A

Seminar Report

On
SECURITY IN REAL TIME STREAMING PROTOCOL (RTSP)
Submitted in partial fulfillment of the degree of Bachelor of Technology
Rajasthan Technical University
[image: image2.png]

(Session 2010-2011)
Guided By-

 Submitted by-

Mr. Ashish verma

 Rajeev Sharma
(VIII Semester, I.T.)

DEPARTMENT OF INFORMATION TECHNOLOGY

POORNIMA INSTITUTE OF ENGINEERING & TECHNOLOGY

JAIPUR
[image: image1.png]

Rajasthan Technical University

Poornima Institute of Engineering & Technology, Jaipur

CERTIFICATE

This is to certify that seminar report entitled “SECURITY IN RTSP PROTOCOL” has been submitted by “RAJEEV SHARMA (IT/07/72)” for partial fulfillment of the degree of Bachelor of Technology of Rajasthan Technical University. It is found satisfactory and approved for submission.

Date: 15-Feb-2011
Mr. Ashish Verma Ms. Pooja Sharma Mr.Manoj Gupta

Lecturer

 HOD

 Campus Director

Dept of IT Dept of IT

 PIET, Jaipur

ACKNOWLEDGEMENT

The satisfaction, bliss & euphoria that accompany the successful completion of any task would be incomplete without the expression of the appreciation of simple virtues to the people whose ceaseless co-operation made it possible, whose constant guidance and encouragement crown all efforts with success.

We do not find words to express the gratitude we feel for our most reverend guide.

We take this opportunity to express our deep sense of gratitude and respect towards Mrs.Pooja Sharma (HOD, I.T. Dept). We are very much indebted to her for generosity, expertise and guidance. Her knowledge was always available at our help whenever we needed. She gave us inspiration to be concentrated on our work. Her efforts and inspiration could make the way so easy and interesting. We have received a lot of knowledge from her while making this report.

I am very thankful to her for valuable suggestions and enthusiastic interest during the entire process of report. She has guided not only with the subject matter, but also taught the proper style and technique of presentation.

We would also like to thank Mr. Ashish Verma whose support and cooperation could helped in conducting the study smoothly.

We would like to mention the help offered by them, at each and every stage of the Report work. We are delighted that we have worked under the supervision of such people with great intelligence and experience.

Rajeev Sharma
(B.Tech VIII Sem. I.T.)

List of Figures
Figure

 Page No.

1Introduction to RTSP Protocol

1.1Purpose . 5

1.2Requirements . 6

1.3Terminology . 6

1.4Protocol Properties . 8

1.5ExtendingRTSP. 9

1.6OverallOperation . 10

1.7RTSPStates . 10

1.8RelationshipwithOtherProtocols . 11
2. RTSP overview ... 4

2.1 Description of the protocol ... 4

2.2 Application ...

2.3Functioning .. 4

3 Notational Conventions …………………………………………………….11

4 Protocol Parameters ………………………………………………………..11

4.1 RTSPVersion . 11

4.2 RTSPURL . 12

5 RTSP Message 15

5.1 MessageTypes . 15

5.2 MessageHeaders . 15

5.3 MessageBody . 16

5.4 MessageLength . 16

6General Header Fields ……………………………………………………..

7 Request ………………………………………

7.1 RequestLine . 17

7.2 RequestHeaderFields . 17

8Response

8.1 Status-Line . 18

8.2. StatusCode andReasonPhrase . 18

8.3 Response Header Fields . 20

9Entity

9.1 Entity Header Fields . 20

9.2 Entity Body . 22

10 Connections

10.1 Pipelining . 22

10.2 Reliability and Acknowledgements .
11 Security mechanisms ... 5

11.1 Sessions ... 5

11.2 HTTP Authentication ...
12Security issues ... 6

12.1 Abuse of Server Log Information ... 6

12.2 Man-in-the-middle Attack ... 6

12.3 Attack on file and path name .. 6

12.4 DNS Spoofing ... 6

12.5 Denial of service ... 7

12.6 Session hijacking ...
12.7 Authentication mechanism (www-Authentication mechanism) 7
13Conclusion .. 8
14Bibliography .. 9
1 Introduction

1.1 Purpose

The Real-Time Streaming Protocol (RTSP) establishes and controls either a single or several time-synchronized streams of continuous media such as audio and video. It does not typically deliver the continuous streams itself, although interleaving of the continuous media stream with the control stream is possible
In other words, RTSP acts as a “network remote control” for multimedia servers.

The set of streams to be controlled is defined by a presentation description. This memorandum does not define a format for a presentation description.

There is no notion of an RTSP connection; instead, a server maintains a session labeled by an identifier.

An RTSP session is in no way tied to a transport-level connection such as a TCP connection. During an RTSP session, an RTSP client may open and close many reliable transport connections to the server to issue RTSP requests. Alternatively, it may use a connectionless transport protocol such as UDP. The streams controlled by RTSP may use RTP [1], but the operation of RTSP does not depend on the transport mechanism used to carry continuous media.

The protocol is intentionally similar in syntax and operation to HTTP/1.1 so that extension mechanisms to HTTP can in most cases also be added to RTSP. However, RTSP differs in a number of important

Retrieval of media from media server: The client can request a presentation description via HTTP or some other method. If the presentation is being multicast, the presentation description contains the multicast addresses and ports to be used for the continuous media. If the presentation is to be sent only to the client via unicast, the client provides the destination for security reasons.

Invitation of a media server to a conference: A media server can be “invited” to join an existing conference,either to play back media into the presentation or to record all or a subset of the media in a presentation. This mode is useful for distributed teaching applications. Several parties in the conference may take turns “pushing the remote control buttons”.

Addition of media to an existing presentation: Particularly for live presentations, it is useful if the server can tell the client about additional media becoming available.

RTSP requests may be handled by proxies, tunnels and caches as in HTTP/1.1 .

1.2 Requirements

The key words “MUST”, “MUSTNOT”, “REQUIRED”, “SHALL”, “SHALLNOT”, “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” .
.

1.3 Terminology

Some of the terminology has been adopted from HTTP/1.1 . Terms not listed here are defined as in HTTP/1.1.

Aggregate control: The control of the multiple streams using a single timeline by the server. For audio/video feeds, this means that the client may issue a single play or pause message to control both the audio and video feeds.

Conference: a multiparty, multimedia presentation, where “multi” implies greater than or equal to one.

Client: The client requests continuous media data from the media server.

Connection: A transport layer virtual circuit established between two programs for the purpose of communication.

Media initialization: Datatype/codec specific initialization. This includes such things as clockrates, color tables, etc. Any transport-independent information which is required by a client for playback of a media stream occurs in the media initialization phase of stream setup.

Media parameter: Parameter specific to a media type that may be changed before or during stream playback.

Media server: The server providing playback or recording services for one or more media streams. Different media streams within a presentation may originate from different media servers. A media server may reside on the same or a different host as the web server the presentation is invoked from.

Media server indirection: Redirection of a media client to a different media server.

(Media) stream: A single media instance, e.g., an audio stream or a video stream as well as a single whiteboard or shared application group. When using RTP, a stream consists of all RTP and RTCP packets created by a source within an RTP session. This is equivalent to the definition of a DSM-CC stream.

Message: The basic unit of RTSP communication, consisting of a structured sequence of octets matching.
Participant: Member of a conference. A participant may be a machine, e.g., a media record or playback server.

Presentation: A set of one or more streams presented to the client as a complete media feed, using a presentation description as defined below. In most cases in the RTSP context, this implies aggregate control of those streams, but does not have to.

Presentation description: A presentation description contains information about one ormoremedia streams within a presentation, such as the set of encodings, network addresses and information about the content.

Other IETF protocols such as SDP (RFC XXXX) use the term “session” for a live presentation.

The presentation description may take several different formats, including but not limited to the session description format SDP.

Response: An RTSP response. If an HTTP response is meant, that is indicated explicitly.

Request: An RTSP request. If an HTTP request is meant, that is indicated explicitly.

RTSP session: A complete RTSP “transaction”, e.g., the viewing of a movie. A session typically consists of a client setting up a transport mechanism for the continuous media stream (SETUP), starting the stream with PLAY or RECORD, and closing the stream with TEARDOWN.

Transport initialization: The negotiation of transport information (e.g., port numbers, transport protocols)between the client and the server.

1.4 Protocol Properties

RTSP has the following properties:

Extendable: New methods and parameters can be easily added to RTSP.

Easy to parse: RTSP can be parsed by standard HTTP or MIME parsers.

Secure: RTSP re-uses web security mechanisms, either at the transport level (TLS, RFC XXXX) or within the protocol itself. All HTTP authentication mechanisms such as basic (RFC 2068) and digest authentication (RFC 2069) are directly applicable.

Transport-independent: RTSP may use either an unreliable datagram protocol (UDP) (RFC 768), a reliable datagram protocol (RDP, RFC 1151, not widely used [10]) or a reliable stream protocol such as TCP (RFC 793 [11]) as it implements application-level reliability.

Multi-server capable: Each media stream within a presentation can reside on a different server. The client automatically establishes several concurrent control sessions with the different media servers. Media synchronization is performed at the transport level.

Control of recording devices: The protocol can control both recording and playback devices, as well as devices that can alternate between the two modes (“VCR”).

Separation of stream control and conference initiation: Stream control is divorced from inviting a media server to a conference. The only requirement is that the conference initiation protocol either provides or can be used to create a unique conference identifier.
may be used to invite a server to a conference. Suitable for professional applications: RTSP supports frame-level accuracy through SMPTE time stamps to allow remote digital editing.

Presentation description neutral: The protocol does not impose a particular presentation description or metafile format and can convey the type of format to be used. However, the presentation description must contain at least one RTSP URI.

Proxy and firewall friendly: The protocol should be readily handled by both application and transportlaye firewalls. A firewall may need to understand the SETUP method to open a

“hole” for the UDP media stream.

HTTP-friendly: Where sensible, RTSP reuses HTTP concepts, so that the existing infrastructure can be reused. This infrastructure includes PICS (Platform for Internet Content Selection) for associating labels with content. However, RTSP does not just add methods to HTTP since the controlling continuous media requires server state in most cases.Appropriate server control: If a client can start a stream, it must be able to stop a stream. Servers should not start streaming to clients in such a way that clients cannot stop the stream.

Transport negotiation: The client can negotiate the transport method prior to actually needing to process a continuous media stream.

Capability negotiation: If basic features are disabled, there must be some clean mechanism for the client to determine which methods are not going to be implemented. This allows clients to present the appropriate user interface. For example, if seeking is not allowed, the user interface must be able to disallow moving a sliding position indicator.

An earlier requirement in RTSP was multi-client capability. However, it was determined that a better approach was to make sure that the protocol is easily extensible to the multi-client scenario. Stream identifiers can be used by several control streams, so that “passing the remote” would be possible. The protocol would not address how several clients negotiate access; this is left to either a “social protocol” or some other floor control mechanism.

1.5 Extending RTSP

Since not all media servers have the same functionality, media servers by necessity will support different sets of requests. For example:

A server may only be capable of playback thus has no need to support the RECORD request.

A server may not be capable of seeking (absolute positioning) if it is to support live events only.

Some servers may not support setting stream parameters and thus not support GET PARAMETER and SET PARAMETER.

A server SHOULD implement all header fields .It is up to the creators of presentation descriptions not to ask the impossible of a server. This situation is similar in HTTP/1.1 [2], where the methods described in [H19.6] are not likely to be supported across all servers.

RTSP can be extended in three ways, listed here in order of the magnitude of changes supported:

Existing methods can be extended with new parameters, as long as these parameters can be safely ignored by the recipient. (This is equivalent to adding new parameters to an HTML tag.) If the clientneeds negative acknowledgement when a method extension is not supported, a tag corresponding to the extension may be added in the Require: field.
New methods can be added. If the recipient of the message does not understand the request, it responds with error code 501 (Not implemented) and the sender should not attempt to use this method again.

A client may also use the OPTIONS method to inquire about methods supported by the server. The server SHOULD list the methods it supports using the Public response header.

A new version of the protocol can be defined, allowing almost all aspects (except the position of the protocol version number) to change.

1.5 Extending RTSP

Since not all media servers have the same functionality, media servers by necessity will support different sets of requests. For example:

A server may only be capable of playback thus has no need to support the RECORD request.

A server may not be capable of seeking (absolute positioning) if it is to support live events only. Some servers may not support setting stream parameters and thus not support
GET PARAMETER

and SET PARAMETER.

A server SHOULD implement all header fields described in Section 12.

It is up to the creators of presentation descriptions not to ask the impossible of a server. This situation is similar in HTTP/1.1 [2], where the methods described in [H19.6] are not likely to be supported across all servers.

RTSP can be extended in three ways, listed here in order of the magnitude of changes supported:

Existing methods can be extended with new parameters, as long as these parameters can be safely ignored by the recipient. (This is equivalent to adding new parameters to an HTML tag.) If the client needs negative acknowledgement when a method extension is not supported, a tag corresponding to the extension may be added in the Require. New methods can be added. If the recipient of the message does not understand the request, it responds with error code 501 (Not implemented) and the sender should not attempt to use this method again.

A client may also use the OPTIONS method to inquire about methods supported by the server. These ever SHOULD list the methods it supports using the Public response header.

A new version of the protocol can be defined, allowing almost all aspects (except the position of the protocol version number) to change.

1.6 Overall Operation

Each presentation and media stream may be identified by an RTSP URL. The overall presentation and the properties of the media the presentation is made up of are defined by a presentation description file, the\ format of which is outside the scope of this specification. The presentation description file may be obtained

by the client using HTTP or other means such as email and may not necessarily be stored on the media

server.
For the purposes of this specification, a presentation description is assumed to describe one or more

presentations, each of which maintains a common time axis. For simplicity of exposition and without loss

of generality, it is assumed that the presentation description contains exactly one such presentation. A

presentation may contain several media streams.

The presentation description file contains a description of the media streams making up the presentation,

including their encodings, language, and other parameters that enable the client to choose the most

appropriate combination of media. In this presentation description, each media stream that is individually

controllable by RTSP is identified by an RTSP URL, which points to the media server handling that particular

media stream and names the stream stored on that server. Several media streams can be located on

different servers; for example, audio and video streams can be split across servers for load sharing. The

description also enumerates which transport methods the server is capable of.

Besides the media parameters, the network destination address and port need to be determined. Several

modes of operation can be distinguished:

Unicast: The media is transmitted to the source of the RTSP request, with the port number chosen by the

client. Alternatively, the media is transmitted on the same reliable stream as RTSP.

Multicast, server chooses address: The media server picks the multicast address and port. This is the

typical case for a live or near-media-on-demand transmission.

Multicast, client chooses address: If the server is to participate in an existing multicast conference, the

multicast address, port and encryption key are given by the conference description, established by

means outside the scope of this specification.

1.7 RTSP States

RTSP controls a stream which may be sent via a separate protocol, independent of the control channel. For

example, RTSP control may occur on a TCP connection while the data flows via UDP. Thus, data delivery

continues even if no RTSP requests are received by the media server. Also, during its lifetime, a single media

stream may be controlled by RTSP requests issued sequentially on different TCP connections. Therefore,

the server needs to maintain “session state” to be able to correlate RTSP requests with a stream. The state

transitions are described in Section A.

Many methods in RTSP do not contribute to state. However, the following play a central role in defining

the allocation and usage of stream resources on the server: SETUP, PLAY, RECORD, PAUSE, and

TEARDOWN.

SETUP: Causes the server to allocate resources for a stream and start an RTSP session.

PLAY and RECORD: Starts data transmission on a stream allocated via SETUP.

PAUSE: Temporarily halts a stream without freeing server resources.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 10]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

aTEARDOWN: Frees resources associated with the stream. The RTSP session ceases to exist on the server.

RTSP methods that contribute to state use the Session header field (Section 12.37) to identify the

RTSP session whose state is being manipulated. The server generates session identifiers in response

to SETUP requests (Section 10.4).

1.8 Relationship with Other Protocols

RTSP has some overlap in functionality with HTTP. It also may interact with HTTP in that the initial

contact with streaming content is often to be made through a web page. The current protocol specification

aims to allow different hand-off points between a web server and the media server implementing RTSP. For

example, the presentation description can be retrieved using HTTP or RTSP, which reduces roundtrips in

web-browser-based scenarios, yet also allows for standalone RTSP servers and clients which do not rely on

HTTP at all.

However, RTSP differs fundamentally from HTTP in that data delivery takes place out-of-band in a

different protocol. HTTP is an asymmetric protocol where the client issues requests and the server responds.

In RTSP, both the media client and media server can issue requests. RTSP requests are also not stateless; they

may set parameters and continue to control a media stream long after the request has been acknowledged.

Re-using HTTP functionality has advantages in at least two areas, namely security and proxies. The requirements

are very similar, so having the ability to adopt HTTP work on caches, proxies and authentication is valuable.

While most real-time media will use RTP as a transport protocol, RTSP is not tied to RTP.

RTSP assumes the existence of a presentation description format that can express both static and temporal

properties of a presentation containing several media streams.

1. RTSP overview

1.1 Description of the protocol

RTSP means Real Time Streaming Protocol. This protocol is specified in an IETF’s rfc:

rfc2326.

This specification describes a HTTP based protocol, using a lot of references to the HTTP1.1

protocol specification: rfc2616. Clients and servers can then exchange ASCII-based messages

over TCP, using messages’ headers to perform requests or send information.

This protocol is used

1.2 Application

RTSP has been designed to fulfil a media streaming diffusion manager role.

That’s why this protocol can be used to perform video and audio real time diffusion.

The protocol has been specified to handle high as well as low bandwidth, and to adjust the

stream compression as soon as the bandwidth changes to optimize the transmission.

A lot of web sites use its HTTP protocol background’s particularity to perform video and

audio diffusion.

Its real time bandwidth optimization particularity is also very useful in video conference

systems.

1.3 Functioning

RTSP is a streaming manager protocol. This means that media contents are not directly

handled by the protocol, but are handled by the paired protocol RTP.

RTSP is mainly used to launch, stop and replay a stream using specific messages called

“commands”.

Media Player RTSP: Command

RTP: Media Content

Media Server

Figure 1: RTSP mechanism
2 Notational Conventions

Since many of the definitions and syntax are identical to HTTP/1.1, this specification only points to the

section where they are defined rather than copying it. For brevity, [HX.Y] is to be taken to refer to Section

X.Y of the current HTTP/1.1 specification (RFC 2068 [2]).

All the mechanisms specified in this document are described in both prose and an augmented Backus-

Naur form (BNF) similar to that used in [H2.1]. It is described in detail in RFC 2234 [17], with the difference

that this RTSP specification maintains the “1#” notation for comma-separated lists.

In this draft, we use indented and smaller-type paragraphs to provide background and motivation. This

is intended to give readers who were not involved with the formulation of the specification an understanding

of why things are the way that they are in RTSP.

3 Protocol Parameters

3.1 RTSP Version

[H3.1] applies, with HTTP replaced by RTSP.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 11]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

3.2 RTSP URL

The “rtsp”, “rtspu” and “rtsps” schemes are used to refer to network resources via the RTSP protocol. This

section defines the scheme-specific syntax and semantics for RTSP URLs.

rtsp URL = (”rtsp:” j ”rtspu:” j ”rtsps:”)

”//” host [”:” port] [abs path]

host = <A legal Internet host domain name of IP address

(in dotted decimal form), as defined by Section 2.1

of RFC 1123 [18]>

port = *DIGIT

abs path is defined in [H3.2.1].

Note that fragment and query identifiers do not have a well-defined meaning at this time, with the interpretation

left to the RTSP server.

The scheme rtsp requires that commands are issued via a reliable protocol (within the Internet, TCP),

while the scheme rtspu identifies an unreliable protocol (within the Internet, UDP). The scheme rtsps

indicates that a TCP connection secured by TLS (RFC XXXX) [7] must be used.

If the port is empty or not given, port 554 is assumed. The semantics are that the identified resource can

be controlled by RTSP at the server listening for TCP (scheme “rtsp”) connections or UDP (scheme “rtspu”)

packets on that port of host, and the Request-URI for the resource is rtsp URL.

The use of IP addresses in URLs SHOULD be avoided whenever possible (see RFC 1924 [19]).

A presentation or a stream is identified by a textual media identifier, using the character set and escape

conventions [H3.2] of URLs (RFC 1738 [20]). URLsmay refer to a stream or an aggregate of streams, i.e., a

presentation. Accordingly, requests described in Section 10 can apply to either the whole presentation or an

individual stream within the presentation. Note that some request methods can only be applied to streams,

not presentations and vice versa.

For example, the RTSP URL:

rtsp://media.example.com:554/twister/audiotrack

identifies the audio stream within the presentation “twister”, which can be controlled via RTSP requests

issued over a TCP connection to port 554 of host media.example.com.

Also, the RTSP URL:

rtsp://media.example.com:554/twister

identifies the presentation “twister”, which may be composed of audio and video streams.

This does not imply a standard way to reference streams in URLs. The presentation description defines the

hierarchical relationships in the presentation and the URLs for the individual streams. A presentation description

may name a stream “a.mov” and the whole presentation “b.mov”.

The path components of the RTSP URL are opaque to the client and do not imply any particular file

system structure for the server.

This decoupling also allows presentation descriptions to be used with non-RTSP media control protocols simply

by replacing the scheme in the URL.

3 Protocol Parameters

3.1 RTSP Version

[H3.1] applies, with HTTP replaced by RTSP.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 11]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

3.2 RTSP URL

The “rtsp”, “rtspu” and “rtsps” schemes are used to refer to network resources via the RTSP protocol. This

section defines the scheme-specific syntax and semantics for RTSP URLs.

rtsp URL = (”rtsp:” j ”rtspu:” j ”rtsps:”)

”//” host [”:” port] [abs path]

host = <A legal Internet host domain name of IP address

(in dotted decimal form), as defined by Section 2.1

of RFC 1123 [18]>

port = *DIGIT

abs path is defined in [H3.2.1].

Note that fragment and query identifiers do not have a well-defined meaning at this time, with the interpretation

left to the RTSP server.

The scheme rtsp requires that commands are issued via a reliable protocol (within the Internet, TCP),

while the scheme rtspu identifies an unreliable protocol (within the Internet, UDP). The scheme rtsps

indicates that a TCP connection secured by TLS (RFC XXXX) [7] must be used.

If the port is empty or not given, port 554 is assumed. The semantics are that the identified resource can

be controlled by RTSP at the server listening for TCP (scheme “rtsp”) connections or UDP (scheme “rtspu”)

packets on that port of host, and the Request-URI for the resource is rtsp URL.

The use of IP addresses in URLs SHOULD be avoided whenever possible (see RFC 1924 [19]).

A presentation or a stream is identified by a textual media identifier, using the character set and escape

conventions [H3.2] of URLs (RFC 1738 [20]). URLsmay refer to a stream or an aggregate of streams, i.e., a

presentation. Accordingly, requests described in Section 10 can apply to either the whole presentation or an

individual stream within the presentation. Note that some request methods can only be applied to streams,

not presentations and vice versa.

For example, the RTSP URL:

rtsp://media.example.com:554/twister/audiotrack

identifies the audio stream within the presentation “twister”, which can be controlled via RTSP requests

issued over a TCP connection to port 554 of host media.example.com.

Also, the RTSP URL:

rtsp://media.example.com:554/twister

identifies the presentation “twister”, which may be composed of audio and video streams.

This does not imply a standard way to reference streams in URLs. The presentation description defines the

hierarchical relationships in the presentation and the URLs for the individual streams. A presentation description

may name a stream “a.mov” and the whole presentation “b.mov”.

The path components of the RTSP URL are opaque to the client and do not imply any particular file

system structure for the server.

This decoupling also allows presentation descriptions to be used with non-RTSP media control protocols simply

by replacing the scheme in the URL.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 12]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

3.3 Conference Identifiers

Conference identifiers are opaque to RTSP and are encoded using standard URI encoding methods (i.e.,

LWS is escaped with %). They can contain any octet value. The conference identifier MUST be globally

unique. For H.323, the conferenceID value is to be used.

conference-id = 1*xchar

Conference identifiers are used to allow RTSP sessions to obtain parameters from multimedia conferences the

media server is participating in. These conferences are created by protocols outside the scope of this specification,

e.g., H.323 [13] or SIP [12]. Instead of the RTSP client explicitly providing transport information, for example, it

asks the media server to use the values in the conference description instead.

3.4 Session Identifiers

Session identifiers are opaque strings of arbitrary length. Linear white space must be URL-escaped. A

session identifier MUST be chosen randomly and MUST be at least eight octets long to make guessing it

more difficult. (See Section 16.)

session-id = 1*(ALPHA j DIGIT j safe)

3.5 SMPTE Relative Timestamps

A SMPTE relative timestamp expresses time relative to the start of the clip. Relative timestamps are expressed

as SMPTE time codes for frame-level access accuracy. The time code has the format

hours:minutes:seconds:frames.subframes,

with the origin at the start of the clip. The default smpte format is“SMPTE 30 drop” format, with frame

rate is 29.97 frames per second. Other SMPTE codes MAY be supported (such as ”SMPTE 25”) through

the use of alternative use of ”smpte time”. For the “frames” field in the time value can assume the values

0 through 29. The difference between 30 and 29.97 frames per second is handled by dropping the first two

frame indices (values 00 and 01) of every minute, except every tenth minute. If the frame value is zero, it

may be omitted. Subframes are measured in one-hundredth of a frame.

smpte-range = smpte-type ”=” smpte-time ”-” [smpte-time]

smpte-type = ”smpte” j ”smpte-30-drop” j ”smpte-25” ; other timecodes may be added

smpte-time = 1*2DIGIT ”:” 1*2DIGIT ”:” 1*2DIGIT [”:” 1*2DIGIT] [”.” 1*2DIGIT]

Examples:

smpte=10:12:33:20-

smpte=10:07:33-

smpte=10:07:00-10:07:33:05.01

smpte-25=10:07:00-10:07:33:05.01

3.6 Normal Play Time

Normal play time (NPT) indicates the stream absolute position relative to the beginning of the presentation.

The timestamp consists of a decimal fraction. The part left of the decimal may be expressed in either seconds

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 13]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

or hours, minutes, and seconds. The part right of the decimal point measures fractions of a second.

The beginning of a presentation corresponds to 0.0 seconds. Negative values are not defined. The special

constant now is defined as the current instant of a live event. It may be used only for live events.

NPT is defined as in DSM-CC: “Intuitively, NPT is the clock the viewer associates with a program. It is

often digitally displayed on a VCR. NPT advances normally when in normal play mode (scale = 1), advances

at a faster rate when in fast scan forward (high positive scale ratio), decrements when in scan reverse (high

negative scale ratio) and is fixed in pause mode. NPT is (logically) equivalent to SMPTE time codes.” [5]

npt-range = (npt-time ”-” [npt-time]) j (”-” npt-time)

npt-time = ”now” j npt-sec j npt-hhmmss

npt-sec = 1*DIGIT [”.” *DIGIT]

npt-hhmmss = npt-hh ”:” npt-mm ”:” npt-ss [”.” *DIGIT]

npt-hh = 1*DIGIT ; any positive number

npt-mm = 1*2DIGIT ; 0-59

npt-ss = 1*2DIGIT ; 0-59

Examples:

npt=123.45-125

npt=12:05:35.3-

npt=now-

The syntax conforms to ISO 8601. The npt-sec notation is optimized for automatic generation, the ntp-hhmmss

notation for consumption by human readers. The “now” constant allows clients to request to receive the live feed

rather than the stored or time-delayed version. This is needed since neither absolute time nor zero time are appropriate

for this case.

3.7 Absolute Time

Absolute time is expressed as ISO 8601 timestamps, using UTC (GMT). Fractions of a second may be

indicated.

utc-range = ”clock” ”=” utc-time ”-” [utc-time]

utc-time = utc-date ”T” utc-time ”Z”

utc-date = 8DIGIT ; < YYYYMMDD >

utc-time = 6DIGIT [”.” fraction] ; < HHMMSS.fraction >

Example for November 8, 1996 at 14h37 and 20 and a quarter seconds UTC:

19961108T143720.25Z

3.8 Option Tags

Option tags are unique identifiers used to designate new options in RTSP. These tags are used in in Require

(Section 12.32) and Proxy-Require (Section 12.27) header fields.

Syntax:

option-tag = 1*xchar

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 14]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

The creator of a new RTSP option should either prefix the option with a reverse domain name (e.g.,

“com.foo.mynewfeature” is an apt name for a feature whose inventor can be reached at “foo.com”), or

register the new option with the Internet Assigned Numbers Authority (IANA).

3.8.1 Registering New Option Tags with IANA

When registering a new RTSP option, the following information should be provided:

_ Name and description of option. The name may be of any length, but SHOULD be no more than

twenty characters long. The name MUST not contain any spaces, control characters or periods.

_ Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other international

standardization bodies, a consortium or a particular company or group of companies);

_ A reference to a further description, if available, for example (in order of preference) an RFC, a

published paper, a patent filing, a technical report, documented source code or a computer manual;

_ For proprietary options, contact information (postal and email address);

4 RTSP Message

RTSP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [21]).

Lines are terminated by CRLF, but receivers should be prepared to also interpret CR and LF by themselves

as line terminators.

Text-based protocols make it easier to add optional parameters in a self-describing manner. Since the number

of parameters and the frequency of commands is low, processing efficiency is not a concern. Text-based protocols,

if done carefully, also allow easy implementation of research prototypes in scripting languages such as Tcl, Visual

Basic and Perl.

The 10646 character set avoids tricky character set switching, but is invisible to the application as long as USASCII

is being used. This is also the encoding used for RTCP. ISO 8859-1 translates directly into Unicode with

a high-order octet of zero. ISO 8859-1 characters with the most-significant bit set are represented as 1100001x

10xxxxxx. (See RFC 2279 [21])

RTSP messages can be carried over any lower-layer transport protocol that is 8-bit clean.

Requests contain methods, the object the method is operating upon and parameters to further describe

the method. Methods are idempotent, unless otherwise noted. Methods are also designed to require little or

no state maintenance at the media server.

4.1 Message Types

See [H4.1]

4.2 Message Headers

See [H4.2]

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 15]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

4.3 Message Body

See [H4.3]

4.4 Message Length

When a message body is included with a message, the length of that body is determined by one of the

following (in order of precedence):

1. Any response message which MUST NOT include a message body (such as the 1xx, 204, and 304

responses) is always terminated by the first empty line after the header fields, regardless of the entityheader

fields present in the message. (Note: An empty line consists of only CRLF.)

2. If a Content-Length header field (section 12.14) is present, its value in bytes represents the length of

the message-body. If this header field is not present, a value of zero is assumed.

3. By the server closing the connection. (Closing the connection cannot be used to indicate the end of a

request body, since that would leave no possibility for the server to send back a response.)

Note that RTSP does not (at present) support the HTTP/1.1 “chunked” transfer coding(see [H3.6]) and

requires the presence of the Content-Length header field.

Given the moderate length of presentation descriptions returned, the server should always be able to determine

its length, even if it is generated dynamically, making the chunked transfer encoding unnecessary. Even though

Content-Length must be present if there is any entity body, the rules ensure reasonable behavior even if the length

is not given explicitly.

5 General Header Fields

See [H4.5], except that Pragma, Transfer-Encoding and Upgrade headers are not defined:

general-header = Cache-Control ; Section 12.8

j Connection ; Section 12.10

j Date ; Section 12.18

j Via ; Section 12.43

6 Request

A request message from a client to a server or vice versa includes, within the first line of that message, the

method to be applied to the resource, the identifier of the resource, and the protocol version in use.

Request = Request-Line ; Section 6.1

*(general-header ; Section 5

j request-header ; Section 6.2

j entity-header) ; Section 8.1

CRLF

[message-body] ; Section 4.3

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 16]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

6.1 Request Line

Request-Line = Method SP Request-URI SP RTSP-Version CRLF

Method = "DESCRIBE" ; Section 10.2

j "ANNOUNCE" ; Section 10.3

j "GET PARAMETER" ; Section 10.8

j "OPTIONS" ; Section 10.1

j "PAUSE" ; Section 10.6

j "PLAY" ; Section 10.5

j "RECORD" ; Section 10.11

j "REDIRECT" ; Section 10.10

j "SETUP" ; Section 10.4

j "SET PARAMETER" ; Section 10.9

j "TEARDOWN" ; Section 10.7

j extension-method

extension-method = token

Request-URI = "*" | absolute_URI

RTSP-Version = "RTSP" "/" 1*DIGIT "." 1*DIGIT

6.2 Request Header Fields

request-header = Accept ; Section 12.1

j Accept-Encoding ; Section 12.2

j Accept-Language ; Section 12.3

j Authorization ; Section 12.5

j From ; Section 12.20

j If-Modified-Since ; Section 12.23

j Range ; Section 12.29

j Referer ; Section 12.30

j User-Agent ; Section 12.41

Note that in contrast to HTTP/1.1 [2], RTSP requests always contain the absolute URL (that is, including

the scheme, host and port) rather than just the absolute path.

HTTP/1.1 requires servers to understand the absolute URL, but clients are supposed to use the Host request

header. This is purely needed for backward-compatibility with HTTP/1.0 servers, a consideration that does not apply

to RTSP.

The asterisk “*” in the Request-URI means that the request does not apply to a particular resource, but

to the server itself, and is only allowed when the method used does not necessarily apply to a resource. One

example would be:

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 17]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

OPTIONS * RTSP/1.0

7 Response

[H6] applies except that HTTP-Version is replaced by RTSP-Version. Also, RTSP defines additional

status codes and does not define some HTTP codes. The valid response codes and the methods they can be

used with are defined in Table 1.

After receiving and interpreting a request message, the recipient responds with an RTSP response message.

Response = Status-Line ; Section 7.1

*(general-header ; Section 5

j response-header ; Section 7.1.2

j entity-header) ; Section 8.1

CRLF

[message-body] ; Section 4.3

7.1 Status-Line

The first line of a Response message is the Status-Line, consisting of the protocol version followed by a

numeric status code, and the textual phrase associated with the status code, with each element separated by

SP characters. No CR or LF is allowed except in the final CRLF sequence.

Status-Line = RTSP-Version SP Status-Code SP Reason-Phrase CRLF

7.1.1 Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to understand and satisfy the request.

These codes are fully defined in Section 11. The Reason-Phrase is intended to give a short textual description

of the Status-Code. The Status-Code is intended for use by automata and the Reason-Phrase is

intended for the human user. The client is not required to examine or display the Reason-Phrase.

The first digit of the Status-Code defines the class of response. The last two digits do not have any

categorization role. There are 5 values for the first digit:

_ 1xx: Informational - Request received, continuing process

_ 2xx: Success - The action was successfully received, understood, and accepted

_ 3xx: Redirection - Further action must be taken in order to complete the request

_ 4xx: Client Error - The request contains bad syntax or cannot be fulfilled

_ 5xx: Server Error - The server failed to fulfill an apparently valid request

The individual values of the numeric status codes defined for RTSP/1.0, and an example set of corresponding

Reason-Phrase’s, are presented below. The reason phrases listed here are only recommended

– they may be replaced by local equivalents without affecting the protocol. Note that RTSP adopts most

HTTP/1.1 [2] status codes and adds RTSP-specific status codes starting at x50 to avoid conflicts with newly

defined HTTP status codes.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 18]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Status-Code = ”100” ; Continue

j ”200” ; OK

j ”201” ; Created

j ”250” ; Low on Storage Space

j ”300” ; Multiple Choices

j ”301” ; Moved Permanently

j ”302” ; Moved Temporarily

j ”303” ; See Other

j ”304” ; Not Modified

j ”305” ; Use Proxy

j ”400” ; Bad Request

j ”401” ; Unauthorized

j ”402” ; Payment Required

j ”403” ; Forbidden

j ”404” ; Not Found

j ”405” ; Method Not Allowed

j ”406” ; Not Acceptable

j ”407” ; Proxy Authentication Required

j ”408” ; Request Time-out

j ”410” ; Gone

j ”411” ; Length Required

j ”412” ; Precondition Failed

j ”413” ; Request Entity Too Large

j ”414” ; Request-URI Too Large

j ”415” ; Unsupported Media Type

j ”451” ; Parameter Not Understood

j ”452” ; Conference Not Found

j ”453” ; Not Enough Bandwidth

j ”454” ; Session Not Found

j ”455” ; Method Not Valid in This State

j ”456” ; Header Field Not Valid for Resource

j ”457” ; Invalid Range

j ”458” ; Parameter Is Read-Only

j ”459” ; Aggregate operation not allowed

j ”460” ; Only aggregate operation allowed

j ”461” ; Unsupported transport

j ”462” ; Destination unreachable

j ”500” ; Internal Server Error

j ”501” ; Not Implemented

j ”502” ; Bad Gateway

j ”503” ; Service Unavailable

j ”504” ; Gateway Time-out

j ”505” ; RTSP Version not supported

j ”551” ; Option not supported

j extension-code

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 19]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

extension-code = 3DIGIT

Reason-Phrase = *<TEXT, excluding CR, LF>

RTSP status codes are extensible. RTSP applications are not required to understand the meaning of all

registered status codes, though such understanding is obviously desirable. However, applications MUST

understand the class of any status code, as indicated by the first digit, and treat any unrecognized response

as being equivalent to the x00 status code of that class, with the exception that an unrecognized response

MUST NOT be cached. For example, if an unrecognized status code of 431 is received by the client, it can

safely assume that there was something wrong with its request and treat the response as if it had received

a 400 status code. In such cases, user agents SHOULD present to the user the entity returned with the

response, since that entity is likely to include human-readable information which will explain the unusual

status.

7.1.2 Response Header Fields

The response-header fields allow the request recipient to pass additional information about the response

which cannot be placed in the Status-Line. These header fields give information about the server and about

further access to the resource identified by the Request-URI.

response-header = Location ; Section 12.25

j Proxy-Authenticate ; Section 12.26

j Public ; Section 12.28

j Retry-After ; Section 12.31

j Server ; Section 12.36

j Vary ; Section 12.42

j WWW-Authenticate ; Section 12.44

Response-header field names can be extended reliably only in combination with a change in the protocol

version. However, new or experimental header fields MAY be given the semantics of response-header fields

if all parties in the communication recognize them to be response-header fields. Unrecognized header fields

are treated as entity-header fields.

8 Entity

Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or

response status code. An entity consists of entity-header fields and an entity-body, although some responses

will only include the entity-headers.

In this section, both sender and recipient refer to either the client or the server, depending on who sends

and who receives the entity.

8.1 Entity Header Fields

Entity-header fields define optional metainformation about the entity-body or, if no body is present, about

the resource identified by the request.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 20]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Code reason

100 Continue all

200 OK all

201 Created RECORD

250 Low on Storage Space RECORD

300 Multiple Choices all

301 Moved Permanently all

302 Moved Temporarily all

303 See Other all

305 Use Proxy all

400 Bad Request all

401 Unauthorized all

402 Payment Required all

403 Forbidden all

404 Not Found all

405 Method Not Allowed all

406 Not Acceptable all

407 Proxy Authentication Required all

408 Request Timeout all

410 Gone all

411 Length Required all

412 Precondition Failed DESCRIBE, SETUP

413 Request Entity Too Large all

414 Request-URI Too Long all

415 UnsupportedMedia Type all

451 Invalid parameter SETUP

452 Illegal Conference Identifier SETUP

453 Not Enough Bandwidth SETUP

454 Session Not Found all

455 Method Not Valid In This State all

456 Header Field Not Valid all

457 Invalid Range PLAY

458 Parameter Is Read-Only SET PARAMETER

459 Aggregate Operation Not Allowed all

460 Only Aggregate Operation Allowed all

461 Unsupported Transport all

462 Destination Unreachable all

500 Internal Server Error all

501 Not Implemented all

502 Bad Gateway all

503 Service Unavailable all

504 Gateway Timeout all

505 RTSP Version Not Supported all

551 Option not support all

Table 1: Status codes and their usage with RTSP methods

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 21]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

entity-header = Allow ; Section 12.4

j Content-Base ; Section 12.11

j Content-Encoding ; Section 12.12

j Content-Language ; Section 12.13

j Content-Length ; Section 12.14

j Content-Location ; Section 12.15

j Content-Type ; Section 12.16

j Expires ; Section 12.19

j Last-Modified ; Section 12.24

j extension-header

extension-header = message-header

The extension-header mechanism allows additional entity-header fields to be defined without changing

the protocol, but these fields cannot be assumed to be recognizable by the recipient. Unrecognized header

fields SHOULD be ignored by the recipient and forwarded by proxies.

8.2 Entity Body

See [H7.2]

9 Connections

RTSP requests can be transmitted in several different ways:

_ persistent transport connections used for several request-response transactions;

_ one connection per request/response transaction;

_ connectionless mode.

The type of transport connection is defined by the RTSP URI (Section 3.2). For the scheme “rtsp”, a

persistent connection is assumed, while the scheme “rtspu” calls for RTSP requests to be sent without setting

up a connection.

Unlike HTTP, RTSP allows the media server to send requests to the media client. However, this is

only supported for persistent connections, as the media server otherwise has no reliable way of reaching the

client. Also, this is the only way that requests from media server to client are likely to traverse firewalls.

9.1 Pipelining

A client that supports persistent connections or connectionless mode MAY “pipeline” its requests (i.e., send

multiple requests without waiting for each response). A server MUST send its responses to those requests

in the same order that the requests were received.

9.2 Reliability and Acknowledgements

Requests are acknowledged by the receiver unless they are sent to a multicast group. If there is no acknowledgement,

the sender may resend the same message after a timeout of one round-trip time (RTT).

3. Security issues

As we saw previously, RTSP Protocol has the same design as HTTP protocol. Thus, some

exploitable vulnerabilities related to bad (or incautious) RTSP implementations can occur

during streaming media.

These vulnerabilities are the following:

3.1 Abuse of Server Log Information

RTSP Server can retrieve personal information from the client user, and generates Log

files. Protecting these files is particularly important to respect users’ privacy.

3.2 Man-in-the-middle Attack

It is a kind of active eavesdropping attack. The hacker intercepts the stream between the

client and the server and redirects it. In that case, it can read, insert and modify messages

between the two parts. The victims are not aware that the stream channel is compromised.

3.3 Attack on file and path name

It is really important that RTSP servers take care to restrict the documents that they want

to make available. While translating RTSP URIs, RTSP servers must pay attention to not send

files that clients shouldn’t collect.

For instance, in many operating system like Linux or Microsoft Windows, the double point

“..” means to locate on the above (parent) directory.

If the parent directory contains sensitive files and is not protected, some experiences have

shown that it could lead to a security risk. This security risk is particularly present with HTTP

protocol and can occur in the RTSP protocol.

Even if RTSP URLs are often opaque and don’t necessarily contains file system semantics, it is

more cautious to take care of this risks, and prevent it by defining restricted area on the

server.

3.4 DNS Spoofing

HTTP Clients use the Domain Name Service (DNS) to resolve the IP address/DNS Name

association.

The DNS Spoofing attack is based on this deliberate mis-association.

RTSP protocol is subject to the same type of attack. If clients don’t rely on their name

resolver in order to get a confirmation for an IP address/DNS name association, or otherwise

don’t take care of information reported by DNS while the servers make optimization by

caching, DNS Spoofing attack can occur.

Generally, RTSP sessions’ connection times are typically longer than HTTP sessions; therefore

DNS optimization for RTSP client should be less frequent.

Nonetheless it is more cautious to take care of the IP/DNS mapping.

3.5 Denial of service

The RTSP protocol allows the opportunity for an attack called remote-controlled denialof-

service.

In such a case, an attacker can initiate a traffic flowing to one or several IP addresses by

modifying the destination in Setup requests. The goal of this kind of attack is to bring the

server or the network down by overloading the bandwidth.

The solution may be to check client’s identities while initiating a traffic session, by using a

client’s database or the RTSP authentication mechanism.

3.6 Session hijacking

RTSP protocol uses a random identifier while starting a streaming session, instead of a

special relation between a transport layer connection and a RTSP session. If an attacker

catches the random identifier, he can intercept the stream.

A solution against this kind of attack is to use a large random number as identifier, and avoid

sequential series of identifiers to reduce the risk.

3.7 Authentication mechanism (www-Authentication mechanism)

RTSP protocol contains an authentication mechanism (called www-Authentication

mechanism), that should enable to initiate safe connections between clients and servers.

This mechanism allows using a login and a password in order to start a new session.

In practice, it appears that is not really safe due to the fact the client’s login and the client’s

password are sent in clear text. Below a sample of trace intercepted with Wireshark showing

our login (MyLogin), and our password (MyPassword):

Figure 3: HTTP Authentication trace

Thus, RTSP protocol is subject to the risk of stealing sensitive information.

Conclusion

The RTSP protocol is built with the same design as the HTTP protocol, and contains

the same secure mechanisms. These mechanisms are not really efficient, and can be broken

easily in case of poor implementation of the protocol. Some familiar applications use the

RTSP protocol to enable streaming functionality. Among the list, we can specially think about

Quicktime (developed by Apple). The later is subject to several vulnerabilities which are

currently massively used by some hackers.

But RTSP protocol can also be secure with different technologies, like TLS, that allow being

really secured in case of needs.

Bibliography

IETF:

RFC 2326: RTSP

RFC 2616: HTTP

Web Sites:

http://en.wikipedia.org/wiki/Base64

http://frontier.userland.com/stories/storyReader$2159

http://www.httr.ups-tlse.fr/pedagogie/cours/tcp-ip/rtsp/index.html#S4

http://www.cs.columbia.edu/~hgs/rtsp/
	Field
	Size (bits)
	Description

	Copied
	1
	Set to 1 if the options need to be copied into all fragments of a fragmented packet.

	Option Class
	2
	A general options category. 0 is for "control" options, and 2 is for "debugging and measurement". 1, and 3 are reserved.

	Option Number
	5
	Specifies an option.

	Option Length
	8
	Indicates the size of the entire option (including this field). This field may not exist for simple options.

	Option Data
	Variable
	Option-specific data. This field may not exist for simple options.

· Note: If the Header Length is greater than 5, i.e. it is between 6-15, it means that the Options field is present and must be considered.

· Note: the Copied, Option Class, and Option Number are sometimes referred to as a single eight-bit field - the Option Type.

The use of the LSRR and SSRR options (Loose and Strict Source and Record Route) is discouraged because they create security concerns; many routers block packets containing these options.[citation needed]
[edit]Data
The data field is not a part of the header and, consequently, is not included in the checksum field. The format of the data field is specified in the protocol header field and can be any one of the transport layer protocols.

Some of the common protocols are listed below including their value used in the protocol field:

	Protocol Number
	Protocol Name
	Abbreviation

	1
	Internet Control Message Protocol
	ICMP

	2
	Internet Group Management Protocol
	IGMP

	6
	Transmission Control Protocol
	TCP

	17
	User Datagram Protocol
	UDP

	41
	IPv6 encapsulation
	-

	89
	Open Shortest Path First
	OSPF

	132
	Stream Control Transmission Protocol
	SCTP

