
ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 1 of 9

IMPLEMENTATION OF TRAVELING
SALESMAN’S PROBLEM USING

NEURAL NETWORK

FINAL PROJECT REPORT (Fall 2001)

ECE 559 Neural Networks
December 3, 2001

Prof. Daniel Graupe

Ritesh Gandhi

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 2 of 9

Approximate solution for the Traveling
Salesman’s Problem Using Continuous

Hopfield Network

Ritesh Gandhi

Department of Electrical and Computer Engineering

rgandhi@ece.uic.edu

ABSTRACT
I have proposed an implementation of an
algorithm in neural network for an
approximate solution for Traveling
Salesman’s Problem. TSP is a classical
example of optimization and constrain
satisfaction problem which falls under
the family of NP-complete of problems. I
have used Continuous Hopefield network
to find the solution for the given
problem. The algorithm gives near
optimal result in most of the cases for
upto 20 cities.

PROBLEM
There is a list of cities that are to be
visited by a salesman. A salesman starts
from a city and come back to the same
city after visiting all the cities. Here the
objective is to find the path, which
follows following constrains

1) Salesman has to visit each city. He
should not leave any city unvisited.

2) Each city should be visited only one
time.

3) The distance that he travels till he
returns back to the city he has started
should be minimum.

INTRODUCTION
The traveling salesman problem (TSP) is
well known in optimization. The TSP
problem is NP-complete problem. There
is no algorithm for this problem, which
gives a perfect solution. Thus any
algorithm for this problem is going to be
impractical with certain examples.

Here we assume that we are given n
cities, and a non-negative integer
distance Dij between any two cities i and
j. We try to find the tour for the
salesman that best fits the above-
mentioned criterion.

There are various neural network
algorithm that can be used to try to solve
such constrain satisfaction problems.
Most solution have used one of the
following methods

• Hopfield Network

• Kohonen Self-organizing map

• Genetic Algorithm

Here an approximate solution is found
for TSP using Hopfield network.

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 3 of 9

HOPFIELD NETWORK
Hopfield network is a dynamic network,
which iterates to converge from an
arbitrary input state. The Hopfield
Network works as minimizing an energy
function.

The Hopfield net is fully connected
network. It is a weighted network where
the output of the network is fed back and
there are weights to each of this link.
The fully connected Hopfield network is
shown in following figure.

Here we use n2 neurons in the network,
where n is the total number of cities. The
neurons here have a threshold and step-
function. The inputs are given to the
weighted input node. The network then
calculates the output and then based on
Energy function and weight update
function, converges to the stable solution
after few iteration. The most important
task on hand is to find an appropriate
connection weight. It should be such that
invalid tours should be prevented and
valid tours should be preferred.

Figure : Fully Connected Hopfield

Network for TSP for 3 cities.

The output result of TSP can be
represented as following. The example
here is for 4 cities. The 4 cities TSP need
16 neurons.

Figure : Tour Matrix obtained as the
output of the network.

The corresponding visiting route, in the
above example is

 City2àà City1ààCity4ààCity3ààCity2

So the total traveling distance is

 D = D21 + D14 + D43 + D32.

NETWORK INPUTS

The inputs to the network are chosen
arbitrarily. The initial state of the
network is thus not fixed and is not
biased against any particular route. If as
a consequence of the choice of the
inputs, the activation works out to give
outputs that add up to the number of
cities, and initial solution for the
problem, a legal tour will result. A
problem may also arise that the network
will get stuck to a local minimum. To
avoid such an occurrence, random noise
is generated and added.

Also there are inputs that are taken from
user. The user is asked to input the
number of cities he want to travel and
the distance between those cities which
are used to generate the distance matrix.

Distance matrix in n*n square matrix
whose principal diagonal is zero. The

 #1 #2 #3 #4

C1 0 1 0 0

C2 1 0 0 0

C3 0 0 0 1

C4 0 0 1 0

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 4 of 9

figure below shows a typical distance
matrix for 4 cities.

 C1 C2 C3 C4

C1 0 10 18 15

C2 10 0 13 26

C3 18 13 0 23

C4 15 26 23 0

Figure : Distance Matrix generated after
getting inputs from user

Here distance, for example, between city
C1 and city C3 is 18 and distance
between a city to itself is zero.

ENERGY FUNCTION
The Hopfield network for the application
of the neural network can be best
understood by the energy function. The
energy function that is developed by
Hopfield and Tank is used for the
project. The energy function has various
hollows that represent the patterns
stored in the network. An unknown input
pattern represents a particular point in
the energy landscape and the pattern
iterates its way to a solution, the point
moves through the landscape towards
one of the hollows. The iteration is
carried on till some fixed number of time
or till the stable state is reached.

The energy function used should satisfy
the following criterions

• The energy function should be able
to lead to a stable combination
matrix.

• The energy function should lead to
the shortest traveling path.

The energy function used for the
hopfield neural network is

E = A1 ΣΣi ΣΣk ΣΣj≠≠k Xik Xij +

 A2 ΣΣi ΣΣk ΣΣj≠≠k Xki Xji +

 A3 [(ΣΣi ΣΣk Xik)- n]2 +

 A4 ΣΣk ΣΣj≠≠k ΣΣi dkj Xki(Xj,i+1 + Xj,i-1)

Here A1, A2, A3, A4 are positive integers,
the setting of these constants are critical
for the performance of Hopfield
network. Xij is the variable to denote
the fact that city i is the jth city visited in
a tour. Thus Xij is the output of the jth
neuron in the array of neurons
corresponding to the ith city. We have
n2 such variable and their value will
finally be 0 or 1 or very close to 0 or 1.

The Energy function can be analyzed as
follows

• ROW CONSTRAINT: (A1 Σi Σk Σj≠k
Xik Xij) In the energy function the
first triple sum is zero if and only if
there is only one “1” in each order
column. Thus this takes care that no
two or more cities are in same travel
order. i.e. no two cities are visited
simultaneously.

• COLUMN CONSTRAINT: (A2 Σi
Σk Σj≠k Xki Xji) In the energy
function the first triple sum is zero if
and only if there is only one city
appears in each order column. thus
this takes care that each city is
visited only once.

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 5 of 9

• TOTAL NUMBER OF “1”
CONSTRAINT: (A3 [(Σi Σk Xik)-
n]2)The third triple sum is zero if and
only if there are only N number of 1
appearing in the whole n*n matrix.
Thus this takes into care that all
cities are visited.

• The first three summation are set up
to satisfy the condition 1, which is
necessary to produce a legal
traveling path.

• SHORTEST DISTANCE
CONSTRAINT:[A4 Σk Σj≠k Σi dkj
Xki(Xj,i+1 + Xj,i-1)] The forth triple
summation provides the constrain for
the shortest path. dij is the distance
between city i and city j. The value
of this term is minimum when the
total distance traveled is shortest.]

• The value of A4 is important to
decide between the time taken to
converge and the optimality of the
solution. If the value of A4 is low it
takes long time for the NN to
converge but it gives solution nearer
to the optimal solution but if the
value of A4 is high the network
converges fast but the solution may
not be optimal.

WEIGHT MATRIX
The network here is fully connected with
feedback and there are n2 neurons, thus
the weight matrix will be a square matrix
of n2*n2 elements.

According to the Energy function the
weight matrix can be set up as follows

Wik, lj = -A1 δδil (1-δδkj) – A2 δδkj (1- δδjl) –
A3 – A4 djl (δδj, k+1 + δδj, k-1)

Here the value of constants A1, A2, A3,
A4 is same as we have it in the Energy
function. Weights are also updated
keeping into mind various constraints to
give a valid tour with minimum cost of
travel. In this context, the Kronecker
delta function (δ) is used to facilitate
simple notation.

The weight function can be analyzed as
follows

• The neuron whose weight is updates
is referred with two subscripts, one
for the city it refers to and the other
for the order of the city in the tour.
Therefore, an element of the weight
matrix for a connection between two
neurons needs to have four subscript,
with a comma after two of the
subscripts.

• The negative signs indicate
inhibition through the lateral
connections in a row or a column.

• The Kronecker delta function has
two arguments (two subscripts of
the symbol δ). By definition δik has
value 1 if i =k, and 0 if i≠ k.

• The first term gives the row
constraint, thus taking care that no
two cities are updated
simultaneously.

• The second term gives the column
constraint, thus taking care that no
city is visited more than once.

• The third term here is for global
inhibitation

• The fourth term takes care of the
minimum distance covered.

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 6 of 9

ACTIVATION FUNCTION

The activation function also follows
various constraints to get a valid path.
Hence the activation function can be
defined as follows.

aij = ∆∆t(T1 + T2 + T3 + T4 + T5)

T1 = -aij / ττ

T2 = -A1 ΣΣi Xik

T3 = -A2 ΣΣi Xik

T4 = -A3 (ΣΣi ΣΣk ΣΣik - m)

T5 = - A4 ΣΣk dik (Xk, j+1 + Xk, j-1)

• We denote the activation of the
neuron in the ith row and jth column
by aij, and the output is denoted by
xij.

• A time constant τ, is also used. The
value of τ is taken as

• A constant m is also another
parameter used. The value of m is

• The first term in activation function
is decreasing on each iteration

• The second, third, fourth and the
fifth term give the constraints for the
valid tour.

The activation is updated as

aij(new) = aij(old) + ∆∆aij

OUTPUT FUNCTION

This a continuous hopfield network with
the following output function

. Xij = (1 + tanh (λλ aij)) / 2 .

• Here Xij is the output of the

neuron.
• The hyperbolic tangent function

gives an output as shown in the
figure below.

• The value of λ determines the
slope of the function. Here the
value of λ is 3.

Figure : Variation of Output function

• Ideally we want output either 1
or 0. But the hyperbolic tangent
function gives a real number and
we settle at a value that is very
close to desired result, for
example, 0.956 instead of 1 or
say 0.0078 instead of 0.

PROGRAM DETAILS
The algorithm is coded in C++ for the
Hopfield network operation for the
traveling salesman’s problem. The
present program is for maximum 20
cities but this program can be very easily
extended for more number of cities.
The following is a listing of the
characteristics of the C++ program along
with definitions and/or functions.

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 7 of 9

• The number of cities and the
distances between the cities are
solicited from the user.

• The distance is taken as integer
values.

• A neuron corresponds to each
combination of a city and its order in
the tour. The ith city visited in the
order j, is the neuron corresponding
to the element j + i*n, in the array
for neurons. Here n is the number of
cities. The i and the j vary from 0 to
n-1. there are n2 neurons.

• mtrx is the weight matrix and it gives
the weights on the connection
between the neurons. It is a square
matrix of order n2.

• An input vector is generated at
random in the function main (), and
is later referred to as input.

• getdistance() : takes the distances
between corresponding cities from
the user.

• Asgninpt() : assign the intial input to
the network, and this are randomly
generated

• findpath(): this function finds the
final path that is optimal or near
optimal. It iterates and the final state
of the network is set in such a way
that all the constraint of the network
is fulfilled.

• findtour(): it generates a Tour
Matrix and the exact route of travel.

• calcdist(): calculates the total
distance of the tour based on the tour
generated by the function findtour().

PARAMETERS

The parameter settings in the Hopfield
network are critical to the performance
of the Network. The various parameter

used and their intial value set are as
follows

A1 : 0.5
A2 : 0.5
A3 : 0.2
A4 : 0.5
λ : 3.0
τ : 1.0
M : 15

OUTPUT RESULT OF
TSP PROGRAM
The attached result shows the simulation
using 4, 8, 10, 15, 20 cities. The
traveling paths generated are shown in
the form of the matrices, which are in
the “output.txt” file.

Hopfield neural network is efficient and
it can converge to stable states in
hundreds times iterations. The state
values are analog to facilitate the finite
differential calculation.

The output.txt file first gives the inputs
that are taken from the user. i.e. the
number of cities and their distance in the
form of distance matrix. Then for those
cities the output that is generated is
printed in the form of Tour Matrix, Tour
Route and Total Distance Traveled. The
solution is optimal or near optimal.

DISCUSSION OF RESULT
AND COMPARISIONS
TSP, one of the most famous NP-
complete problems, has been simulated
using Hopfield Network. The simulation
is satisfactory.

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 8 of 9

The result attached along with the code
are for 4, 8, 10, 15, 20 cities
respectively. The number of iteration
required to converge the network in each
case can be summarized as follows.

4 cities : 89 iterations
8 cities : 355 iterations
10 cities : 586 iterations
15 cities : 1021 iterations
20 cities : 2433 iterations

• The result above shows that as the

number of cities increases the
number of iteration required
increases sharply. The increase is not
a linear increase.

• One more thing that was noticed is
that the number of iteration required
for the convergence did not remain
same for any particular city. For
example for 4 cities the network
usually converged after 80 to 110
iterations, but on few occasions it
took around 60 iterations while in
few cases it didn’t converge at all or
took more than 250 iterations. This is
because the initial network state is
randomly generated. This may
sometimes result to no convergence
also.

• Many times the result converges to
local minimum instead instead of
global minimum. To avoid this a
random weights were added to the
initial inputs.

• The algorithm developed in non-
deterministic. Thus it does not
promise an optimal or near optimal
solution every time. Though it does
gives near optimal solution in most
of the cases, it may fail to converge
and give a correct solution.

• Many times when the energy of the
system was calculated, it was found

to increase instead of decreasing.
Thus the algorithm failed in few
cases. This again was the
consequence of the random initial
state of the network.

• In 94 % of test cases the algorithm
converged, while in 4 % algorithm
failed to converge and in remaining
2% the energy of the system
increased instead of decreasing.

There are various advantages of using
Hopfield network though I had many
other approaches like Kohonen Network
and Genetic Algorithm approach.
• Hopfield neural network setup is

very optimal for the solution of TSP.
It can be easily used for the
optimization problems like that of
TSP.

• It gives very accurate result due to
very powerful and complete Energy
equation developed by Hopfield and
Tank.

• The approach is much faster than
Kohonen as the number of iteration
required to get the solution is less.

• The result obtained is much more
near optimal than compared to
Genetic Algorithm approach as in
genetic algorithm it is more like trial
error and chances to get the optimal
solution is less.

• This neural network approach is very
fast compared to standard
programing techniques used for TSP
solution.

• With very few changes this
algorithm can be modified to get the
approximate solution for many other
NP-complete problems.

ECE 559: Traveling Salesman’s Problem’s Solution using Hopfield NN. (Fall 2001)

Ritesh Gandhi (12/03/2001) Page # 9 of 9

PROBLEMS FACED
• The understanding of Energy

function initially was difficult. As
this Hopfield network is not a usual
Character recognition problem,
which was solved initially. But once
I went through the literature and
papers, it became very clear.

• The understanding of output and
activation and weight update
functions also was initially difficult,
but became very clear later.

• The setting for various parameter
values like A1, A2, A3, A4, λ, τ, m,
etc was a challenge. The best value
was chosen by trial and error.
Improvement is still possible for this
parameters value.

• Many times the algorithm converged
to local minima instead of global
minimum. This problem was mostly
resolved by adding a random noise to
the initial inputs of the system.

• The testing of algorithm gets
difficult as the number of cities
increase. Though there are few
software and programs available for
the testing, none of them guarantees
the optimal solution each time. So an
approximation was made during the
testing of the algorithm.

FURTHER SCOPE OF
DEVELOPMENTS
• The network here developed does

not always give optimal solution
though in most cases it’s near
optimal. Few more changes or
improvement can be made to energy
function along with other functions
like weight updating function and

activation function to get better
answer.

• Various values of constants (i.e. A,
B, C, D) can be tried to get optimal
or near optimal result in the present
algorithm.

• Even if one of the distances between
the cities is wrong the network has to
start form the very first stage. Some
way or method needs to develop so
that this error can be handled.

• If we want to add or delete a city, the
network has to be again started from
the initial state with the required
changes. Some equations can be
developed so that these changes can
be incorporated.

• Optimization of the result and
cooling can be done on the network,
which will improve the result and the
convergence of the result.

• The algorithm can be modified for
solving other NP-complete problems.

REFERENCES

• Graupe, Daniel 1997. Principles of

Artificial Neural Networks.
Advanced Series on Circuits and
Systems – Vol.3

• Hopfield, J.J and Tank, D.W., neural
Computation of Decision in
Optimizations Problems, Biol.
Cybern. No. 52

• Roa & Roa. C++ Neural Network
and Fuzzy Logic. Second Edition.

• Laurene V. Fausett, Fundamentals of
Neural Networks. Architectures.
Algorithms and Applications.

• Timothy Masters, Practical Neural
Network Recepies in C++.

