1. INTRODUCTION

1.1 GENERAL
As an attempt to develop more powerful authentication system, with low cost and good acceptance by users, we proposed here and authentication mechanism based on biometric information of human typing patterns. At the movement we present a complete description of the architecture with the multi pattern verification units and results of first phase implementation of the mechanism based on single pattern verification unit among Multilayer perception, Learning-Vector-Quantization, Self-Organizing Neural Networks and Support Vector machine.

Today, all computer based system claims for more sophisticated mechanisms to guarantee the information security. The fast evolution of communication systems provided us a great volume of information anywhere any time. The security question became proprietary. Making these systems reliable and secure is one of the most important challenges of the communication evolution.

Authentication is the way to correctly verify one person who he or she claims to be. Many research works have been developed on the way to correctly identify somebody. Since old times, the humans try to identify each other correctly. The most traditional way to confirm that somebody who he or she claims to be is to verify his or her handwritten signature. In computer systems, similar issue should be considered.

All information systems adopt some king of authentication. The most common mechanism is called user name and password. This mechanism consists of basically of an association between a public information (username – normally everyone knows it) that uniquely identify the user on the system, and a secret word (no body beyond the user should know it) that confirms that the person associated by that user name is who he or she to be. This mechanism presents some drawbacks that make it very week. Some of its drawbacks are: Persons choose easy to break passwords as family names and birthday dates; persons normally write their passwords in places of easy access; one can easily see one password on “steal it” with no knowledge of disclosure. On the other hand, to develop an additional authentication mechanism that carries some advantages like low cost; high performance and high acceptability are not easy.
“User name and password” are easy to implement (low cost) and are largely acceptable by the users. That’s why still most famous authentication mechanism applied nowadays.

There are three main techniques to verify ones identification: something a person knows (a code); something a person posses (a card); some ting a person has(a characteristic). All these three techniques can be combined on the way to produce more efficient identification system. Naturally if we apply all the three techniques together a more secure authentication mechanism will be produced. However we still have to evaluate the cost and the acceptance issues involved in establishing a more sophisticated authentication mechanism.

The last technique is based on one’s biometrics characteristics. A biometrical system is a pattern recognition system that establishes the authenticity either specific physiological characteristics (some particular structural characteristics such as hand size or iris format and color) or behavioral characteristics (some particular behavioral characteristic such as typing speed or writing pressure) inherent to a user.”.

One kind of biometrical behavioral characteristic that can be used to provide a particular identification is the dynamics characteristics of someone’s typing or the human typing pattern. Many studies shown that this approach is possible and effective.

Combined with traditional authentication system, the user typing information can be of some help to identify users more precisely. Considering behavioral typing information to authenticate users can be very convenient because not extra hardware is necessary. All the behavioral information can be obtained by software systems, what generally implies lower cost than hardware development. Moreover nothing changes in the way the user authenticates himself, what makes it more acceptable. However the great question that lies on the kind of authentication is how precisely can we verify the user typing behavioral characteristics. Many studies, as mentioned before, have shown that this kind of identification is viable but still far from obtaining satisfactory indices of FAR (False Alarm Rate) and IPR (Impostor pass rate) if compared with other biometric techniques like finger printing. We will show that FAR and IPR go on opposite directions It means if we try to reduce one of these indices the other will grow up.
FAR – False Acceptance Rate- indicates how frequently the system rejects the valid users. IPR- Imposer Pass Rate – Indicates how often systems accept an imposter as an valid one. Those indices are most common metrics to evaluate the performance of biometric systems on their capacity to make mistakes on a matching pattern.

To evaluate typing characteristics two main measures have to be obtained about ones typing:

Results presented in this work indicate that combining two or more techniques can bring better results in terms of IPR and FAR. In statistical approach FAR and IPR Decrease 41% and 22% respectively in neural network approach 21% and 6% respectively.

The authentication mechanism proposed here can operate in two modes: new user registration and user authentication. In the first case, the mechanism will record the user username, password and typing profile.
The typing profile is then analyzed and stored so that it can be used during the authentication phase. In this mode, the user will be asked to type his user name and password about 10 times.

1.2 OBJECTIVE
The main purpose of the system is to develop a secure, cheap and effective security system for securing the computer applications and data based on typing biometrics called typing patterns.
1.3 EXISTING SYSTEM
The traditional way to authenticate the user to access the computer systems is password based authentication. Many cases noted based on the stealing passwords and information theft leads to huge losses. In this way the user will have two things with him the username every one knows it and the password which the user only knows. The user will logs into the system by using the user name and the secret password.

1.4 PROPOSED SYSTEM
The proposed system will be efficient, low cost, scalable security system based on typing bio metrics. It uses the Artificially Intelligent neural networks to identify the persons. After the decision making is completed it will authorize the user.
2. SYSTEM ANALYSIS
2.1 OVERVIEW
 The first step in developing anything is to state the requirements. This applies just as much to leading edge research as to simple programs and to personal programs, as well as to large team efforts. Being vague about your objective only postpones decisions to a later stage where changes are much more costly.

The problem statement should state what is to be done and not how it is to be done. It should be a statement of needs, not a proposal for a solution. A user manual for the desired system is a good problem statement. The requestor should indicate which features are mandatory and which are optional, to avoid overly constraining design decisions. The requestor should avoid describing system internals, as this restricts implementation flexibility. Performance specifications and protocols for interaction with external systems are legitimate requirements. Software engineering standards, such as modular construction, design for testability, and provision for future extensions, are also proper.

Many problems statements, from individuals, companies, and government agencies, mixture requirements with design decisions. There may sometimes be a compelling reason to require a particular computer or language; there is rarely justification to specify the use of a particular algorithm. The analyst must separate the true requirements from design and implementation decisions disguised as requirements. The analyst should challenge such pseudo requirements, as they restrict flexibility.
There may be politics or organizational reasons for the pseudo requirements, but at least the analyst should recognize that these externally imposed design decisions are not essential features of the problem domain.

A problem statement may have more or less detail. A requirement for a conventional product, such as a payroll program or a billing system, may have considerable detail. A requirement for a research effort in a new area may lack many details, but presumably the research has some objective, which should be clearly stated.

Most problem statements are ambiguous, incomplete, or even inconsistent. Some requirements are just plain wrong. Some requirements, although precisely stated, have unpleasant consequences on the system behavior or impose unreasonable implementation costs. Some requirements seem reasonable at first but do not work out as well as the request or thought. The problem statement is just a starting point for understanding the problem, not an immutable document. The purpose of the subsequent analysis is to fully understand the problem and its implications. There is no reasons to expect that a problem statement prepared without a fully analysis will be correct.
 The analyst must work with the requestor to refine the requirements so they represent the requestor’s true intent. This involves challenging the requirements and probing for missing 0information. The psychological, organizational, and political considerations of doing this are beyond the scope of this book, except for the following piece of advice: If you do exactly what the customer asked for, but the result does not meet the customer’s real needs, you will probably be blamed anyway.
2.2 MODULES
1. Registration

2. Password Verification
3. Identification
4. Verification
5. Decision
1. REGISTRATION
 The data collector will collect the data with User Name, password and 10 Reference Samples and stores it into the Database. The raw data will undergo cluster analysis and verification units training to create Clusters and Matrix. The cluster and matrix with the user name will store in the database.

2. PASSWORD VERIFICATION:

For security purposes the password that is taken from the user interface is stored in the database in the encrypted format. To check the password when the user was entered the password is again encrypted and checked with the encrypted data. Secret key is used to encrypt the password. Hence there is less porn for an intruder to find the password.
3. IDENTIFICATION
In this sub system the user matrix was checked with the test sample that the user entered. If it was verified then the results were sent to the verification.

4. VERIFICATION
This subsystem will verify all the entities with clusters and taking into the consideration presstime, interkeytime and total time the results were sent to the decision.

5. DECISION
The decision will take care about the tolerance and identification of fraud user from the legitimate user and then it will take care about the granting or denying access.
3. LITERATURE SURVEY
3.1 GENERAL

 A programming tool or software tool is a program or application that software developers use to create, debug, maintain, or otherwise support other programs and applications. The term usually refers to relatively simple programs that can be combined together to accomplish a task. The Chapter describes about the software tool that is used in our project.
JAVA TECHNOLOGY
Initially the language was called as “oak” but it was renamed as “Java” in 1995. The primary motivation of this language was the need for a platform-independent (i.e., architecture neutral) language that could be used to create software to be embedded in various consumer electronic devices.

· Java is a programmer’s language.

· Java is cohesive and consistent.

· Except for those constraints imposed by the Internet environment, Java gives the programmer, full control.

· Finally, Java is to Internet programming where C was to system programming.
IMPORTANCE OF JAVA TO THE INTERNET
Java has had a profound effect on the Internet. This is because; Java expands the Universe of objects that can move about freely in Cyberspace. In a network, two categories of objects are transmitted between the Server and the Personal computer. They are: Passive information and Dynamic active programs. The Dynamic, Self-executing programs cause serious problems in the areas of Security and probability. But, Java addresses those concerns and by doing so, has opened the door to an exciting new form of program called the Applet.
JAVA CAN BE USED TO CREATE TWO TYPES OF PROGRAMS
Applications and Applets: An application is a program that runs on our Computer under the operating system of that computer. It is more or less like one creating using C or C++. Java’s ability to create Applets makes it important. An Applet is an application designed to be transmitted over the Internet and executed by a Java –compatible web browser. An applet is actually a tiny Java program, dynamically downloaded across the network, just like an image. But the difference is, it is an intelligent program, not just a media file. It can react to the user input and dynamically change.

3.2 FEATURES OF JAVA SECURITY

Every time you that you download a “normal” program, you are risking a viral infection. Prior to Java, most users did not download executable programs frequently, and those who did scan them for viruses prior to execution. Most users still worried about the possibility of infecting their systems with a virus. In addition, another type of malicious program exists that must be guarded against.
This type of program can gather private information, such as credit card numbers, bank account balances, and passwords. Java answers both these concerns by providing a “firewall” between a network application and your computer.

When you use a Java-compatible Web browser, you can safely download Java applets without fear of virus infection or malicious intent.

PORTABILITY

For programs to be dynamically downloaded to all the various types of platforms connected to the Internet, some means of generating portable executable code is needed .As you will see, the same mechanism that helps ensure security also helps create portability. Indeed, Java’s solution to these two problems is both elegant and efficient.

BYTE CODE

The key that allows the Java to solve the security and portability problems is that the output of Java compiler is Byte code. Byte code is a highly optimized set of instructions designed to be executed by the Java run-time system, which is called the Java Virtual Machine (JVM). That is, in its standard form, the JVM is an interpreter for byte code.

Translating a Java program into byte code helps makes it much easier to run a program in a wide variety of environments. The reason is, once the run-time package exists for a given system, any Java program can run on it.

Although Java was designed for interpretation, there is technically nothing about Java that prevents on-the-fly compilation of byte code into native code. Sun has just completed its Just In Time (JIT) compiler for byte code.
When the JIT compiler is a part of JVM, it compiles byte code into executable code in real time, on a piece-by-piece, demand basis. It is not possible to compile an entire Java program into executable code all at once, because Java performs various run-time checks that can be done only at run time. The JIT compiles code, as it is needed, during execution.

JAVA VIRTUAL MACHINE (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual machine is an important element of the Java technology. The virtual machine can be embedded within a web browser or an operating system. Once a piece of Java code is loaded onto a machine, it is verified. As part of the loading process, a class loader is invoked and does byte code verification makes sure that the code that’s has been generated by the compiler will not corrupt the machine that it’s loaded on. Byte code verification takes place at the end of the compilation process to make sure that is all accurate and correct. So byte code verification is integral to the compiling and executing of Java code.

OVERALL DESCRIPTION

Java programming uses to produce byte codes and executes them. The first box indicates that the Java source code is located in a. Java file that is processed with a Java compiler called javac. The Java compiler produces a file called a. class file, which contains the byte code. The .Class file is then loaded across the network or loaded locally on your machine into the execution environment is the Java virtual machine, which interprets and executes the byte code.

JAVA ARCHITECTURE

Java architecture provides a portable, robust, high performing environment for development. Java provides portability by compiling the byte codes for the Java Virtual Machine, which is then interpreted on each platform by the run-time environment. Java is a dynamic system, able to load code when needed from a machine in the same room or across the planet.

COMPILATION OF CODE

When you compile the code, the Java compiler creates machine code (called byte code) for a hypothetical machine called Java Virtual Machine (JVM). The JVM is supposed to execute the byte code. The JVM is created for overcoming the issue of portability. The code is written and compiled for one machine and interpreted on all machines. This machine is called Java Virtual Machine.

Compiling and interpreting Java Source Code
Fig; 3.1

During run-time the Java interpreter tricks the byte code file into thinking that it is running on a Java Virtual Machine. In reality this could be a Intel Pentium Windows 95 or SunSARC station running Solaris or Apple Macintosh running system and all could receive code from any computer through Internet and run the Applets.

SIMPLE
Java was designed to be easy for the Professional programmer to learn and to use effectively. If you are an experienced C++ programmer, learning Java will be even easier. Because Java inherits the C/C++ syntax and many of the object oriented features of C++. Most of the confusing concepts from C++ are either left out of Java or implemented in a cleaner, more approachable manner. In Java there are a small number of clearly defined ways to accomplish a given task.

OBJECT-ORIENTED

Java was not designed to be source-code compatible with any other language. This allowed the Java team the freedom to design with a blank slate. One outcome of this was a clean usable, pragmatic approach to objects. The object model in Java is simple and easy to extend, while simple types, such as integers, are kept as high-performance non-objects.
ROBUST

The multi-platform environment of the Web places extraordinary demands on a program, because the program must execute reliably in a variety of systems. The ability to create robust programs was given a high priority in the design of Java. Java is strictly typed language; it checks your code at compile time and run time.

Java virtually eliminates the problems of memory management and de-allocation, which is completely automatic. In a well-written Java program, all run time errors can –and should –be managed by your program.
JAVA SWING
Swing is a widget toolkit for java. The main characteristics of the Swing toolkit are platform independent, customizable, extensible, configurable and lightweight.. It has a rich set of widgets. From basic widgets like Buttons, Labels, Scrollbars to advanced widgets like Trees and Tables.

Swing is a part of JFC, Java Foundation Classes. It is a collection of packages for creating full featured desktop applications. JFC consists of AWT, Swing, Accessibility, Java 2D, and Drag and Drop.

JCOMPONENT

All Swing components whose names begin with "J" descend from the jcomponent API class. For example, JPanel, JScrollPane, JButton, and JTable all inherit from JComponent. However, JFrame doesn't because it implements a top-level container. The JComponent class extends the Container api class, which itself extends Component api.

The Component class includes everything from providing layout hints to supporting painting and events. The Container class has support for adding components to the container and laying them out.
JPANEL

The JPanel class provides general-purpose containers for lightweight components. By default, panels do not add colors to anything except their own background; however, you can easily add borders to them and otherwise customize their painting.
JFRAME

Frame is Swing's version of Frame and is descended directly from that class. It is used to create Windows in a Swing program. The components added to the frame are referred to as its contents; these are managed by the contentPane. To add a component to a JFrame, we must use its contentPane instead.

JBUTTON

The JButton object generally consists of a text label and/or image icon that describes the purpose of the button , an empty area around the text/icon and border.

JLABEL

JLabel, descended from JComponent, is used to create text labels. It can display text but images as well.

JTEXTAREA
JTextArea component is used to accept several lines of text from user. JTextArea can be used in conjunction with class JScrollPane to achieve scrolling. The underlying JScrollPane can be forced to always or never have either the vertical or horizontal scrollbar.
JLIST

JList provides a scrollable set of items from which one or more may be selected. JList can be populated from an Array or Vector. JsList does not support scrolling directly, instead, the list must be associated with a scrollpane. The view port used by the scroll pane can also have a user-defined border. JList actions are handled using ListSelectionListener.

THE SWING MESSAGE BOX

Windowing environments commonly contain a standard set of message boxes that allow you to quickly post information to the user or to capture information from the user. In Swing, these message boxes are contained in JOptionPane sophisticated), but the ones most commonly used are probably the message dialog and confirmation dialog, invoked using the static JOptionPane.showMessageDialog() and JOptionPane. showConfirmDialog().
PACKAGE JAVAX.IMAGEIO DESCRIPTION

The main package of the Java Image I/O API. Many common image I/O operations may be performed using the static methods of the ImageIO class.This package contains the basic classes and interfaces for describing the contents of image files, including metadata and thumbnails (IIOImage); for controlling the image reading process (ImageReader, ImageReadParam, and ImageTypeSpecifier) and image writing process (ImageWriter and ImageWriteParam); for performing transcoding between formats (ImageTranscoder), and for reporting errors (IIOException).

JFILECHOOSER

File choosers provide a GUI for navigating the file system, and then either choosing a file or directory from a list, or entering the name of a file or directory. To display a file chooser, you usually use the JFileChooser API to show a modal dialog containing the file chooser.A JFileChooser is a dialog to select a file or files.
The return value of the three methods is one of the following:

1. JFileChooser.CANCEL_OPTION, if the user clicks Cancel.
2. JFileChooser.APPROVE_OPTION, if the user click an OK/Open/Save button.

3. JFileChooser.ERROR_OPTION, if the user closes the dialog

A return value of JFileChooser.APPROVE_OPTION, indicates that you can call its getSelectedFile or getSelectedFiles methods:

	public java.io.File getSelectedFile ()
public java.io.File[] getSelectedFiles ()

JFileChooser has supporting classes: FileFilter class, FileSystemView class, FileView.

FileFilter class is for restricting files and directories to be listed in the FileView of the JFileChooser. The FileView controls how the directories and files are listed within the JFileChooser. The FileSystemView is an abstract class that tries to hide file system-related operating system specifics from the file chooser.

JSCROLLPANE

JScrollPane is a jquery plugin which allows you to replace the browsers default vertical scrollbars on any block level element with an overflow:auto style. jScrollPane is crossbrowser, working on all browsers that support jquery and it also degrades gracefully. If a user's browser doesn't support jQuery or has JavaScript turned off then they will see the browsers default scrollbars. If the mouse wheel plugin is included in the page then the scroll panes will respond to mouse wheel events as well. jScrollPane is built on top of the awesome jQuery library and utilises the dimensions plugin and (optionally) the mouse wheel plugin.

To place a component in one of the corners of the JScrollPane, call setCorner(String key, Component corner) key is
1. JScrollPane.LOWER_LEFT_CORNER,

2. JScrollPane.LOWER_RIGHT_CORNER,

3. JScrollPane.UPPER_LEFT_CORNER, or

4. JScrollPane.UPPER_RIGHT_CORNER
CLASS BUFFEREDIMAGE

java.lang.Object

[image: image1.png]java.awt.Image

 [image: image2.png]java.awt.image.BufferedImage
ALL IMPLEMENTED INTERFACES
 RenderedImage, WritableRenderedImage

public class BufferedImage
Extends Image

Implements WritableRenderedImage

The BufferedImage subclass describes an Image with an accessible buffer of image data. A BufferedImage is comprised of a ColorModel and a Raster of image data. The number and types of bands in the SampleModel of the Raster must match the number and types required by the ColorModel to represent its color and alpha components. All BufferedImage objects have an upper left corner coordinate of (0, 0). Any Raster used to construct a BufferedImage must therefore have minX=0 and minY=0.
JCREATOR

JCreator is a powerful IDE for java. JCreator is the best development tool for programming. It is faster, more efficient and more reliable than other IDE’s. Therefore it is the perfect tool for programmers of every level, from learning programmer to Java-specialist.

JCreator provides the user with a wide range of functionality such as Project management, project templates, code-completion, debugger interface, editor with syntax highlighting, wizards and a fully customizable user interface

With JCreator you can directly compile or run your Java program without activating the main document first. JCreator will automatically find the file with the main method or the html file holding the java applet, then it will start the appropriate tool.

JCreator is written entirely in C++, which makes it fast and efficient compared to the Java based editors/IDE's.
JAVA DATABASE CONNECTIVITY

What Is JDBC?

JDBC is a Java API for executing SQL statements. (As a point of interest, JDBC is a trademarked name and is not an acronym; nevertheless, JDBC is often thought of as standing for Java Database Connectivity. It consists of a set of classes and interfaces written in the Java programming language. JDBC provides a standard API for tool/database developers and makes it possible to write database applications using a pure Java API.

Using JDBC, it is easy to send SQL statements to virtually any relational database. One can write a single program using the JDBC API, and the program will be able to send SQL statements to the appropriate database. The combinations of Java and JDBC lets a programmer write it once and run it anywhere.

What Does JDBC Do?

Simply put, JDBC makes it possible to do three things:

· Establish a connection with a database

· Send SQL statements

· Process the results.
JDBC versus ODBC and other APIs
At this point, Microsoft's ODBC (Open Database Connectivity) API is that probably the most widely used programming interface for accessing relational databases. It offers the ability to connect to almost all databases on almost all platforms.
So why not just use ODBC from Java? The answer is that you can use ODBC from Java, but this is best done with the help of JDBC in the form of the JDBC-ODBC Bridge, which we will cover shortly. The question now becomes "Why do you need JDBC?" There are several answers to this question:

1. ODBC is not appropriate for direct use from Java because it uses a C interface. Calls from Java to native C code have a number of drawbacks in the security, implementation, robustness, and automatic portability of applications.
2. A literal translation of the ODBC C API into a Java API would not be desirable. For example, Java has no pointers, and ODBC makes copious use of them, including the notoriously error-prone generic pointer "void *". You can think of JDBC as ODBC translated into an object-oriented interface that is natural for Java programmers.

3. ODBC is hard to learn. It mixes simple and advanced features together, and it has complex options even for simple queries. JDBC, on the other hand, was designed to keep simple things simple while allowing more advanced capabilities where required.
4. A Java API like JDBC is needed in order to enable a "pure Java" solution. When ODBC is used, the ODBC driver manager and drivers must be manually installed on every client machine. When the JDBC driver is written completely in Java, however, JDBC code is automatically installable, portable, and secure on all Java platforms from network computers to mainframes.
4. FESIBILITY STUDY
4.1 INTRODUCTION
A feasibility study is a high-level capsule version of the entire System analysis and Design Process. The study begins by classifying the problem definition. Feasibility is to determine if it’s worth doing. Once an acceptance problem definition has been generated, the analyst develops a logical model of the system. A search for alternatives is analyzed carefully. There are 3 parts in feasibility study.
4.2 TECHNICAL FEASIBILITY

Evaluating the technical feasibility is the trickiest part of a feasibility study. This is because, at this point in time, not too many detailed design of the system, making it difficult to access issues like performance, costs on (on account of the kind of technology to be deployed) etc. A number of issues have to be considered while doing a technical analysis.Understand the different technologies involved in the proposed system before commencing the project we have to be very clear about what are the technologies that are to be required for the development of the new system. Find out whether the organization currently possesses the required technologies. Is the required technology available with the organization?.

4.3 OPERATIONAL FEASIBILITY
Proposed project is beneficial only if it can be turned into information systems that will meet the organizations operating requirements. Simply stated, this test of feasibility asks if the system will work when it is developed and installed. Are there major barriers to Implementation? Here are questions that will help test the operational feasibility of a project:

Is there sufficient support for the project from management from users? If the current system is well liked and used to the extent that persons will not be able to see reasons for change, there may be resistance.
Are the current business methods acceptable to the user? If they are not, Users may welcome a change that will bring about a more operational and useful systems.
Have the user been involved in the planning and development of the project?

Early involvement reduces the chances of resistance to the system and in general and increases the likelihood of successful project.

Since the proposed system was to help reduce the hardships encountered. In the existing manual system, the new system was considered to be operational feasible.
4.4 ECONOMIC FEASIBILITY

Economic feasibility attempts 2 weigh the costs of developing and implementing a new system, against the benefits that would accrue from having the new system in place. This feasibility study gives the top management the economic justification for the new system.A simple economic analysis which gives the actual comparison of costs and benefits are much more meaningful in this case. In addition, this proves to be a useful point of reference to compare actual costs as the project progresses. There could be various types of intangible benefits on account of automation. These could include increased customer satisfaction, improvement in product quality better decision making timeliness of information, expediting activities, improved accuracy of operations, better documentation and record keeping, faster retrieval of information, better employee morale.
5. CODING
AUTHENTICATION CLASS
/*

 * Authentication.java

 *

 * Created on October 24, 2007, 4:52 PM

 */

package UI;

import java.util.*;

import javax.swing.JOptionPane;

/**

 *

 * @author Administrator

 */

public class Authentication extends javax.swing.JFrame {

 long totaltime;

 long starttime;

 long stoptime;

 long keypressed;

 long keyreleased;

 String pt;

 String ikt;

 ArrayList<Long> presstime;

 ArrayList<Long> interkeytime;

 passwordverification.UserBean ub;

 passwordverification.PasswordVerificationDAO dao;

 identification.IdentificationDAO idao;

 /** Creates new form Authentication */

 public Authentication() {

 presstime = new ArrayList();

 interkeytime = new ArrayList();

 ub = new passwordverification.UserBean();

 dao = new passwordverification.PasswordVerificationDAO();

 idao = new identification.IdentificationDAO();

 initComponents();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents

 private void initComponents() {

 jtfun = new javax.swing.JTextField();

 jLabel1 = new javax.swing.JLabel();

 jLabel2 = new javax.swing.JLabel();

 jpwfpw = new javax.swing.JPasswordField();

 btnauthenticate = new javax.swing.JButton();

 jLabel3 = new javax.swing.JLabel();

 jLabel4 = new javax.swing.JLabel();

 jLabel5 = new javax.swing.JLabel();

 jLabel6 = new javax.swing.JLabel();

 jtfpt = new javax.swing.JTextField();

 jtfikt = new javax.swing.JTextField();

 jtftt = new javax.swing.JTextField();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 setTitle("Secure Login");

 jLabel1.setText("UserID :");

 jLabel2.setText("Password :");

 jpwfpw.addFocusListener(new java.awt.event.FocusAdapter() {

 public void focusGained(java.awt.event.FocusEvent evt) {

 jpwfpwFocusGained(evt);

 }

 public void focusLost(java.awt.event.FocusEvent evt) {

 jpwfpwFocusLost(evt);

 }

 });

 jpwfpw.addKeyListener(new java.awt.event.KeyAdapter() {

 public void keyPressed(java.awt.event.KeyEvent evt) {

 jpwfpwKeyPressed(evt);

 }

 public void keyReleased(java.awt.event.KeyEvent evt) {

 jpwfpwKeyReleased(evt);

 }

 public void keyTyped(java.awt.event.KeyEvent evt) {

 jpwfpwKeyTyped(evt);

 }

 });

 btnauthenticate.setText("Authenticate");

 btnauthenticate.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 btnauthenticateActionPerformed(evt);

 }

 });

 jLabel3.setFont(new java.awt.Font("Tahoma", 0, 36));

 jLabel3.setText("Secure Login");

 jLabel4.setText("Press Time: ");

 jLabel5.setText("Inter Key Time: ");

 jLabel6.setText("Total Time: ");

 jtfpt.setEditable(false);

 jtfpt.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jtfptActionPerformed(evt);

 }

 });

 jtfikt.setEditable(false);

 jtftt.setEditable(false);

 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addContainerGap()

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jLabel4)

 .addComponent(jLabel5)

 .addComponent(jLabel6))

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jtfikt, javax.swing.GroupLayout.DEFAULT_SIZE, 199, Short.MAX_VALUE)

 .addComponent(jtftt, javax.swing.GroupLayout.DEFAULT_SIZE, 199, Short.MAX_VALUE)

 .addComponent(jtfpt, javax.swing.GroupLayout.DEFAULT_SIZE, 199, Short.MAX_VALUE)))

 .addComponent(jLabel3)

 .addGroup(layout.createSequentialGroup()

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jLabel1)

 .addComponent(jLabel2))

 .addGap(55, 55, 55)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(btnauthenticate)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING, false)

 .addComponent(jpwfpw)

 .addComponent(jtfun, javax.swing.GroupLayout.PREFERRED_SIZE, 172, javax.swing.GroupLayout.PREFERRED_SIZE)))))

 .addGap(20, 20, 20))

);

 layout.setVerticalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addComponent(jLabel3)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jtfun, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jLabel1))

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jLabel2)

 .addComponent(jpwfpw, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(btnauthenticate)

 .addGap(18, 18, 18)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jLabel4)

 .addComponent(jtfpt, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jLabel5)

 .addComponent(jtfikt, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jLabel6)

 .addComponent(jtftt, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

);

 pack();

 }// </editor-fold>//GEN-END:initComponents

private void jpwfpwKeyPressed(java.awt.event.KeyEvent evt) {//GEN-FIRST:event_jpwfpwKeyPressed

 // TODO add your handling code here:

 interkeytime.add(new java.util.Date().getTime() - keypressed);

 keypressed = new java.util.Date().getTime();

}//GEN-LAST:event_jpwfpwKeyPressed

private void jpwfpwKeyReleased(java.awt.event.KeyEvent evt) {//GEN-FIRST:event_jpwfpwKeyReleased

 // TODO add your handling code here:

 keyreleased = new java.util.Date().getTime();

 presstime.add(keyreleased - keypressed);

}//GEN-LAST:event_jpwfpwKeyReleased

private void jpwfpwKeyTyped(java.awt.event.KeyEvent evt) {//GEN-FIRST:event_jpwfpwKeyTyped

 // TODO add your handling code here:

}//GEN-LAST:event_jpwfpwKeyTyped

private void btnauthenticateActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_btnauthenticateActionPerformed

 // TODO add your handling code here:

 this.setEnabled(false);

 if(jtfun.getText().equals("admin") && jtfun.getText().equals("admin")) {

 AdminPanel ap = new AdminPanel();

 ap.setVisible(true);

 ap.setEnabled(true);

 this.dispose();

 return;

 }

 ub.setInterkeytime(interkeytime);

 ub.setPresstime(presstime);

 ub.setTotaltime(totaltime);

 ub.setUN(jtfun.getText());

 ub.setPW(jpwfpw.getText());

 try{

 if(dao.check(ub)){

 System.out.println("Password Verification Complete....");

 if(idao.identify(ub)) {

 this.dispose();

 new NewsReporting().setVisible(true);

 }

 else

 JOptionPane.showMessageDialog(this, "Typing Pattern Mismatch...","Login",2);

 }

 else {

 System.out.println("Password Verfication Failed...");

 JOptionPane.showMessageDialog(this,"Password Verification Failed....","Login",2);

 }

 }

 catch(Exception e){

 e.printStackTrace();

 }

}//GEN-LAST:event_btnauthenticateActionPerformed

private void jtfptActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jtfptActionPerformed

 // TODO add your handling code here:

}//GEN-LAST:event_jtfptActionPerformed

private void jpwfpwFocusGained(java.awt.event.FocusEvent evt) {//GEN-FIRST:event_jpwfpwFocusGained

 // TODO add your handling code here:

 pt=ikt="";

 starttime = keypressed = new java.util.Date().getTime();

}//GEN-LAST:event_jpwfpwFocusGained

private void jpwfpwFocusLost(java.awt.event.FocusEvent evt) {//GEN-FIRST:event_jpwfpwFocusLost

 // TODO add your handling code here:

 stoptime = new java.util.Date().getTime();

 totaltime = stoptime - starttime;

 for(Long l: presstime)

 {

 pt+=l.toString();

 pt+=",";

 }

 for(Long l: interkeytime){

 ikt+=l.toString();

 ikt+=",";

 }

 jtfpt.setText(pt);

 jtfikt.setText(ikt);

 jtftt.setText(new Long(totaltime).toString());

}//GEN-LAST:event_jpwfpwFocusLost

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new Authentication().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify//GEN-BEGIN:variables

 private javax.swing.JButton btnauthenticate;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 private javax.swing.JLabel jLabel4;

 private javax.swing.JLabel jLabel5;

 private javax.swing.JLabel jLabel6;

 private javax.swing.JPasswordField jpwfpw;

 private javax.swing.JTextField jtfikt;

 private javax.swing.JTextField jtfpt;

 private javax.swing.JTextField jtftt;

 private javax.swing.JTextField jtfun;

 // End of variables declaration//GEN-END:variables

}

OKDIALOG CLASS
/*

 * OkCancelDialog.java

 *

 * Created on October 30, 2007, 3:47 PM

 */

package UI;

/**

 *

 * @author Administrator

 */

public class OkDialog extends javax.swing.JFrame {

 String title;

 String message;

 /** Creates new form OkCancelDialog */

 public OkDialog(){

 initComponents();

 }

 public OkDialog(String title, String message) {

 super(title);

 this.title = title;

 this.message = message;

 initComponents();

 lblmessage.setText(message);

 this.setVisible(true);

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents

 private void initComponents() {

 lblmessage = new javax.swing.JLabel();

 jButton1 = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE); lblmessage.setFont(new java.awt.Font("Tahoma", 0, 18));

 jButton1.setText("Ok");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addContainerGap()

 .addComponent(lblmessage, javax.swing.GroupLayout.DEFAULT_SIZE, 380, Short.MAX_VALUE))

 .addGroup(layout.createSequentialGroup()

 .addGap(67, 67, 67)

 .addComponent(jButton1, javax.swing.GroupLayout.PREFERRED_SIZE, 255, javax.swing.GroupLayout.PREFERRED_SIZE)))

 .addContainerGap())

);

 layout.setVerticalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addGap(36, 36, 36)

 .addComponent(lblmessage, javax.swing.GroupLayout.PREFERRED_SIZE, 118, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(jButton1)

 .addContainerGap(28, Short.MAX_VALUE))

);

 pack();

 }// </editor-fold>//GEN-END:initComponents

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed

 // TODO add your handling code here:

 this.dispose();

 }//GEN-LAST:event_jButton1ActionPerformed

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new OkDialog().setVisible(true);

 }

 });

 }

6. SOFTWARE REQUIREMENT SPECIFICATION
6.1 HARDWARE REQUIREMENTS
Processor

:

Pentium IV

Speed

:

2.4GHz

RAM

:

128 MB

Hard disk

:

20 GB

Monitor

:

Color monitor

Keyboard

:

104 keys

Mouse

:

3 buttons
6.2 SOFTWARE REQUIREMENTS
Operating System

:

Windows XP/2000

Language

 :

Java (J2sdk1.6.0)

Database

:

Oracle 10g
7. SYSTEM DESIGN
7.1 GENERAL
Design is a meaningful engineering representation of something that is to be built. Software design is a process through which the requirements are translated into a representation of the software. Design is the place where quality is fostered in software engineering. Design is the perfect way to accurately translate a customer’s requirement in to a finished software product. Design creates a representation or model, provides detail about software data structure, architecture, interfaces and components that are necessary to implement a system. This chapter discusses about the design part of the project. Here in this document the various UML diagrams that are used for the implementation of the project are discussed.
7.2 USE CASE DIAGRAM
A use case diagram is a graph of actors, a set of use cases enclosed by a system boundary, communication (participation) associations between the actors and users and generalization among use cases. The use case model defines the outside (actors) and inside (use case) of the system’s behavior.

[image: image3.emf]System

User

Login To System

Send News

Authentication

Enter UserName

Enter Password

<<include>>

<<include>>

CheckPassword

Check Typing Pattern

<<include>>

<<include>>

<<extend>>

Fig 7.1: Admin Use case
[image: image4.emf]Admin

Login

Register New User

View Typing pattern Samples

Logout

Fig 7.2: Register Use case
7.3 SEQUENCE DIAGRAM
Sequence diagram are an easy and intuitive way of describing the behavior Of a system by viewing the interaction between the system and its environment. A Sequence diagram shows an interaction arranged in a time sequence. A sequence diagram has two dimensions: vertical dimension represents time; the horizontal Dimension represents different objects. The vertical line is called is the object’s life line. The lifeline represents the object’s existence during the interaction.
[image: image5.emf]User

UserBean

Password Verification DAOIdentUtility

Global VerifierDecisionDAO

IdentificationDAO

1 : getUserName()

2 : getCluster()

3 : getPassword()

4 : getTS()

5 : checkUser()

6 : replySendToUser()

7 : getMatrix()

8 : EncodePassword()

9 : viewMatrix()

10 : setTS()

11 : accessGranted()

12 : replySendToUser()

Fig 7.3: Home Page
[image: image6.emf]:Admin:UserRegBean:Registration

DAO

:Reference

Samples

:Utility

publicvoid setUn(String val)

publicvoid setPw(String val)

public String passwordEncode(String PW)

publicvoid storeRawdata(UserRegBean ub)

public void setInterkeytime(int val[*])

public void setInterkeytime(int val[*])

public void storeProfiles()

Fig 7.4: Overview
7.4 DFD DIAGRAMS

[image: image7.emf]Administ

rator

User

Data Storage

View Message

Registration

Inter press key

time

Key press time

Training password 10

samples

UI Screens

Data Input Stage

Data Out Put Stage

Remote Client Authentication

Total time

Verify password

Fig: 7.5: Context Level DFD

[image: image8.emf]Open

Form()

1.0.0

Enter the

username

1.0.1

Enter the

password

1.0.2

Server

Train the

password

1.0.3

From Server

Check the

password

1.0.4

Verify In server

Realign

Keys

1.0.6

Get the

current

time

1.0.5

From

Server

Check in

server

Key GenerationEncrypt Data

Message

Sending1.0.7

1.0.8

1.0.9

Fig: 7.6: Administration DFD

[image: image9.emf]Open

Form()

1.0.0

Update the

press key time

1.0.1

To change

the time in

dynamical

1.0.2

To check

the correct

code

1.0.3

From Database

Shor time

code

1.0.4

Time slots

comparission

Send

Challenge

To client

1.0.6

Generate

Certificat

e

1.0.5

validate

Receive DataVerify Certificate

View

Message1.0.7

1.0.8

1.0.9

Store

Fig 7.7: User DFD
8. SOFTWARE TESTING
8.1 GENERAL

Software Testing is the process used to help identify the correctness, completeness, security and quality of developed computer software. Testing is a process of technical investigation, performed on behalf of stakeholders, that is intended to reveal quality-related information about the product with respect to the context in which it is intended to operate. In general, software engineers distinguish software faults from software failures. Our project" Visual cryptography For Cheating Prevention” is tested with the following testing methodologies.
 DEVELOPING METHODOLOGIES
The test process begins by developing a comprehensive plan to test the general functionality and special features on a variety of platform combinations. Strict quality control procedures are used. The process verifies that the application meets the requirements specified in the system requirements document and is bug free. The following are the considerations used to develop the framework for developing the test methodologies.

 ACQUIRE AND STUDY THE TEST STRATEGY

A team very familiar with the business risks associated with the software normally develops test strategy, the test team develops tactics. Thus the test team needs to acquire and study the test strategy. The test tactics are analyzed and studied for finding our various test factors, risks and effects. The risk involved in our project is implementing the encoding of the image. So, the proper knowledge about the testing strategies should be gained in order to avoid such high level risks.

DETERMINE THE TYPE OF DEVELOPMENT PROJECT

The type of the development refers to the platform or methodology for developing the project. As it is been a simulation project we go for the prototyping. The prototypes are simply predefined structure or model, which can be used for further modeling. By using the prototypes we can modify the existing module of the application for some other specific operations.
DETERMINE THE TYPE OF SOFTWARE SYSTEM

The type of software system relates to the type of processing which will be encountered by the system. In this project, the software system we prefer to use is Java . We have chosen Java for its portability and its support to graphics & multimedia specifically for image processing.

DETERMINE THE SCOPE OF THE SOFTWARE SYSTEM

The scope of the project refers to the overall activities or operation to be included into the system being tested. The scope of the new system varies from that of the existing one. In the existing system, a large overhead occurs in contrast and pixel expansion. Also, the verification process is not efficient in the existing system. In this project, the pixel expansion is optimal because only two sub pixels are added each and every pixel. Also, each and every participants are verified or authentication.

 IDENTIFY THE TACTICAL RISKS

The tactical risk is the subsets at a lower level of the strategic risks. The risks related to the application and its methodologies are identified. The risk involved in our project is implementing the encoding of the image.
DETERMINE WHEN THE TESTING SHOULD OCCUR

In the above processes we have identified the type of processing, scope and risks associated with our project. The testing can occur throughout all the phases of the project. During the analysis phase, the testing strategy and requirements are determined. In design phase, the complexities in design with respect to the requirements are determined and structural and functional test conditions are also tested. During implementation, the design consistency is determined. In test phase, the overall testing of the application is being done and previously the adequacy of the testing plan is also determined. In maintenance phase, the testing for modifying and reusing the system is done.

BUILD THE SYSTEM TEST PLAN

The test plan of the project should provide all the information on the application that is being tested. The test plan is simply a model that has to be followed during the progression of the testing. The test plan consists of the sequential set of procedures to test the application. Initially, the selection process of both secret and verification images are tested. Then the test is carried out for encoding of image, verification process and finally decoding process.

BUILD THE UNIT TEST PLAN

In this case we are dividing the system into three different components or units each having specific functions. The three different components of the system are browser window designing, browser events handling and adding speech to the browser. These units have their own test plan. The main purpose of the unit test plan is to eliminate the errors and bugs during the initial stage of the implementation. As the errors get debugged in the initial stage, the less complex the overall testing after integrating all the units of the system. The unit testing plan can be either simple or complex based on the functionality of that unit.
TESTING TECHNIQUE - TOOL SELECTION PROCESS

In this process the appropriate testing process is selected from various testing methodologies such as prototyping model, waterfall model etc and the selection is done by the means of analyzing the nature of the project. We go for Waterfall model.

SELECT TEST FACTOR

This phase selects the appropriate test factor. The particular module of the project which is essential for the testing methodologies is sorted out first. This will help the testing process to be completed within time. The test factors for our project include encoding, verification and decoding process.
DETERMINE SDLC PHASE

This phase involves the structural testing of the project which will be used for easy implementations of the functions. Though structural testing is so much associated with the coding phase, the structural testing should be carried out at all the phases of the lifecycle.
8.2 IDENTIFY THE CRITERIA TO TEST

In this phase the testing unit is trained with the necessary constraints and limit with which the project is to be tested. In our project the testing unit is trained to test whether the image to be encoded is in the PGM format.

SELECT TYPE OF TEST

Individual responsible for testing may prefer to select their own technique and tool based on the test situation. For selecting the appropriate testing process the project should be analyzed with the following three testing concepts:

1. Structural versus functional testing

2. Dynamic versus static testing

3. Manual versus automatic testing

After analyzing through the above testing concepts we divided to test our project in Waterfall model testing methodology.

[image: image10.png]
Fig 8.1 Testing Technique And Tool Selection Process
STRUCTURAL TESTING

Structural analysis based test sets are tend to uncover errors that occur during coding of the program. The properties of the test set are to reflect the internal structure of the program. Structural testing is designed to verify that the developed system and programs work as specified in the requirement. The objective is to ensure that the product is designed structurally sound and will function correctly.

FUNCTIONAL TESTING

Functional testing ensures that the requirements are properly satisfied by the application system. The functions are those tasks that the system is designed to accomplish. This is not concerned with how processing occurs but rather with the results of the processing. The functional analysis based test sets tend to uncover errors that occurred in implementing requirements or design specifications.

SELECT TECHNIQUE

After selecting the appropriate testing methodology we have to select the necessary testing technique such as stress testing, execution testing, recovery testing, operation testing, compliance testing and security testing. We are performing operation testing by testing whether all the components perform its intended operations.

SELECT TEST METHOD

We have to select the testing method which is to be carried out throughout the lifecycle. The two different methods are static and dynamic. Dynamic testing needs the program to be executed completely before testing. This is a traditional concept where the faults detected at the end will be very hard to rectify. In static process the program is tested for each and every line and the testing process is allowed to pass through only after rectifying the occurred fault. These make this process more expensive, so a combination of both static and dynamic testing method.

MODE OF TESTING

It is necessary to select the test mode in which the testing method to be carried out. The two different modes are manual and automated tool. The real time projects needs frequent interactions. So, it is impossible to carry out the testing process by means of automated tool. Our project uses manual testing.

8.3 UNIT TEST TECHNIQUE

This phase examines the techniques, assessment and management of unit testing and analysis. Testing and analysis strategies are categorized according to whether they goal is functional or structural or combination of these. It will assist a software engineer to define, conduct and evaluate unit tests and to assess new unit test techniques.
SYSTEM TESTING

Once the entire system has been built then it has to be tested against the "System Specification" to check if it delivers the features required. It is still developer focused, although specialist developers known as systems testers are normally employed to do it. In essence System Testing is not about checking the individual parts of the design, but about checking the system as a whole. In effect it is one giant component.
ACCEPTANCE TESTING
Acceptance Testing checks the system against the "Requirements". It is similar to systems testing in that the whole system is checked but the important difference is the change in focus. Systems Testing checks that the system that was specified has been delivered. Acceptance Testing checks that the system delivers what was requested. The customer, and not the developer should always do acceptance testing. The customer knows what is required from the system to achieve value in the business and is the only person qualified to make that judgment.
REGRESSION TESTING
This involves assurance that all aspects of an application system remain functional after testing. The introduction of change is the cause of problems in previously tested segments. It is retesting unchanged segments of the application system.
8.4 DISCUSSION AND RESULTS
[image: image11.png]
Fig 8.2: ADMIN PANNEL PAGE

· It’s the process of registering the user. As we submit our user id and password in the admin panel.

[image: image12.png]
Fig 8.3: REGISTRATION PAGE

· It’s a process of registering the user as we need to submit ones user id and password with different time slots.

[image: image13.png]
Fig 8.4: REGISTRATION PAGE WITH EXAMPLE

· Now it’s an interface in which 10 samples of time for password should be stored in the database.

[image: image14.png]
Fig 8.5: REGISTRATION PAGE WITH COMPLETION OF SAMPLES
· It is a screen in which the completion of 10 samples of time slots is mentioned.

[image: image15.png]
Fig 8.6: REGISTRATION PROCESS COMPLETION PAGE
· Now the training process is completed and the user is allowed to enter into the secure login.

[image: image16.png]
Fig 8.7: LOG OUT PAGE
· After this the user should log out from the registration panel as shown in the above screen.

[image: image17.png]
Fig 8.8: AUTHENTICATION PAGE
· Now we have entered into the authentication panel in which the user is identified by the password speed.

[image: image18.png]
Fig 8.9: VERIFICATION PROCESS PAGE
· If the entered password speed is not matched with the previously saved time slots, then the above screen shot is viewed.

[image: image19.png]
Fig 8.10: AUTHENTICATION MESSAGE PAGE
· Here the above screen means that if the verification is failed then the authentication is also failed.

[image: image20.png]
Fig 8.11: SECURE ARE PAGE
· Therefore if the password verification is correct then the authentication process is done successful thus forward to secure area.
[image: image21.png]
Fig 8.12: NEWS REPORT PAGE
· Hence the user can enter his/her private area and can send their news successfully.
9. CONCLUSION & FUTURE ENHANCEMENTS
9.1 CONCLUSION

Here in this project “typing patters” we can access the speed of typing the password and identify the user. When the user gets registered into the site then the system accesses the speed and the user name and user id. When the user need to get login again, user need to enter his/her user id and password so that the system will access the speed to typing and then authenticates. After the authentication process the system verifies the user id and password given by the user. If the user id and the password are correct and the authentication is done successfully, then the system will display your account, otherwise it will show the login page again.
9.2 FURTURE ENHANCEMENTS
Future works consists of implementing the full architecture of the mechanism with multiple verification units working together to get better pattern recognition indices.New studies on the subject will be accomplished concerning more the psychological aspect of each user in many different state of consciousness along the his/her working day. The influence of many different types of keyboard will be studied as well.
10. REFERENCES
1. Monrose, F. and Rubin, D.A. (2000) “Keystroke dynamics for biometrical identification”, Future Generation Computer Systems, v.16, p.351-359

2. Stallings, W. (1998) “Cryptography and network security: principles and practice”.2.ed. Upper Saddle River, New Jersey: Prentice Hall, 1998. 569p.

3. Monrose, F. and Rubin, A. (1997) “Authentication via Keystroke”, Proceedings of the 4th ACM conference on Computer and communications security, p.48 – 56

4. Lin, D. (1997) “Computer Access Authentication with Neural Network Based

Keystroke Identity Verification” International Conference on Neural Networks, v. 1 ,9-12 June, p.174 -178

5. Napier, R. and Laverty, W. and Mahar D. and Henderson, R. and Hiron, M. and Wagner, M. (1995) “Keyboard user verification: toward an accurate, efficient, and ecologically valid algorithm”, Int. Journal Human-Computer Studies, v.43, p.213-222

6. Pankanti, S. and Bolle, R.M. and Jain A. (2000) “Biometrics: The future of identification” IEEE Computer, Feb., p.46-49

7. Miller, B. (1994) “Vital signs of identity”, IEEE Spectrum, Feb., p.22-30

8. Liu, S. and Silverman, M. (2001) “Practical Guide to biometrical security” IT PRO,Jan./Feb., p.27-32

Java

Interpreter

(Spare)

Java

Interpreter

(Macintosh)

Java

Interpreter

(PC)

Java

Byte code

(Platform

Independent)

SPARC

Compiler

Macintosh

Compiler

PC Compiler

Source

Code

………..

………..

………..

…………

.Class

Java

JavaVM

Java byte code

Java Source

67
 Typing Patterns

_1339389406.vsd
�

_1339389668.vsd
�

_1339389167.vsd

