INTRODUCTION
This project is aimed at designing of a Reduced Instruction Set Computer (RISC) processor using the Verilog Hardware Description Language (HDL). For a long time, programming languages such as C, Pascal & FORTRAN were being used to describe the computer programs that were sequential in nature. Similarly in the digital design field, designers felt the need for a standard language to describe digital circuits. Thus, HDL came into existence. HDL allowed the designers to model the concurrency of processes found in hardware elements.

In this project we took the RISC processor as a task. Basically the RISC processors are easy to learn because it has very less but power full instruction sets. And also it has so many internal peripherals. So using the RISC processor the hardware designs become very compact and cost effective.

The designing steps of RISC processor are listed below.

· The functioning of RISC processor has to be described in the Verilog HDL. That is called design module.

· The test bench program has to be developed to test the design module. The test bench gives the input to the design module & verifies the outputs. The test bench has to be written in such way to check the design module in all possible conditions.

· Verilog simulator tool is used to verify the design functioning. (Simulation).
· ALU block of the design module shall be synthesized and the gate level netlist shall be generated.

· The generated gate level netlist file has to be converted as PLD (Programmable Logic Device) image file and has to be programmed in CPLD device.

· One hardware test jig has to be wired & the PLD functioning has to be verified.

The full design module of RISC may not be implemented because of the low gate density of the CPLD.

The use of Verilog HDL has many advantage compared to the traditional schematic based design.

· Designs can be described at very abstract level using HDL. Designers can write their design description without choosing any specific fabrication technology. If a new technology emerges, designers do not need to redesign their circuit. They simply input the design program to the logic synthesis tool and create a new gate level netlist using the new fabrication technology. The logic synthesis tool will optimize the circuit in area and timing for the new technology.

· By describing the design in HDL, functional verification of the design can be done early in the design cycle. Since designers work at the high level language, they can optimize and modify the design module until it meets the desired functionality. Most of the design bugs are eliminated at this point.

[image: image1.png]Controller
Load RO~
Load_R1-
Load R2 -

Load _R3 -~

Load_PC -~
Inc_PCH-
instruction
Sel_Bus_1_Mux

Load_IR

Load_Add_Reg
Load_Reg Y

Load_Reg Z

zero
Sel_Bus_2_Mux

Precessor

L
E

mem_word

address

 ARCHITECTURE OF RISC_SPM, an RISC stored program memory
The machine consists of three functional units: a processor, a controller, and memory. Program instructions and data are stored in memory. In program-directed operation, instructions are fetched synchronously from memory, decoded, and executed to

(1) operate on data within the arithmetic and logic unit (ALU),

(2) change the contents of storage registers,

(3) Change the contents of the program counter (PC), instruction register

(4) (IR) and the address register (ADD_R),

(5) Change the contents of memory,

(6) Retrieve data and instructions from memory, and

(7) Control the movement of data on the system buses.

The instruction register contains the instruction that is currently being executed: the program counter contains the address of the next instruction to be executed; and the address of the memory location that would be addressed next by a read or write operation.
RISC SPM: PROCESSOR

The processor includes registers, datapaths, control lines, and an alu capable of performing arithmetic and logic operations on its operands, subject to the opcode held in the instruction register.
RISC SPM: ALU

The ALU has two operand datapaths, data_1 and data_2, and its instruction set is limited to the following instructions:

Instruction

 Action
 ADD

 Adds the datapaths to form data_1 + data_2

 SUB Subtracts the datapaths to form data_1 + data_2

 AND takes the bitwise-and of the datapaths, data_1 & data_2

 NOT takes the bitwise Boolean complement of data_1

RISC SPM: CONTROLLER
The timing activity is determined by the controller. The controller must steer data to the proper destination, according to the instruction being executed. The controller monitors the state of the processing unit and the instruction to be executed and determine the value of the control signals. The controller’s input signals are the instruction word and the zero flag from the ALU. The signals produced by the controller are identified as follows:
Control signal

Action
Load_Add_Reg

Loads the address register
Load_PC

Loads Bus_2 to the program counter

Load_IR

Loads Bus_2 to the instruction register

Inc_PC

Increments the program counter

Sel_Bus_1_Mux

Selects among the program_counter, Ro, R1, R2 and

R3 to drive Bus_1

Sel_Bus_2_Mux

selects among Alu_out, Bus_1, and memory to drive

Bus_2

Load_R0

Loads general purpose register R0

Load_R1

Loads general purpose register R1

Load_R2

Loads general purpose register R2

Load_R3

Loads general purpose register R3

Load_Reg_Y

Loads Bus_2 to the register Reg_Y

Load_Reg_Z

Stores output of ALU in register Reg_Z

Write
Loads bus_1 into the SRAM memory at the location specified by the address

The control unit

(1) determines when to load registers,

(2) selects the path of data through the multiplexers,

(3) determines when data should be written to memory, and

(4) controls the three-state buses in the architecture.

RISC SPM: INSTRUCTION SET
A machine language program consists of a stored sequence of 8-bit words (bytes). The format of an instruction of RISC_SPM can be long or short, depending on the operation.

Short instructions have the format shown in figure. Each short instruction requires 1 byte of memory. A long instruction requires 2 bytes of memory.
[image: image2.png]opcode source |destination opcode source |destination
T -
0o | 0 1 0 0 1 1 0 0 1) 0 1 p \.-\vmx'ZLm(
care | care
address
0 0 0 1 1 1 0 1

a)

(b)

 Instruction format of (a) a short instruction (b) a long instruction

RISC SPM: CONTOLLER DESIGN

The machine controller will be designed as an FSM. Its state must be specified, given the architecture, instruction set, clocking scheme used in the design.

The machine has three states of operation: fetch, decode, and execute. Fetching retrieves an instruction from memory; decoding decodes the instruction, manipulates, datapaths, and loads registers; execution generates the results of the instruction.

RISC SPM: PROGRAM EXECUTION
A test bench for verifying that RISC_SPM executes program. Test_RISC_SPM defines probes to display individual words in memory, uses an one_shot (initial) behavior to flush memory, and loads a small program and data into separate areas of memory.
BIBLIOGRAPHY
BOOKS
· Advanced Digital Design with the Verilog HDL by Michael D. Ciletti
· Fundamentals of HDL by Nazeith M. Botros

E-books
· VHDL and Verilog fundamentals--design entities, data types, and data objects

 Douglas J Smith, VeriBest

PAGE
- 2 -

