 Chapter - 1

 INTRODUCTION

With the advent of distributed systems across private networks and the internet, various protocols & standards are being developed for interactions between the systems. This article aims to provide a general overview of JXTA, its structure, underlying concepts & possible future developments.

JXTA technology is a network programming & computing platform that is designed to solve a number of problems in modern distributed computing, especially in the area broadly referred to as peer-to-peer computing P2P. Project JXTA was originally conceived by sun Microsystems & designed with the participation of small no. of experts from industry.
1.1 What is JXTA?

JXTA i.e. “juxtaspose” is an open network computing platform designed for peer-to-peer (P2P) computing. The JXTA platform standardizes the manner in which peers:
· Discover each other

· Advertise network resources

· Communicate with each other

· Co-operate with each other to from secure peer groups

 JXTA represents a multiple layer specification of peer to peer protocols

Designed to operate over the wide spectrum of both hardware platforms & networking protocols.

1.2 Why JXTA?
 JXTA has set of objectives that are derived as a result to shortcoming of May peer to peer system. Most peer to peer systems are built for delivering a single type of network service (Napstar for music file sharing, Gnutella for generic file sharing, and AIM for instant messaging). Given the diverse characteristics of these services & lack of a common underlying P2P infrastructure each P2P software vendor tends to create incompatible systems. This isolates their users from other P2P communities.

 JXTA intents are to address this problem by providing a simple & generic P2P platform to host generic network services:
· JXTA uses a small no. of protocols. Each is easy to implement & integrate into P2P services & application. Thus service offerings from one vendor can be used transparently by the user community of another vender system.

· JXTA is independent of programming language it can be implemented in C/C++, JAVA TM programming language, peer or other languages. Heterogeneous devices with completely different s/w stacks can interoperate with the JXTA protocols.

· JXTA is independent of transport protocols. It can be implemented on top of TCP/IP, HTTP, Bluetooth, Home PNA & many other protocols.

The benefit of JXTA can be illustrated with few examples.

Assume there is a P2P community offering a search capability for its members. In this community, one member can post a query & another member can hear & respond to the query. Let us imaging that one member as Gnutella a user & has implement a feature so that wherever a query contains a question for a mps file, this member will look up the Gnutella directory & then respond to the query with information returned by Gnutella system. As a result, a member with no knowledge of Gnutella can benefit because another member implemented a bridge to connect their P2P system To Gnutella. This type of bridging is useful. But, when the no. of services is large, pair-wise bridging becomes more difficult & undesirable. JXTA aims to be the platform bridge that connects independent P2P system together.

As a second example, many devices (such as cell phones, pagers, wireless email devices, PDAs & P(s) carry directory & calendar information. Currently, synchronization among them is tedious & difficult often the PC becomes the central synchronization point, where every other device has to connect to the PC using a unique device driver for each device. With, JXTA all these devices could be made to interact with each other, without extra networking interfaces except those needed by the device them. JXTA could be the common layer of communication & data exchange.

1.3 Objectives of JXTA:-

The objectives of JXTA are defined to overcome the shortcomings are many peer-to-peer systems.

· Interoperability –

Many peer-to-peer systems are built for delivering a single type of services. For example, Napster provides music file sharing, Gnutella provides generic file sharing, and AIM provides instant messaging. Given the diverse characteristics of these services and the lack of a common underlying P2P infrastructure, each P2P software vendor tends to create incompatible systems. This means each vendor creates its own P2P user community, duplicating efforts in creating software and system primitives commonly used by all P2P systems. Moreover, for a peer to participate in multiple communities organized by different P2P implementations, the peer must support multiple implementations, each for a distinct P2P system or community, and serve as the aggregation point.
 This situation resembles the pre-browser Internet, where to have Internet access often meant a subscription with AOL, Prodigy, or CompuServe. The result was that a user was locked into one community, and service providers had to offer their services or content in ways that were specific to how each Community operated. Project JXTA aims to bring to the P2P world what HTTP and the browser brought to the Internet.

· Platform independence –

Many P2P systems today offer their features or services through a set of APIs that are delivered on a particular operating system using a specific networking protocol. For example, one system might

Offer a set of C++ APIs, with the system initially running only on Windows, over TCP/IP, while

Another system offers a combination and C and Java APIs, running on a variety of UNIX systems,

Over TCP/IP but also requiring HTTP. A P2P developer is then forced to choose which set of APIs to

Program to, and consequently, which set of P2Pcustomers to target.
Because there is little hope that the two systems will interoperate, if the developer wants to offer the same service to both communities, they have to develop the same service twice for two P2P platforms or develop a bridge system between them. Both approaches are inefficient and impractical considering the dozens of P2P platforms in existence. JXTA technology is designed to be embraced by all developers, independent of preferred programming languages, development environments.
· Ubiquity –

JXTA technology is designed to be implementable on every device with a digital heartbeat, including sensors, consumer electronics, PDAs, appliances, network routers, desktop computers, data-centre servers, and storage systems. Many P2P systems, especially those being offered by start-up companies, tend to choose Microsoft Windows as their target deployment platform. The reason cited is to target the largest installed base and the fastest path to profit. The inevitable result is that many dependencies on Wintel-specific features are designed into (or just creep into) the system — often the consequence not of technical desire but just engineering realities of

CHAPTER – 2

 ARCHITECTURE OF JXTA

[image: image1.png]pan

Figure 1. P2P software architecture JXTA technology provides a
loyer on top of which services and applications ore built

Fig 2.1

JXTA is divided into 3 layers

· Platform –

This layers encapsulate minimal and essential primitives that are common to P2P networking, including, peers, peer groups, discovery, communication, monitoring and associated security primitives. This layer is ideally shall by all P2P devices so that they can be interoperable.

· Services –

This layer includes hardware service that may not be absolutely necessary for a P2P network to operate but are common or desirable to be available to the P2P environment, Example, of network services include search and indexing, directory, storage system, fill sharing, distributed system resource aggregation and renting, authentication.
· Application –

This layer includes P2P instant messaging entertainment content management & delivering, P2P email system, distributed auction system. Obviously between services and application is not rigid. An application to one customer can be viewed as service to another customer.

 CHAPTER – 3

 JXTA: CONCEPTUAL OVERVIEW
3.1 Peer

A JXTA peer is networked device (sensor phone, PDA, PC, server etc) that implements the core JXTA protocols. Each peer is identified by a unique id. Peers are autonomous & operate independently & asynchronously of all other peer. Each provide a degree of reliability & scalability. Peers lend to be interchangeable & to interact mainly with few close neighbors.

3.2 Peer Groups

A peer group is a collection of co-operating peers that provide a common set of services. JXTA platform only describes how to create manage and discover peer groups.

Peers wishing to join a peer group must first locate a current number, & then make a request to join.

JXTA recognizes 3 common motivations for creating & joining peer group:
1) To create a secure cooperative environment.

Secure services can be provided to peers within a protected peer group. Peer groups form virtual secure regions. Their boundaries may or may not reflect any underlying physical Network boundaries such as those imposed by routers and firewalls. The concept of a region virtualizes the notion of routers and firewalls, subdividing the network in a protected and self-organizing fashion without respect to actual physical network boundaries.

2) To create a restricted scope to ensure scalability

Peer groups are formed primarily based upon the proximity of one peer to another peer. Proximity-based peer groups serve to subdivide the network into abstract regions. Regions serve as a placeholder for general communication and security configurations that deal with existing networking infrastructure, communication scopes and security requirements. Peer groups provide an efficient scoping mechanism to reduce traffic overload and search.

3) To create a controlled and self- administered environment

Peer groups provide a self-organized structure that self-manage and can be locally managed

Peer groups require:
· The ability to find nearby peers.

· The ability to find named peers anywhere on the JATA platform.

· The ability to joint & resign from peer group

· The ability to establish pipes between peer group members.

· The ability to find & exchange shared contents.

3.3 peer Group Core Services

The JXTA platform defines the following set of core services that enable the creation of peer groups.

· Discovery service

The discovery service is used to search for peers & peer groups. The search criteria may include a peer or peer group name (string)

· Access service

The access service is used to validate, distribute, & authenticate a group member’s credentials. It defines the type of credentials in the message based protocols used within peer group.

· Membership service

 The membership to reject or accent a new group membership application.

· Pipe service

 The pipe service is sued to manage & create pipe connections between the different peer group members.

· Resolve service

 The resolve service is used to send a query string to peers to get information about a peer, peer group, a service, or a pipe.

3.4 Network Service

The JXTA platform recognizes two levels of services.

1) Peer services

2) Peer group services

A peer service executes on a single peer network only. If that peer happens to fail, the service fails.

A peer group service, on the others hand, is composed of a collection of cooperating instance of the service running on multiple peers. If any one peer service fails, the collective peer group service is not affected, if the remaining peer services are healthy.

Once a service is installed & activated, pipes may be used to communicate with it.

3.5 Advertisement

An advertisement is an XML. Structured document that names, describes, publishes the existence of a resource, such as a peer, pear group, or pipe or a service. JXTA technology defines a basic set of advertisements.

Advertisements are JXTA’s language neutral metadata structures. Each S/W platform binding describes how advertisements are converted to & from native data structures such as Java runtime objects or ‘C’ structures.

Many of the JXTA protocols depend on advertisements to provide necessary information JXTA protocols are used to pass advertisements between peers.

JXTA platform defines following core advertisement types:
· peer

· Peer group

· Pipe

· Service

· Content

· Endpoint
3.6 XML –

All JXTA advertisements are represented in XML. XML is a powerful means of representing data & metadata throughout a distributed system. XML provides universal (Software – platform neutral) data because.

· XML is language independent

· XML is self describing

· XML ensures correct syntax

Advertisement Document Structure

Advertisements (like any XML document) are composed of a series of hierarchically arranged elements. Each element can contain its data or additional elements. An element can also have attributes. Attributes are name-value string Pairs. An attribute is used to store meta-data, which helps to describe the data within the element.

Peer Advertisements

A Peer Advertisement describes peer information. The primary use of this document is to hold specific information

About the peer, such as its name, peer id, registered services and available endpoints.

<? Xml version="1.0" encoding="UTF-8"?>

<PeerAdvertisement>

<Name> name of the peer</Name>

<Keywords>search keywords </Keywords>

<Pid> Peer Id </Pid>

<Properties> peer properties </Properties>

<Service> service advertisement</Service>

...........

<Service> Service advertisement</Service>

<Endpoint> endpoint Advertisement </Endpoint>

...........

<Endpoint> endpoint Advertisement </Endpoint>

</PeerAdvertisement>
3.5 Pipes

[image: image2.png]2 Output Pipe
3 Input Pipe

Recsive
=
=)

Pointo-Poin PR

e e

i 2 Messae pipe modes

 Fig 3.1

Pipes are virtual communication channels used to send and receive messages between network services or applications over peer endpoints. Pipes are unidirectional, asynchronous, and stateless and provide a network abstraction over the peer endpoint transport.

Pipes connect one or more peer endpoints. At each endpoint, software to send or receive, and to manage associated pipe message queues is assumed, but not mandated. The pipe endpoints are referred to as input pipes and output pipes. Pipe endpoints are dynamically bound to a peer at runtime, via the Pipe Binding Protocol Pipes provide the illusion of a virtual in and out mailbox that is independent of any single peer location. Network services and applications can communicate through pipes without knowing to which physical peer a pipe endpoint is bound.
When a message is sent into a pipe, the message is sent to all peer endpoints connected (listening) to the pipe. The set of currently connected pipe endpoints (input pipes) is obtained using the Pipe Binding Protocol. A pipe offers two modes of communication:
1) Point-to-Point

2) Propagate pipe

Point-to-Point

 A point-to-point pipe connects exactly two pipe endpoints together, an input pipe that receives

Messages sent from the output pipe. No reply operation is supported. Additional information in the message payload (like a unique ID) is required to thread message sequence.
Propagate pipe

A propagate pipe connects multiple input and output pipe endpoints together. Messages flow into input pipes from an output pipe(propagation source).A propagate message is sent to all listening input pipes. This process may actually create multiple copies of the message to.

3.7 Messages
JXTA uses asynchronous XML messages as a basis for providing internet-scalable peer-to-peer communication. Each peer’s messaging layer delivers an ordered sequence of bytes from one peer to another peer in one atomic message unit. Messages are sent between peer endpoints.
A peer endpoint is a logical destination (embodied as a URI) on any networking transport capable of sending and receiving data gram-style messages. Endpoints are mapped into physical addresses by the messaging layer at runtime. JXTA peer endpoint messages are data grams that contain an envelope and a stack of protocol headers with bodies

• The envelope contains a header, a message digest, source endpoint (optional), and destination endpoint.

• Each protocol header consists of a tag, naming the protocol in use and a body length.

• Each protocol body is a variable number of bytes that is protocol tag dependent. Each protocol body contains one or more credentials used to identify the sender to the receiver.

· Message Credentials

A credential is a key that, when presented in a message body is used to identify a sender and their right to send the message to the specified endpoint. The credential is an opaque token that must be presented each
Time a message is sent.

The sending address placed in the message envelope is cross-checked with the sender’s identity in the credential. Credentials are stored in the message body on a per-protocol tag basis. Each credential’s implementation is specified as a plug-in configuration, which allows multiple authentication configurations to co-exist on the same network.

· Message Definition

JXTA peer endpoint messages are defined using the following envelope:

[image: image3.png]xtal | Envelope Version

Destination Ackress.

Envelope
‘Souros Adchess
Message Digest (Kind, Lengih, and Body)
Stackof Message Body Headsr (Protecol Tag) | Bady Length
Messages

Message Body (Text, XML

Fig 3.2

The representation on the wire of the JXTA peer endpoint messages is as follows. It is important to point out that the message representation is not a well-formed and valid XML document. To improve efficiency, the intent is to NOT require XML at the low-level peer endpoint message layer.
<JxtaMessageVersion> version number “1.0”</JxtaMessageVersion>

<JxtaMessageDest> destination peer id </JxtaMessageDest>

<JxtaMessageSrc> source peer id </JxtaMessageSrc>

<JxtaMessageDigest> digest </JxtaMessageDigest>

<JxtaMessageTagName> tag </JxtaMessageTagName>

<JxtaMessageTagData> body </JxtaMessageTagData>

...........
...........

<JxtaMessageTagName> tag </JxtaMessageTagName>

<JxtaMessageTagData> body </JxtaMessageTagData>
3.8 Security Considerations

The security requirements of a P2P system are very similar to those of any other computer system. Requirements for confidentiality, integrity, and availability are dominant. They translate into requirements for specific functionalities that include authentication, access control, audit, encryption, secure communication, and no repudiation. Such requirements are usually satisfied with a suitable security model or architecture, commonly expressed in terms of subjects, objects, and actions that subjects can perform on objects.
For example, The UNIX operating system has a simple security model: users are subjects; files are objects; a subject can read, write, or execute an object according to its permission as expressed by the permissions mode specified for the object. At lower levels within the system, however, the security model is expressed with integers, in terms of uid, gid, and the permission mode. The low-level system mechanisms do not (need to) understand the concept of a user and do not (need to) be involved in how a user is authenticated and what uid and gid they are assigned.
Given that JXTA is defined around the concepts of peers and peer groups, a security architecture could be envisioned in which peer IDs and group IDs are treated as low-level subjects (just like uid and gid), codats (meaning code and data) are treated as objects (just like files), and actions are specified operations on peers, peer groups, and codats However, the reality is more complicated. For example, given that codats can have arbitrary forms and properties, it is unclear what sets of actions should be defined for them.
It is quite likely that codats will carry along with them definitions of how they should be accessed. Such codats are analogous to objects, which define for themselves access methods that others can invoke. Developing a more concrete and precise security architecture is an ongoing project. As we gain more experience with developing services and applications on top of JXTA, we will understand better what particular architecture is the most suitable.
CHAPTER 4

 JXTA PROTOCOLS

The JXTA platform defines six networking protocols that standardize the manner in which the peers self-organize into peer groups, publish and discover peer resources, communicate and monitor each other.

The JXTA protocol permits the establishment a virtual network overlay on top of physical network allowing peers to directly interact and organize independently of the network location and connectivity.

Using JXTA protocols, peers can co-operate to form self-organized and self-configured peer group independent of position in network (edges, firewalls, network address translators) and without need of centralized management infrastructure.

Peers use their protocols to advertise their resources and to discover network resources (services, pipes etc) available from other peers. Peer form and join peer groups to create a special relationship. Peers co-operate to route messages allowing for all peer connectivity. The JXTA protocol allows peer to communicate without the need to understand or manage the potentially complex and dynamic network topologies which are increasingly common.
· Peer Discovery Protocol

· Peer Resolver Protocol

· Peer Information Protocol

· Peer Membership Protocol

· Pipe Binding Protocol

· Endpoint Routing Protocol
4.1 Peer Discovery Protocol (PDP)
The peer discovery protocol enables a peer to find advertisements on other peers. Peer discovery protocol can be used to find any of the peers, peer groups or core advertisements. This protocol is the default discovery protocol for all user defined peer groups and the world peer group.

Peer discovery can be done with or without specifying a name for either the peer to be located. Or the group to which peer belong. When no names are specified, all advertisements are returned.

4.2 Peer Resolve Protocol (PRP)
This protocol enables a peer to send and receive generic queries to find or search for peers, peer groups, pipes and other information. Typically this protocol is implemented only by those peers that have access to data repositories and offer advanced search capabilities.

4.3 Peer Information Protocol (PIP)
This protocol provides a mechanism by which a peer may obtain status information about other peers such as state, uptime traffic load.

It allows a peer to learn about the capabilities and status of other peers. For example, a ping message can be sent to see if a peer is alive. A query can also be sent regarding a peer’s properties where each property has a name and a value string.

4.4 Peer Membership protocol (PMP)
It allows a peer to obtain group membership requirements. To apply for membership and receive a membership credential along with a full group advertisement, to update an existing membership or application credential and to cancel a membership or an application credential. Authentication and security credentials are used to provide the desired level of protection.

4.5 Peer Binding Protocol (PBP)
It allows a peer to bind a pipe advertisement to a pipe endpoint. And Indicates where messages actually go over the pipe. A pipe can be viewed as an abstract , named message queue that supports number of abstract operations such as create, open, close, delete, send and receive . Bind occurs during the open operation whereas unbind occurs during the close operation.

4.6 Endpoint Routing Protocol
It allows a peer to ask a peer router for available routes for sending a message to a destination peer. For example, when two communicating peers are not directly connected to each other, such as they are not using the same network transport protocol or when they are separated by firewalls or NAT’s. At that time, peer routers respond to queries with available route information that is a list of gateways along the route. Any peer can decide to become a peer router by implementing the Peer Endpoint Protocol.

CHAPTER 5
 THE JXTA SHELL- An Example Application
The JXTA Shell is an important application built on top of the JXTA platform, both as a powerful demonstration of JXTA and as a useful development environment

.

5.1 Networked Command-Line Interface

Like the UNIX shell, the JXTA Shell provides interactive access to the JXTA platform via a simple command-line interface. With the UNIX shell, users can learn a lot about how UNIX works by writing shell scripts. The same is true for the JXTA Shell. However, while most of the UNIX shell commands are designed to execute on the local machine, the JXTA Shell is designed to execute in a networked environment. When a user command generates a sequence of message exchanges between a set of peers, some computation may occur on remote peer nodes and the answer is returned to the user.

 You can use the JXTA Shell to play with the JXTA platform core building blocks such as peers, peer groups, pipes, and codats (content units that can hold both code and data).You can publish, search, and execute codats, discover peers or peer groups, create pipes to connect two peers, and send and receive messages. The interpreter in the JXTA Shell operates in a simple loop: it accepts a command, interprets the command, executes the command, and then waits for another command. The shell displays a “JXTA>” prompt, to notify users that it is ready to accept a new command. To the extent that makes sense, we have deliberately chosen to name JXTA Shell commands after the Unix shell commands, such as “ls” and “cat”, in the hope that this makes the JXTA Shell more user friendly to Unix shell users.

5.2 JXTA Shell Commands

In our Java-based implementation, most shell commands are not built in parse. Rather, they are just Java language programs that are dynamically loaded and started by the shell framework when the corresponding commands are typed in. Therefore, adding a new shell command is as easy as writing a program in the Java programming language.

5.3 Pipe Operator

The “pipe” operator (“|”) for chaining commands, together with the notion of stdin, stdout, and stderr, are fundamental to UNIX shell programming. The JXTA Shell provides a similar “pipe” capability to redirect a command output pipe into another command input pipe. The JXTA shell is more powerful in a number of ways. For example, in the UNIX operating system, the C Shell command ‘cat myfile | grep “jxta”’ has to complete or be killed with a Ctrl-C. The user cannot modify the pipe re-direction when the command is in flight. In the JXTA Shell, because pipes are more permanent than the entirely transient ones in Unix systems, a user can dynamically disconnect and reconnect pipes between commands. The JXTA Shell also supports piping in both directions, not just one.
 A special operator “<>” is used for creating crossing pipes between two commands. For example, with the following command “cmd1 <> cmd2”, the output pipe of the first command is connected to the standard input pipe of the second command, and at the same time the output pipe of the second command is connected to the standard input pipe of the first command. Of course, this operator has to be used carefully to avoid infinite data loops.

 CHAPTER 6

 SCOPE

Currently project JXTA is in development stage and such has very few real-world applications at that moment. The following are among the acres where we except to see immediate activities.
6.1 Current Status
· www.jxta.org

· Java open source reference implementation, Apache like license, Powered by Sun

· 12000 Members, 81 Projects

· Core services

C, Python, Pearl, Ruby, Smalltalk bindings/implementations, security Services

Content management system, compute-power-market, jxta-rmi, jxta-xml-rpc, soap, jxtaspaces,

p2p-mail, presence, proxyservice, distributed search…

· applications

 radiojxta, voice over p2p, agent framework, shared diary, content sharing…

6.2 Future Scope

The following are among the acres where we except to see immediate activities.
· A native C/C++ implementation for systems without Java runtime environment support;

· A KVM-based implementation so that all KVM capable devices such as PDAs and cellphones can

Become JXTA peers;

· A test-bed scaling JXTA to thousands and millions of nodes, to discover design flaws;

· Testing and modeling technologies developed for P2P systems in general and for JXTA in particular;

· Naming and binding services;

· Mechanisms for supporting propagation scopes;

· Security services, including authentication, access control, and secure pipes;

· Solutions to overcome limitations of firewalls and NAT gateways;

· Rich definitions for peer monitoring and metering;

· An enhanced JXTA Shell, with new commands and new implementations.

Apart from these topics .there are many issues that need substantial research and development work.

 CHAPTER 7
 CONCLUSION

In essence, JXTA is a platform independent network protocol specification for peer-to-peer systems, developed to allow application developers maximum flexibility in designing their applications. The objective for JXTA’s creation was to remove the amount of replication is developing peer to peer programs for defacing hardware platforms & network protocols while at the same time introducing a standard with which to communicate. With its standard with which to communicate. With its features such as platform, language independence & protocols can give the way for new services such as the distributed search engine, rather than a centralized search engine (such as Google). The intention of the JXTA developers is to produce a care framework for peer to peer applications developers to work with that is independent of hardware, software and network communication protocol. It is the one reason alone that makes JXTA stand out as unique in peer to peer protocols available today.
1) Open protocol

2) Programming language independent

 3) Open source platform implementation

 4) Offers solutions to many common problems in P2P networks

 5) Active community

 6) Minimal specification -> extensible

 7) Low requirements (device must be able to connect to a network and send and receive

Text)
CHAPTAR 8
REFRENCES
1. Gong Li, JXTA: A Network Programming Environment, IEEE Internet Computing, Pp 88-95 May-June

2. Yongtao Zhou ; Xiaohu Chen ; Xuping Wang ; Chunjiang Yao,IEEE Research of Computer Supported Cooperative Consultation Platform Based on JXTA

3. Intelligent Networks and Management of Distributed Systems - Gregor Rojec-Goldman
4. http://www.jxta.org/white_papers.html
5. http://www.javaworld..com/javaworld/jw-10-2001/jw-1019-jxta-p2
6. www.sun.com

PAGE
17

_1122409333

_1122409731

