as contacts, calendar entries, and business cards.

	System
	Access to device resources

Table 3.1:MeeGo API Services

3.1.3 MeeGo API Libraries:
One can also browse MeeGo API categorised according to library. This categorisation makes it easier for advanced developers to choose which specific libraries they want their application to have as a dependency.

	MeeGo API libraries

	Library
	Content

	OpenGL ES 1.1
	A low-level API for producing hardware-accelerated 2D and 3D graphics

	OpenGL ES 2.0
	A current version of OpenGL ES. Features a programmable 3D graphics pipeline.

	Qt API
	Qt is a cross-platform application and UI framework. Using Qt, you can write web-enabled applications once and deploy them across desktop, mobile and embedded operating systems without rewriting the source code.

	Qt Mobility API
	Qt APIs that enable access to many mobile device specific functionalities. Qt Mobility APIs enable cross-platform mobile application development.

Table 3.2: MeeGo API Libraries.
3.2 Platform APIs:

The Platform API includes libraries and components that are part of the MeeGo 1.1 SDK but are not recommended for general use. Although they can be used when creating applications, they are not part of the MeeGo API, have varying states of maturity, and are not guaranteed for future compatibility.

Qt and Qt Quick/QML, as described in the MeeGo API, are recommended technologies to use for all development, when possible. These frameworks continue to develop improved multimedia support so that eventually linking directly with these other libraries will not be necessary.

The library APIs currently listed in MeeGo API are considered stable and may be necessary for some application developers, specifically for game development and complex multimedia applications. However, there is no forward compatibility promise for these APIs.

CHAPTER 4

MeeGo Application Development Cycle

4.1 Application Development Cycle:

MeeGo applications can be written using Qt (a rich C++ application framework) or Qt Quick (a Javascript-like declarative language). The MeeGo SDK includes Qt Creator IDE with GUI builder to enable streamlined development. It is currently available for use on Linux workstations as shown below.
	[image: image20.png]Develop

_A

Linux or Windows
Workstation

MeeGo

toolchain

|

o ..

1 QEMU
i

Virtual Machine
! Or"Emulator”
} (per vertical)
1
1

N

On device

E.@

Package

fom
* manual

* RPM Spec
Creator

* public OBS

* plugin to Ot
Creator

Distribute

Community
Repositories

plugin to Qt
Creator

	
	
	

Fig.4.1:Application Development Cycle
4.1.1 Features:
· Cross-OS

· Deploy/debug with VM or device

· Device emulation

· Better packaging support

· Integration with Qt Creator

· Change-root flexibility

· Limited to Intel Graphics

4.1.2 Develop:

The MeeGo SDK creates a virtual environment on your workstation that replicates direct development on a MeeGo OS-based system. Netbook and handset development images are currently available. You can set up your development environment in two ways, depending on the capabilities of your host system. QEMU will work effectively only on VT-enabled systems with graphics acceleration (first blue box above), while chroot+Xephyr (second blue box above) will only work on systems with Intel graphics. Both provide a similar development experience.

4.1.3 Debug:

One can debug the application by using QEMU or Xephyr and run the application inside the MeeGo user experience. Both QEMU and Xephyr have been enhanced with support for hardware accelerated graphics.

4.1.4 Package:

Create a standard RPM-format package for your MeeGo application.

4.1.5 Distribute:

The RPM package can be submitted to one of the various application stores.

CHAPTER 5
MeeGo USER EXPEREINCES DESIGN PRINCIPLES

Meego User eXpereince(UX) desing principles in-all includes seven standards that plays a vital role in MeeGo’s development as a renowned Linux-based OS.The seven standards are as follows:

5.1.Connected, Vibrant and Alive.
5.2.Task Switching & Multi-tasking.
5.3.Adaptive & Intelligent.
5.4.Responsive.
5.5.Getting the basics right.
5.6.Simply beautiful.
5.7.Plug-ins & Framework support.
5.1 Connected, Vibrant and Alive:
[image: image21.png]

MeeGo is designed to be connected to the web all the time. MeeGo’s applications should feel ‘alive’ with relevant and optimized activity, yet consider power consumption, and make the device a true life hub.

5.2 Task Switching & Multi-tasking:
[image: image22.png]

People’s daily lives are complex and busy.

People tend to do a lot of things at once and often the things they want to do involve two or more applications – making an appointment over the phone, sending a link to a friend, finding a listing on the map, watching a movie, and browsing the web at the same time.

MeeGo allows people to quickly move around running applications, which keeps them up to date and enables them to get something done.

5.3 Adaptive & Intelligent:
[image: image23.png]

MeeGo is intelligent, and adaptive. MeeGo learns from the users habits and it is adaptive in the sense that it surfaces objects that the user last used or uses the most, the albums he listens to the most, and the documents he read most recently.

5.4 Responsive:
[image: image24.png]

The UI must give immediate feedback to the user’s actions. When scrolling or panning, the moved objects need to follow user’s interaction without a noticeable lag.
Visual, audio and haptic feedback must feel that they are in perfect synch. The multimedia playback has high resolution and frame rate that gives a feeling of performance.

5.5 Getting the basics right:
[image: image25.png]

People still need to meet the demands of every day life, calling their mom, remembering the milk, and messaging a colleague from the bus stop, choosing a favorite song or TV channel.

MeeGo should make these things a joy and never be a distraction or overly elaborate.

5.6 Simply beautiful:
[image: image26.png]

The UI must please all senses. Visual, aural and haptic feedback must be beautiful, yet
simple. Visual, aural (and haptic) metaphors and effects must be consistent. Decoration should have meaning, for example to show what can be touched. The UI is alive, for example showing subtle animations.

5.7 Plug-ins & Framework support:
[image: image27.png]

MeeGo offers frameworks which improve the user experience, ease and speed up the development.

Same kind of functionality should be aggregated into one single consistent experience. For example, multiple instant messenger clients should be bundled into one place, instead of having multiple IM applications on the device. A single plug-in is normally much easier to develop than a full UI for service features.

In addition, service providers should hook into all core frameworks of the platform, like the notification framework accounts and SSO framework or content framework and tracker database.

CHAPTER 6

Hardware Enabling Process

This chapter describes MeeGo operating system support for new hardware platforms, including the software patches and components required from a hardware vendor, and the process for creating an image that supports a given hardware architecture platform, such as IA or ARM.

6.1 What Does the Hardware Vendor Provide?

There are multiple software components that a hardware vendor must provide for MeeGo to run successfully on their platform. MeeGo is built on the Linux Kernel, the X windows system, and other critical software components.

6.1.1Kernel Related Patches:
The kernel is the heart of Linux, and acts as the bridge between applications and the actual data processing done at the hardware level. There are three general categories of patches that MeeGo requires for each supported hardware platform.

· Kernel Drivers: This is the set of software drivers needed to interact with the hardware device. Some examples are drivers for wireless, camera, USB, 3G, Bluetooth, and touchscreen.

· Core Architecture Patches: These are additional packages added to the Kernel to enable certain architecture features. An example would be firmware.

· Kernel Configuration File: This file determines the options needed to get the hardware device working properly. This configuration file is in addition to the general kernel configuration file that is provided within MeeGo, and is specific to the hardware vendor platform. This file details the specific configurations required for the specific device. Examples include device architecture, processor type, device driver configuration options, network support, and kernel debugging options.

6.1.2 X Related Patches:
The X Windows system (also known as X11 or simply X) provides the graphical interface and the basic framework for building this interface. There are two general categories of X patches that MeeGo requires for each supported hardware platform.

· Core Architecture: These are additional packages to be added to X to enable certain architecture features. Examples include the graphics controller, display, and acceleration.

· X Configuration file: This file provides configuration and runtime parameters for initializing the X windows system. If there are hardware-specific configuration options required for the X windows system, these details must be added and supplied to the specific hardware platform X configuration file. Examples include the display output and resolution.

6.1.3 Other Patches and Tools:
· Bootloader: The bootloader program's only job is to perform the necessary initializations to prepare the hardware for the operating system, and it contains board- and/or processor-specific code. The bootloader provides the necessary glue between the firmware and the kernel.

· Image Device Format Tool: This provides the details on how to write an image for a specific device. It is a tool used to create a device executable in the appropriate device format.

· Modem Support: telephony framework plug-ins for specific cellular modems

· Hardware-Specific Media Codecs: Codecs that are hardware specific (such as codecs with hardware assist/offload)

6.2 How Does the Process Work?

The diagram illustrates the software process flow with detailed steps below for how hardware support is enabled within the MeeGo distribution, resulting in an image for a specific hardware device.

[image: image28.png]Platform and oD MeeGo

Package SR Image
Maintainers Creator

Fig.6.1Hardware Enabling Process
6.2.1 Patches Submitted by Hardware Vendors:
The hardware vendor provides software patches along with a reference to the upstream submission to the appropriate MeeGo platform maintainer for integration. The MeeGo platform maintainer integrates the hardware-specific patches into the single unified MeeGo source code base, and subsequently submits that, along with the hardware platform-specific configuration files, to the MeeGo build system.

6.2.2 Build Process:
Now that the hardware-specific software packages are part of the MeeGo build system, a MeeGo release manager takes those source packages and builds them with the MeeGo distribution. This creates a binary package for the platform-specific kernel, X stack, and bootloader.

6.2.3 Image Creator:
An image can now be created with a “kickstart file,” which contains the device-specific MeeGo image description. This file lists the packages needed to make the image, the source repositories the data is obtained from, and the image types that can be generated from this description. The image creator application then uses this kickstart file to create the MeeGo device-specific image, which includes the platform-specific components and bootloader.

6.2.4 Final Testing:
The MeeGo device image can now be used to test the hardware platform. Because the hardware-specific components are integrated within the MeeGo build system and distribution, additional patches and bug fixes to these components can be performed within the MeeGo development tree.

CHAPTER 7

MeeGo SOFTWARE PLATFORM BENEFITS
The MeeGo open source project is unique in that it offers benefits to everyone in the ecosystem starting from the developer all the way up to the operator and the industry as a whole. Meego allows participants to get involved and contribute to an industry-wide evolution towards richer devices, to rapidly address opportunities and to focus on differentiation in their target markets.

7.1 Benefits to Open Source Developers :
[image: image29.emf]
The MeeGo project is a true open source project hosted by the Linux Foundation and governed by best practices of open source development. From meego.com, as an open source developer, you have access to tools, mailing lists, discussion forum, accessibility to technical meetings, and multiple options to make your voice heard over technical and non-technical MeeGo related topics. Furthermore, all source code contributions needed for MeeGo will be submitted to the upstream open source projects from which MeeGo will be built.

7.2 Benefits to Application Developers :
[image: image30.emf]
As an application developer, MeeGo significantly expands the market opportunities for you being the only open source software platform that supports deployments across many computing device types. MeeGo offers Qt and Web runtime for application development, cross platform environments, so application developers can write their applications once and deploy easily on many types of MeeGo devices or even on other platforms supporting the same development environment.

[image: image31.emf]
Fig.7.1: Single app available from multiple app stores to a wide range of device types.
Furthermore, MeeGo offers a complete set of tools for developers to create easily and rapidly a variety of innovative applications. The major advantage from this approach (Figure 6) is having a single set of APIs across client devices. In addition, in this context multiple devices is much broader than just multiple handset for instance; MeeGo device types include media phones, handhelds, IVI systems, connected-TVs and netbooks. In addition, MeeGo application developers will the opportunity to make their applications available from multiple application stores such as the Nokia’s Ovi Store and the Intel’s AppUp Center. In addition, there is the opportunity of hosting the applications on other app stores for specific carriers carrying MeeGo devices as part of their device offering. These MeeGo capabilities, cross-device and cross-platform development, are major differentiator and offer huge benefits to the developers.
7.3 Benefits to Device Manufacturers :
[image: image32.emf]
MeeGo helps accelerate time to market using an off-the-shelf, open source and optimized software stack targeted for the specific hardware architecture the device manufacturer is supporting. From a device manufacturer perspective, MeeGo lowers complexities involved

in targeting multiple device segments by allowing the use of the same software platform for different client devices. In addition, as an open source project, MeeGo enables device manufacturers to participate in the evolution of the software platform and build their own assets for it through the open development model.

7.4 Benefits to Operators :
[image: image33.emf]
For operators, MeeGo enables differentiation through user interface customization. Although many devices can be running the same base software platform, they can all have different user experiences. Furthermore, it provides a single platform for multitude of devices, minimizing the efforts needed by the operators in training their teams and allows their subscribers to be familiar with the experience common to many device types.
7.5 Benefits to the Linux Platform :
[image: image34.emf]
For operators, MeeGo enables differentiation through user interface customization. Although many devices can be running the same base software platform, they can all have different user experiences.Furthermore, it provides a single platform for multitude of devices, minimizing the efforts needed by the operators in training their teams and allows their subscribers to be familiar with the experience common to many device types.

In addition, MeeGo is helpful for Linux as a platform as it combines mobile development resources that were recently split in the Maemo and Moblin projects into one well-supported, well-designed project that addresses cross-platform, cross-device and cross-architecture development. One major benefit from the MeeGo project is that all other Linux mobile and desktop efforts that use the components as MeeGo will benefit from the increased engineering efforts on those components. This is the power of the open source development model.

 CHAPTER 8

DEVICES

MeeGo's common core supports development for a variety of devices namely:
· Handset

· In-Vehicle

· Netbook

· Media Phone

· Smart TV

8.1 Handset:

Fig.8.1:Handset Screenshot

Today’s users are demanding more powerful and feature-rich devices to take with them on the go. Next generation smartphones allow users to enjoy a rich and dynamic Internet experience, watch HD movies, and multitask like never before on a small form factor device. Travel lighter and longer with extended battery life. Wherever you go and whatever you do, it’s a mobile experience that not only does more, it does it better.

The MeeGo based platform is specifically designed to enable the application and services ecosystem for these mobile, rich internet and media-centric devices. The MeeGo handheld platform builds on the foundation laid by Maemo and Moblin.
8.2 In-Vehicle:

Fig.8.2 :In-Vehicle Screenshot

In-Vehicle Infotainment (IVI) systems are devices that deliver navigation, entertainment, and networked computing services in vehicles, such as cars, trucks, planes, and buses. Automotive manufacturers in particular are increasingly viewing IVI systems as a key differentiator in their products. Drivers and passengers are coming to expect the same type of innovations they see in other devices, such as mobile computers and handsets, in their vehicles. As vehicles become connected to the internet, the demand for internet-based entertainment applications and services increases and MeeGo strives to accelerate the pace of innovation in IVI.

The MeeGo IVI software platform is designed to enable rich internet and multimedia consumer experiences for vehicles. MeeGo IVI builds on the foundation laid by Moblin IVI for rich multimedia, CE device management, internet, and automotive connectivity.

8.3 Netbook:

Fig.8.3:Netbook Screenshot

MeeGo will provide expanded features, improved performance, and a richer user experience for netbooks. With its advanced support for touch and connectivity, MeeGo is a compelling platform for netbook and tablet creation and application development. MeeGo is a light-weight, scalable, fast-booting and a brand-able operating system.

8.4 Media phone:
[image: image38.png]

Fig.8.4:Media Phone

Telephone and video calling platforms are growing in capability. What was once a pure communications platform is now also an information, entertainment station and internet access point. MeeGo for media phones will help system developers create next- generation communication devices with high-quality multimedia features, while reducing the amount of development iterations. MeeGo's graphics system pre-integration and open software stack makes advanced visual features, such as HD video-conferencing, advanced telephony, touch UI, and integrated business applications, much easier to accomplish.

MeeGo’s ability to mix native and web UI development allows widgets to share documents and presentations and to access web content with less memory consumption. MeeGo will provide the development community with tools, such as the Qt Creator IDE, documentation, sample code, and applications.

8.5 Smart TV:
[image: image39.png]

Fig.8.5:Smart TV

Consumers demand access to all of their content on all the screens they interact with in the home, from mobile computers and handsets to digital televisions. As these screens connect to the internet, the opportunity for manufacturers and content providers to satisfy the demand for streaming media, social networking, casual games, and new applications grows dramatically.

MeeGo for Smart TV delivers a complete, open standards-based Linux stack, optimized for living room devices, such as Blu-ray players, set top boxes, and digital TVs. It is designed for an internet-connected TV experience, allowing users to enjoy access to multiple applications, services, and personal media, all while watching TV.

MeeGo for Smart TV allows OEMs, ODMs, and service providers the strategic freedom to deliver innovative and integrated broadcast and internet solutions, with fast time-to-market and reduced development cost.

CHAPTER 9

CONCLUSION AND FUTURE SCOPE
9.1 CONCLUSION:

MeeGo is an open source project developed under the auspices of the Linux Foundation. Since it was announced in February 2010, the world has been able to both watch and participate as the project builds up and delivers the core software stack, in addition to three reference user experiences for handsets, IVI systems, and netbooks, with more to come as MeeGo also targets connected TVs and tablets.

9.2 FUTURE SCOPE:
With high performance now pos​sible in mobile and embedded computing hardware and software standardization afforded by open source, the cloud, and other abstrac​tions, MeeGo is yet another oper​ating system—an operating system reference stack even. Yet it represents something fundamentally important and different. It’s part of a philoso​phy banking on the larger open mar​ket and the innovation of the many instead of the few, and therefore is well positioned to encompass the third wave’s rapid growth.
The development continues following a six-month cadence release schedule. MeeGo 1.2 is

scheduled for April of 2011. Currently there are hundreds of features targeting MeeGo 1.2 that have already been filed in the MeeGo Featurezilla (a tool that tracks feature development) and the development tree of MeeGo 1.2 is open and development is ongoing.
REFERENCES
www.ieee.org

www.maemo.org
www.moblin.org
meego.com/developers
wiki.meego.com
meego.com/downloads/releases

 meego.com/developers/getting-started
www.intel.com/consumer/products/appup.htm
store.ovi.com
www.linuxfoundation.org/meego

 1

