

TABLE OF CONTENTS

 CHAPTER NO. TITLE PAGE NO.

 ABSTRACT

 LIST OF TABLES

 1 INTRODUCTION

SYNOPSIS

SCOPE OF THE PROJECT

PROJECT FEATURES

 2 SYSTEM STUDY

2.1 EXISTING SYSTEM

 2.2 PROPOSED SYSTEM

 2.3 FEASABILITY STUDY

 2.4 OBJECTIVE

 3 SYSTEM SPECIFICATION

3.1 HARDWARE SPECIFICATION

3.2 SOFTWARE SPECIFICATION

 4 LANGUAGE DESCRIPTION

 5 SYSTEM DESIGN AND DEVELOPMENT

 5.1 DESCRIPTION

 5.2 DATA FLOW DIAGRAM

 5.3 PROCESS DIAGRAM

 5.4 SCREEN DESIGN

 5.5 SAMPLE CODING

 5.6 SAMPLE INPUT AND OUTPUT

 6 TESTING AND IMPLEMENTATION

 6.1 SYSTEM TESTING

 6.2 IMPLEMENTATION TESTING

 6.3 SYSTEM IMPLEMENTATION

 7 FUTURE ENHANCEMENT

 8 CONCLUSION

ABSTRACT

INTRODUCTION

1.3 ABOUT THE COMPANY

OUR MISSION

Our mission is to assist our clients in attaining the lowest practical total cost of ownership (TCO) by streamlining the deployement of human resources to cater to the requirements of current and emerging technologies.
OUR VALUES

One of the fundamentals principles at MAA-YOKE is our desire to provide our clients with a reliable service based on experience and performance to meet the imposing standards of delivery. Users achievement-oriented professional services company, and user subscribe to the disciplines and goals of technology and business management principles.
HIGHLIGHTES
MAAYOKES teams of employees and senior management have been at the forefront of the delivery and support of information technologies services.

MAA-YOKE TECHNOLOGY
MAA-YOKE possesses consultants who have earned the respect of Clients because our consultants are seasoned veterans of the IT world who have consistently delivered over time. Users pride ourselves on our ability to get the job done on time, on Budget and above all meeting the expectations of our customers. Our Services are focused around the delivery and management of large scale, complex IT infrastructures. Our resources, including our senior staff, have worked with large complex clients.
Our experience spans the areas from project management to highly specific technical skills as required by our clients.

MAA-YOKE TECHNOLOGY is an organization created by experienced business partners, who bring together a wide variety of experience in the information technology field IT planning, Project Management, Operations Management, Marketing and Finance with the expertise to deal with both public and private sectors. Through its partners, staff and strategic alliances, MAA-YOKE brings to its clients a grouping of in-depth skills and abilities providing Project and Implementation Services that strive to maintain and reduce the Total Cost of Ownership for Infrastructure Technology.

MAA-YOKE have a great deal of experience and knowledge and can assist organizations in the following areas:
· IT Service Management

· Engineering

· IT Sales, Service & Support
Our Experience
MAA-YOKE Technology is an IT consulting firm that supports clients with large information technology infrastructures. User specialize in the development and implementation of office productivity technology management plans for managing LAN & WAN based information technology services and infrastructure used in the daily business operations of our clients.
MAA-YOKE’s workforce has the knowledge and experience to help clients develop and implement best practice leadership within their company's environment.
Client prioritization often benefits from our analysis of operating costs, development costs, service availability demands, and fiscal resource requirements to support a robust computing.

MAA-YOKE formerly SOUTHERN COMPUTER SYSTEMS was started seven years back, which was specializing in Networking & Hardware maintenance and continues to do so. To cater to the various outsourcing needs of the IT Industry it has branched out to MAA-YOKE, which exclusively concentrates on the outsourcing aspects of the IT Industry. User supplying our resources directly and indirectly to our clients. Our clientele is composed of various components of the market like corporate organizations, individuals, commercial bodies, professionals in public services etc.

Users have done resourcing in specific areas for wide ranging technologies, which are more than ninety in number. User take pride in announcing that user have arranged resources within a short period of time as per the requirements of our clients. Our extensive Screening procedures and stringent Quality standards have brought the right resources to put the right person in the right place.

Our support in the following fields have been appreciated among the IT fraternity
 - IBM TECHNOLOGIES

 - MICROSOFT TECHNOLOGIES

 - SUN MICROSYSTEMS

 - ORACLE CORPORATIONS

 - LINUX / UNIX TECHNOLOGIES

 - ERP PACKAGES

 - DATAWAREHOUSING

 - EMBEDDED SYSTEMS

 - NETWORK SECURITY
OUR CLIENTS
· SIFY

· P & O NEDLOYD – PUNE

· SONY INDIA-LTD

· FUTURE SOFT

ORGANISATION PROCESS

Experienced Candidates Fresh Candidates

 Personal Interview

 Aptitude Test

 Verification Technical Test

Technical Interview Communication

The peer-to-peer (P2P) file-sharing applications are becoming increasingly popular and account for more than 70% of the Internet's bandwidth usage. Measurement studies show that a typical download of a file can take from minutes up to several hours depending on the level of network congestion or the service capacity fluctuation. In this paper, we consider two major factors that have significant impact on average download time, namely, the spatial heterogeneity of service capacities in different source peers and the temporal fluctuation in service capacity of a single source peer. We point out that the common approach of analyzing the average download time based on average service capacity is fundamentally flawed. We rigorously prove that both spatial heterogeneity and temporal correlations in service capacity increase the average download time in P2P networks and then analyze a simple, distributed algorithm to effectively remove these negative factors, thus minimizing the average download time. We show through analysis and simulations that it outperforms most of other algorithms currently used in practice under various network configurations
Project Overview
 This project removes the problems faced by streaming media without packet loss. Many enterprises use streaming video to convey news clips or corporate communications to their employees or clients. However, since the networks are based on packet-switching technology which is designed for data communication, achieving efficient distribution of streaming video and multimedia to a wide heterogeneous user population poses many technical challenges.

 Besides the standard video-over-IP issues, enterprises have additional requirements due to the need to control a shared infrastructure where business media comes first. In addition to challenges in terms of video coding and networking, one of the key requirements for enterprise streaming is clearly posed in terms of security. The video distribution has to be efficient and to adapt to the clients requirements, while at the same time offering a high degree of security.

1.1 SYNOPSIS:

 The main aim of this project to remove the problems faced by the High file downloading time ,the server sends a file to clients with secure and with less packet loss. file can be transfer with secure and with less packet loss.

 The main motivation of the Files System is to remove the streaming media faced problems. Such as network infrastructure that can not accommodate a secure and real time nature of streaming content, components can not adapt to varying network conditions and no standardized streaming formats. The securing and authenticating is an important field in the streaming media. The main motivation is to provide the authenticated client only have the rights to access the file , the server adapts a stream even though the network conditions automatically changed , adapts a stream to available bandwidth and without packet loss it sends the voluminous streams to client
1.2 SCOPE OF THE PROJECT:

 The system is effectively used in out sourcing service(BPO), Network in LAN connection. Data consists of text, documents, image are transmitted through network, which increases the packet transmission that led to increases the traffic. So traffic is nothing but increasing the packet information that information should be analysis and displays it graphically. It is a network based project and it reduces the network traffic which transfer the speed.
 Let us take an example the Network is work based on the client server communication. Client means placing a request (i.e.) client is a running application programs on a local site that requests service from a running application program on a remote site. Server means a program that can provide services to others program.

 Network consists of two types of connections.

 They are Physical connection and Logical connection.

1. Physical connection:

 Whenever the computer are interconnect physically (i.e.) connection through cables, cards is called physical connection.

2. Logical connection:

 Even though the computer are interconnect, the user have to log on to the computer, which is called logical connection.

 In this logical connection, whenever client server communication takes place, traffic between client server will be increased.

1.3 PROJECT FEATURE :
· Secured data transfer of media files.

· Only Authenticated client can access the transferred media files.

· There is no data loss during transmission so at receiving end the media file can view with maximum quality.

· It is possible to transfer this media file to more than one destination securely at the same time.

· Having enough CPU power and bus bandwidth to support the required data rates.

 SYSTEM ANALYSIS
2. SYSTEM STUDY

2.1 EXISTING SYSTEM:

CLIENT - SERVER FILE SHARING

Content distribution is a centralized one, where the content is distributed from the centralized server to all clients requesting the document.

Clients send request to the centralized server for downloading the file. Server accepts the request and sends the file as response to the request.In most client-server setups, the server is a dedicated computer whose entire purpose is to distribute files.

DRAWBACKS OF EXISTING SYSTEM

· Scalability problem arises when multi requests arises at a single time.

· Servers need heavy processing power

· Downloading takes hours when clients increases

· Requires heavy storage in case of multimedia content

PROPOSED SYSTEM
Peer-to-peer content distribution provides more resilience and higher availability through wide-scale replication of content at large numbers of peers. A P2P content distribution community is a collection of intermittently-connected nodes with each node contributing storage, content and bandwidth to the rest of the community

The peer-to-peer file sharing networks had a centralized server system. This system controls traffic amongst the users. The servers store directories of the shared files of the users and are updated when a user logs on. In the centralized peer-to-peer model, a user would send a search to the centralized server of what they were looking for. The server then sends back a list of peers that have the data and facilitates the connection and download. The Server-Client system is quick and efficient because the central directory is constantly being updated and all users had to be registered to use the program.

.
2.2 FEASIBILITY STUDY

 All projects are feasible given unlimited resources and infinite time. It is both necessary and prudent to evaluate the feasibility of the project at the earliest possible time. Feasibility and risk analysis is related in many ways. If project risk is great , the feasibility listed below is equally important.

 The following feasibility techniques has been used in this project

· Operational Feasibility

· Technical Feasibility

· Economic Feasibility

Operational Feasibility:

 Proposed system is beneficial since it turned into information system analyzing the traffic that will meet the organizations operating requirements.

IN security, the file is transferred to the destination and the acknowledgement is given to the server. Bulk of data transfer is sent without traffic.

Technical Feasibility:

 Technical feasibility centers on the existing computer system (hardware , software, etc..) and to what extent it can support the proposed addition. For example, if the current computer is operating at 80% capacity. This involves, additional hardware (RAM and PROCESSOR) will increase the speed of the process. In software, Open Source language that is JAVA and is used. We can also use in Linux operating system.

 The technical requirement for this project are Java tool kit and Swing component as software and normal hardware configuration is enough , so the system is more feasible on this criteria.

 Economic Feasibility:

 Economic feasibility is the most frequently used method for evaluating the effectiveness of a candidate system. More commonly known as cost / benefit analysis, the procedure is to determine the benefits and saving that are expected from a candidate and compare them with the costs. If the benefits outweigh cost. Then the decision is made to design and implement the system. Otherwise drop the system.

 This system has been implemented such that it can be used to analysis the traffic. So it does not requires any extra equipment or hardware to implement. So it is economically feasible to use.

2.3 OBJECTIVES :

· P2P networks provide resources, including bandwidth, storage space, and computing power. This is not true of a client-server architecture with a fixed set of servers, in which adding more clients could mean slower data transfer for all users.

· The distributed nature of P2P networks also increases robustness in case of failures by replicating data over multiple peers

.

SYSTEM

 CONFIGURATION
3.1 HARDWARE SPECIFICATION:
 Processor
: Pentium-IV
 Speed

: 1.1GHz

 RAM

: 512MB

 Hard Disk
: 40GB

 General : KeyBoard, Monitor , Mouse

3.2 SOFTWARE SPECIFICATION:

 Operating System : Windows XP

 Software : JAVA (JDK 1.5.0)

 Protocol : UDP

ABOUT THE SOFTWARE

4. LANGUAGE DESCRIPTION

 The inventors are java wanted to design a language, which could offer solution to some of the problems encountered in modern programming. They wanted the language to be reliable, portable and distributed but also simple, compact and interactive. Sun Microsystems officially describes java with following attributes:

· Compile and interpreter

· Platform independent and portable

· Object-oriented

· Distributed

· Familiar ,simple and small

· Multithreaded and interactive

· High performance

· Dynamic and extensible

Although the above appears to be a list of buzzwords, they apply describe the full potential of language. These features have made java the first application language of the world wide web. Java will also become the primer language for general-purpose stand-alone applications.

Compile and Interpreted:

 Usually a computer language either compiled or interpreted. Java combines both the approaches for making java a two-stage system. First, Java compiler translates source code into what is known as byte code instructions. Byte codes are not machine instructions is therefore , in the second stage, java interpreter generates machine code that can be directly executed by a machine is running the Java program. We can thus say that a Java is both compiled and an interpreted language.
Platform-Independent and Portable:

 The most significant contribution of Java over other languages is its portability. Java programs can be easily moved from one computer system to another, anywhere anytime. Changes and upgrades in operating systems, processors and system resources will not force any changes in Java programs. This is the reason why Java has become a popular language for programming on Internet, which interconnects different kinds of systems worldwide.We can download a Java applet from a remote computer on to our local system via Internet an extension of the user’s basic system providing practically unlimited number of accessible applets and applications.

 Java ensures the portability in two ways. First Java compiler generate byte code instructions that can be implemented on any machine. Secondly, the size of the primitive data types are machine-independent.

Object-Oriented:

 Java is a true object oriented language. Almost everything in Java is an Object. All program code and data reside within objects and classes. Java comes with an extensive set of classes, arranged in packages, that we can use in our programs by inheritance. The object model in Java is simple and easy to extend.

Robust and Secure:

 Java is a robust language. It provides many safeguards to ensure reliable code. It has strict compiler time and runtime checking for data types. It is designed as a garbage-collected language relieving the programmers virtually all memory management problems. Java also incorporates the concept of exception handling , which captured the series errors and eliminates any risk of crashing the system.

 Security becomes an important issue for a language that is used for programming in internet. Threat of virus and abuse of resource is everything. Java systems not only verify all memory access but also ensure no virus are communicated with an applet. The absence of pointer in java ensures that programs cannot gain access to memory location without proper authorization.

Distributed:

 Java is designed as a distributed language for creating applications on networks.It has the ability to share both data programs. Java applications can open and access remote objects on Internet as easily as they can in a local system.This enables multiple programmers at multiple remote locations to collaborate and work together on a single project.

Simple Small and Familiar:

 Java is a small and simple language. Many features of C and C++ that are either redundant or sources of unreliable code are not part of Java. For example,

 Java does not use pointers,preprocessor header files, go to statement and many others.It also eliminates operator overloading and multiple inheritance.

 Familiarity is another striking feature of Java .To make the language look familiar to the existing programmers, it was modeled on C and C++ and therefore, Java “looks like C and C++” code.In fact, Java is a simplified version of C++.

Mutithreading and Interactive:

 Multi threaded means handling multiple tasks simultaneously. Java supports multi threading programs. This means that we need not wait for the application to finish one task before beginning another. For example. we can listen to an audio clip time download an applet from distance computer. The feature greatly improves the interactive performance of graphical applications. The Java runtime comes with tools that support multi process synchronization and construct smoothly running interactive system.

High Performance:

 Java performance is impressive for an interpreted language. Mainly due to the use of intermediate byte code. According to Sun, java speed is comparable to the native C/C++. Java architecture is also designed to reduce overhead during runtime. Further, the incorporation of multi threading enhances the overall execution speed of overall programs.

Dynamic and Extensible:

 Java is a dynamic language . Java is capable of dynamically linking in new class libraries methods and objects. Java can also determine the type of class through a query, making it possible to either dynamically link or abort the program , depending on the response.

 Java programs support functions written in other languages such as C and C++.These functions are known as native methods.This facility enables

The programmers to use the efficient functions available in these languages.Native methods are linked dynamically at runtime.

SWING:

 Swing is a set of classes that provides more powerful and flexible components than are possible with the AWT. In addition to that the familiar components such as buttons, check box and labels swings supplies several exciting additions including tabbed panes, scroll panes, trees and tables. Even familiar components such as buttons have more capabilities in swing. For example a button may have both an image and text string associated with it. Also the image can be changed as the state of button changes. Unlike AWT components swing components are not implemented by platform specific code instead they are return entirely in JAVA and, therefore , are platform- independent. The term lightweight is used to describe such elements. The number of classes and interfaces in the swing packages is substantial.

 The swing component classes are
 SWING COMPONENT CLASSES

	 Class
	 Description

	 Abstract Button
	 Abstract super class for Swing

 Buttons

	 Button Group
	 Encapsulates a mutually exclusive

 Set of Buttons

	 Image Icon
	 Encapsulates an Icon

	 JApplet
	 The swing version of Applet

	 JButton
	The Swing Push Button class

	 JCheckBox
	The swing CheckBox class

	 JComboBox
	 Encapsulates a combobox

	 JLabel
	The swing version of a Label

	JRadioButton
	The swing version of a RadioButton

	JScrollPane
	 Encapsulates a scrollable window

	JTabbedPane
	 Encapsulates a Tabbed window

	JTable
	 Encapsulates a Table-based control

	JTextField
	 The swing version of a text-field

SYSTEM DESIGN AND DESCRIPTION
5. SYSTEM DESIGN
5.1 DESCRIPTION OF A SYSTEM:

 Network:

 A Network is a set of devices (often referred to as nodes) connected by media links. A node can be a computer ,Printer, or any other device capable of sending and/or receiving data generated by other nodes on thenetwork. The links connecting the devices are often called communication Channels.

Distributed Processing:

 Network use distributed Processing , in which a task is divided among multiple computers.

 Advantages of distributed processing included the following.

· Security/encapsulation.

· Distributed databases.

· Faster problem solving.

· Security through redundancy.

OSI Model :

 An ISO standard that covers all aspects of network communications is Open Systems Interconnection model. The Open systems Interconnection model is a layered framework for the design of network system that allows for communication across all type of computer systems. It consists of seven ordered layers , each of which defines a segment of the process of moving information across a network.

The seven layers are:

· Physical Layer

· Data Link Layer

· Network Layer

· Transport Layer

· Session Layer

· Presentation Layer

· Application Layer

Functions of the Layers :

Physical Layer:

 The physical layer coordinates the functions required to transmit a bit stream over a physical medium. It deals with the mechanical and electrical specifications of the interface and transmission medium. It also defines the procedures and functions that physical devices and interfaces have to perform for transmission to occur.

Data Link Layer:

 The data link layer transforms the physical layer, a raw transmission facility, to a reliable link and is responsible for node-to-node delivery . It makes the physical layer appear error free to the network layer. The data link

layer divides the stream of bits received from the network layer into manageable data units called frames. The data link layer adds a header to the frame to define the physical address of the sender or receiver of the frame.

Network Layer:

 The network layer is responsible for the source-to-destination delivery of a packet possibly across multiple networks. The network layer ensures that each packet gets from its point of origin to its final destination.

The network layer includes the logical addresses of the sender and receiver.

Transport Layer:

 The transport layer is responsible for source –to-destination delivery of the entire message. The network layer oversees end-end delivery of individual packets; it does not recognize any relationship between those packets . It treats each one independently. The transport layer creates a connection between the two end ports . A connection is a single logical path between the source and destination that is associated with all packets in a message . In this layer the message is divided into transmittable segment containing a sequence number.

Session Layer:

 The Session layer is the network dialog controller. It establishes, maintains, and synchronizes the interaction between communicating systems. The session layer allows a process to add checkpoints into a stream of data.

Presentation Layer:

 The Presentation layer is concerned with the syntax and semantics of the information exchange between two systems. The processes in two systems are usually exchanging information in the form of character strings, numbers and so on. The information should be changed to bit streams before being transmitted. The presentation layer is responsible for interoperability between these different encoding method. The presentation layer at the sender changes the information from its sender-dependent format into a common format.

Application Layer:

 The Application layer enables the user, whether human or software, to access the network. A network virtual terminal is a software version of a physical terminal and allows a user to log on to a remote host.

 A client is defined as a requester of services and a server is defined as the provider of services. A single machine can be both a client and a server depending on the software configuration.

 NETWORK MANAGEMENT

[image: image1.png]& 3
Engine ﬂMaE;

<« [e»

é, é é Network

o= (e

2 =

5.1.1 Client/Server Architecture :
 In this architecture we describe how the secure streaming technique is used in the end-to-end ARMS system. The main components of the architecture are illustrated . he components consist of the broadcaster which is the source of encrypted content, packaged for adaptation, the Video Store to store the possibly multiply encoded content , the Streaming Server which uses a simple and efficient stream-switching technique for adaptation, and finally the playback clients. The figure illustrates a simple configuration with one instance of each of the main components. In large scale deployments , the streaming servers can be networked for distribution and there can be multiple Broadcasters and Video Stores.

 Client/Server Architecture

 [image: image2.png]REQUEST

Comr >, Comam_

RESPONSE

Broadcaster:

 The broadcaster passes raw audio and video input through a bank of MPEG-4 encoders to produce encoded streams in multiple resolutions. These are then passed through an encryption module which keeps all the necessary streaming headers in the clear and only encrypts the content in secure containers.

Server:

 The Streaming Server receives data either from the broadcaster or form the video store. The encryption of the media data is transparent to the server since it only uses information in the hint-tracks or packet headers to stream the data. Data is received from the broadcaster in the form of RTP packets over one of many different transports: (i) multiplexed in one TCP channel in the RTSP-interleave format,(ii) over multiple independent UDP unicast channels or (iii) over multiple independent UDP multicast channels. In each case, a unique channel number identifies packets belonging to a particular encoding. The server measures the available bandwidth to each of its clients and forwards the most suitable channel to the client. For TCP – based client connections, TCP-backpressure is used to estimate the available rate and for RTP/UDP connections, RTCP feedback is used to estimate the TCP-friendly rate. If the streamed bandwidth is well below the rate requested by the client, then the server periodically attempts to increase the bandwidth to the client by probing it with duplicate packets.

Client:

 The client obtains the SDP describing the media and the encryption keys from a Key Management system . The Video charger server is capable of streaming MPEG-4 to any standards complaint client such as Apple Quick Time 6,Philips player, Cisco player and the IBM player. Among these, at the time of this writing, only the IBM player implements the ISMA decryption standard.

5.1.2 TWO- TIER ARCHITECTURE:
 With two tier client/server architectures, the user system interface is usually located in the user’s desktop environment and the database management services are usually in a server that is a more powerful machine that services many clients. Processing management is slit between the user system interface environment and the database management server environment.

 The two-tier client/server architecture is a good solution for distributed computing when work groups are defined as a dozen to 100 people interacting on a LAN simultaneously.

 Consider the 100 people are interacted in the LAN Network. While they communicating with each other data transmission between them increases on that time the proposed system help to find out traffic and reroute the traffic into other paths.

MODULE DESCRIPTION:

 1.Parallel Downloading

2. Random chunk Based Switching

3. Random Periodic Switching

Parallel Downloading

File is divided into k chunks of equal size and k simultaneous connections are used . Client downloads a file from k peers at a time. Each peer sends a chunk to the client.

Random chunk Based Downloading

File is divided into many chunks and user downloads chunks sequentially one at time. Whenever a user completes a chunk from its current source peer, the user randomly selects a new source peer and connects to it to retreive a new chunk. Switching source peers based on chunk can reduce average download time.

Random Periodic Switching

File is divided into many chunks and user downloads chunks sequentially one at time. The client randomly chooses the source peer at each time slot and download the chunks from each peer in the given time slots.

 .
5.2 DATA FLOW DIAGRAM:

[image: image3]

[image: image4]
5.3 PROCESS DIAGRAM:

 USE CASE DIAGRAM:

[image: image5]
 COLLABORATION DIAGRAM:

[image: image6]
Sequence Diagram

[image: image7.emf]Server Peer1 Peer2 Peer3 Peer4 Client

Packet

Packet

Packet

Packet

Response file

Request for File

Class Diagram
[image: image8.emf]Server

Select File

Transfer()

Peer1

File Upload

File Download

PeerView()

Peer2

File Upload

File Download

PeerView()

Peer3

File Upload

File Download

PeerView()

Peer4

File Upload

File Download

PeerView()

Client

Show Files

Download()

ACTIVITYDIAGRAM
[image: image9]
Component Diagram

[image: image10.emf] Server

 Peer1

 Peer2 Peer3 Peer4

 Client

Deployment Diagram

[image: image11.emf]Server

Select

File

File

Upload

Peer1

Peer2

Peer3

Peer4

Client

Show

File LIst

File

Download

5.3 SCREEN DESIGN:

 [image: image12.png]FTP SERVER

File

Select Distribution Type

Distribution Type

Periodic

UPDATE

FILE UPLOADING

g SERVER

PEER 1

PEER2

PEER3

PEER 4

[image: image13.png]SELECT FILE

Files Available

MIXER MIGRATION. doc:
MIXER MIGRATION.doc:

MIXER SPLITTING MERGING.doc.
Broad Casting Mediia File.doc

DOWNLOAD

CcLOSE

[image: image14.png]FTP SERVER

Select Distribution Type

Distribution Type [Periodic 2 UPDATE

< FILE UPLOADING

FILE NAME

TRANSFER

PEER 1

g PEER?
g SERVER

g PEERS

g PEERY

[image: image15.png]Luromwn: e

FILE UPLOADING

FILE NAME

TRANSFER

i

«loln|«

[omn- Iy & ELT

aoshapes- \ N OB 4 @[>-2-A -

[Page 5 sec 1 S I ni Gz [ie [br b | G |

[image: image16.png]FILE UPLOAD

Distribution Type

[image: image17.png]FILE UPLOAD

Distribution Type

[image: image18.png]FILE UPLOAD

Distribution Type

[image: image19.png]' start.

% My Computer

Casting
Casting
Casting
Casting

Casting
Casting
Casting
Casting

Casting
Casting
Casting
Casting

7 2 IntemetExplorer +

File13.doc
Filei4.doc
File15.doc
File16.doc

File2.doc
File3.doc
File4.doc
File5.doc

File6.doc
File?.doc
File8 doc
File9.doc

2 Microsaft Ward .

% 5 Windows Comma

I 5 Java(Th) 2 Plaf.

1) o

[image: image20.png]Cast:
Cast:

Cast: File15.doc
Casting Media Filel6 doc

Cast:
Cast:

Cast: File4.doc
Casting Media File5.doc

Cast:
Cast:

Cast: File8 doc
Casting Media Filed.doo

GOMPLETED,

Uploaded completed Successfully

oK

7 start % My Computer 7 2 Intemet Explorer + | 7 2 Mirosoft Word ... = o< 5 windows Comma... - | MBS Java(TM) 2Pt~ | La Y, 10:48.AM

 TESTING

 AND

 IMPLEMENTATION
6 .TESTING AND IMPLEMENTATION

6.1 TESTING:

· Testing is a process of executing a program with a intent of finding an error.

· Testing presents an interesting anomaly for the software engineering.

· The goal of the software testing is to convince system developer and customers that the software is good enough for operational use. Testing is a process intended to build confidence in the software.

· Testing is a set of activities that can be planned in advance and conducted

 systematically.

· Testing is a set of activities that can be planned in advance and conducted

 systematically.

· Software testing is often referred to as verification & validation.

 TYPE OF TESTING:

 The various types of testing are

· White Box Testing

· Black Box Testing

· Alpha Testing

· Beta Testing

· Win Runner And Load Runner

· Load Runner

 WHITE BOX TESTING:
· It is also called as glass-box testing. It is a test case design method that uses the control structure of the procedural design to derive test cases.

· Using white box testing methods, the software engineer can derive test cases that

1. Guarantee that all independent parts within a module have been exercised at least once,

2. Exercise all logical decisions on their true and false sides.

 BLACK BOX TESTING:

· Its also called as behavioral testing . It focuses on the

functional requirements of the software.

· It is complementary approach that is likely to uncover a .

different class of errors than white box errors.

· A black box testing enables a software engineering to derive a
sets of input conditions that will fully exercise all functional
requirements for a program.

 ALPHA TESTING:

Alpha testing is the software prototype stage when the software is first able to run. It will not have all the intended functionality, but it will have core functions and will be able to accept inputs and generate outputs. An alpha test usually takes place in the developer's offices on a separate system.

 BETA TESTING:

The beta test is a “ live “ application of the software in an environment that cannot be controlled by the developer. The beta test is conducted at one or more customer sites by the end user of the software.

WIN RUNNER & LOAD RUNNER:

We use Win Runner as a load testing tool operating at the GUI layer as it allows us to record and playback user actions from a vast variety of user applications as if a real user had manually executed those actions.
 LOAD RUNNER TESTING:

With Load Runner , you can Obtain an accurate picture of end-to-end system performance. Verify that new or upgraded applications meet specified performance requirements.

6.1.1 TESTING USED IN THIS PROJECT:

6.1.2 SYSTEM TESTING :

 Testing of the debugging programs is one of the most critical aspects of the computer programming triggers, without programs that works, the system would never produce the output for which it was designed. Testing is best performed when user development are asked to assist in identifying all errors and bugs. The sample data are used for testing . It is not quantity but quality of the data used the matters of testing. Testing is aimed at ensuring that the system was accurately an efficiently before live operation commands.

6.1.3 UNIT TESTING:

 In this testing we test each module individually and integrate with the overall system. Unit testing focuses verification efforts on the smallest unit of software design in the module. This is also known as module testing. The module of the system is tested separately . This testing is carried out during programming stage itself . In this testing step each module is found to working satisfactorily as regard to the expected output from the module. There are some validation checks for fields also. It is very easy to find error debut in the system.

TEST CASE 1

MODULE 1: (1.Parallel Downloading)

Input:

 client will request for a file.

Process:

 The server checks whether the file exist in a local disk and send to the

 peers

Output:

 Client receive the file .

MODULE 2: (2. Random chunk Based Switching)

Input:

 client will request for a file.

Process:

 The server checks whether the file exist in a local disk and send to the

 peers

Output:

 Client receive the file .

MODULE 3: (3. Random Periodic Switching)

Input:

 client will request for a file.

Process:

 The server checks whether the file exist in a local disk and send to the

 peers

Output:

 Client receive the file .

6.1.4 VALIDATION TESTING:
 At the culmination of the black box testing, software is completely assembled as a package, interfacing error have been uncovered and corrected and a final series of software tests. That is, validation tests begin, validation testing can be defined many ways but a simple definition is that validation succeeds when the software functions in manner that can be reasonably expected be the customer. After validation tests has been conducted one of the two possible conditions exists.

	TEST CASE NO
	EXPECTED OUTPUT
	OBTAINED OUTPUT
	 REMARKS

	 1.
	Displays File Size , Number Of packet,Transmission Time based on input data given.
	Displays File Size, Transmission Time but not reception time and frame latency.
	 nil

CONCLUSION

8.CONCLUSION:

 In this paper we have focused on the average time of each user in a P2P network. With the divesting usage of network resources by P2P application in the current Internet it is highly desirable to improve efficiency by reducing each users download time. In contrast to the commonly held practice focusing on the notion of average capacity. we have shown that both the spatial heterogeneity and the temporal coverage download time of the users in the network. Even when the average download time of the users in the network. even when the average capacity of the network remains the same we have compared several byte based schemes are not so effective in reducing the two negative factors that increase the average download time from negative factors based schemes .
5.4 SAMPLE CODING:

CLIENT:
package;

import java.io.*;

import java.net.*;

import pack.*;

import FileList.*;

import view.*;

/*Main class. browse and select the file to download*/

public class client

{

DatagramSocket socket;

DatagramPacket packet;

int port=1000;

byte []buffer;

FileList filelist;

static public String server_name;

static public String DistributionType;

downloader d;

/*the download() method is used to send the requested filename to the server fow downloading*/

public void download(String FileName)

{

try

{

buffer=new byte[1024];

buffer=FileName.getBytes();

packet=new DatagramPacket(buffer,buffer.length,InetAddress.getByName(server_name),1000);

System.out.println("Sending Request Packet");

socket.send(packet);

}

catch(Exception e)

{

System.out.println(e);

}

}

 /*The getfiles() method get the file list from the server and displays it to the client for requesting to download*/

public String[] getFiles()

{

try

{

FileReader fr=new FileReader("PROPERTYFILES/server_name.txt");

BufferedReader br=new BufferedReader(fr);

server_name=br.readLine();

fr.close();

buffer=new byte[1024];

filelist=new FileList();

socket=new DatagramSocket();

buffer="Request".getBytes();

packet=new DatagramPacket(buffer,buffer.length,InetAddress.getByName(server_name),9999);

socket.send(packet);

buffer=new byte[1024*10];

packet=new DatagramPacket(buffer,buffer.length);

socket.receive(packet);

File file=new File("temporary/FileName");

FileOutputStream fos=new FileOutputStream(file);

fos.write(buffer);

fos.close();

FileInputStream fis=new FileInputStream(file);

ObjectInputStream ois=new ObjectInputStream(fis);

filelist=(FileList)ois.readObject();

String [] fileName=filelist.getfilename();

DistributionType=filelist.getdis_type();

fis.close();

file.delete();

for(int i=0;i<fileName.length;i++)

System.out.println(fileName[i]);

socket=new DatagramSocket(5065);

downloader.socket=new DatagramSocket(5067);

d=new downloader();

return fileName;

}

catch(Exception e)

{

System.out.println(e);

}

return null;

}

}
peer1

package peer;

import java.io.*;

import java.net.*;

import java.util.*;

import pack.*;

import command.*;

import rview.*;

/*which is used to upload the files to the client*/

public class sendpeers implements Runnable

{

Thread t;

static public String peerslist[];

int start=0,end;

pack hm;

FileOutputStream fos;

ObjectOutputStream oos;

byte buffer[];

FileInputStream fis;

ObjectInputStream ois;

File file;

int port =1500;

DatagramSocket socket;

DatagramPacket packet;

command cmd;

String fname;

InetAddress cip;

int tport;

Vector plist,prtlist;

int cpeer,time=5;

String distype;

String extension;

static public boolean uploading=false;

static public String text="";

public sendpeers()

{

try

{

t=new Thread(this);

socket=new DatagramSocket(3000);

plist=new Vector();

prtlist=new Vector();

t.start();

}

catch(Exception e)

{

System.out.println(e);

}

}

public void run()

{

while(true)

{

try

{

/*receives the client request object send by the server. then deserialize the received request packet to get the client ip, port, filename, distribution type*/

buffer=new byte[1024];

packet=
new DatagramPacket(buffer,buffer.length);

System.out.println("Waiting for client request");

socket.receive(packet);

System.out.println("Received Client Request");

fos= new FileOutputStream(""+1);

fos.write(buffer);

fos.close();

fis=new FileInputStream(""+1);

ois=new ObjectInputStream(fis);

cmd=new command();

cmd=(command)ois.readObject();

fname=cmd.getfilename();

System.out.println("Filename "+fname);

cip=cmd.getclientIP();

System.out.println("Client IP "+cip);

tport=cmd.getclientport();

System.out.println("Client Port "+tport);

plist=cmd.getpeerslist();

prtlist=cmd.getportlist();

cpeer=cmd.getcur_peer();

System.out.println("Current Peer "+cpeer);

distype=cmd.getdis_type();

System.out.println("Distribution Type"+distype);

fis.close();

File delete_file=new File(""+1);

delete_file.delete();

System.out.println("Hello");

String []filenames=new File("uploadedfiles/"+fname+"/").list();

end=filenames.length;

sendfile(filenames);

}

catch(Exception e)

{

System.out.println(e);

}

}

}

/*sendfile() method is to send the corresponding file packets to the client*/

public int sendfile(String []filenames)

{

try

{

String addr=cip.getHostName();

PeerView.DisType.setText("Distribution Type "+ distype);

text="UpLoading File "+ fname+ " to " + " Client" +addr;

for(int k=start;k<end;k++)

{

fis=new FileInputStream("uploadedfiles/"+fname+"/"+filenames[k]);

System.out.println("File Sent "+filenames[k]);

buffer=new byte[fis.available()];

fis.read(buffer);

packet=new DatagramPacket(buffer,buffer.length,cip,tport);

socket.send(packet);

System.out.println("Sending File " +k);

fis.close();

if(distype.equalsIgnoreCase("parallel"))

Thread.sleep(1500);

else

Thread.sleep(500);

start++;

if(uploading)

uploading=false;

else

uploading=true;

PeerView.jsourcePanel2.repaint();

if(start%time==0&&distype.equalsIgnoreCase("periodic"))

break;

}

uploading=false;

text="";

PeerView.jsourcePanel2.repaint();

System.out.println("START "+start);

System.out.println("End "+end);

/* if distribution type is parallel just send the packets to the client and stay back for further request from clients*/

if(distype.equalsIgnoreCase("parallel")&&start==end)

{

start=0;

System.out.println("Inside parallel");

}

/* if distribution type is chunk based then send the packets to the client and send the request packet received from the server to the next corresponding peer*/

if(distype.equalsIgnoreCase("chunk")&&start==end)

{

System.out.println("Inside Chunk");

start=0;

plist.remove(0);

prtlist.remove(0);

if(plist.size()>0)

{

System.out.println("Sending Port" +prtlist.get(0));

cmd=new command();

cmd.putfilename(fname);

cmd.putclientIP(cip);

cmd.putclientport(tport);

cmd.putpeerslist(plist);

cmd.putportlist(prtlist);

cmd.putcur_peer(cpeer);

cmd.putdis_type(distype);

fos=new FileOutputStream("clientinf");

oos=new ObjectOutputStream(fos);

oos.writeObject(cmd);

oos.flush();

fos.flush();

oos.close();

fos.close();

fis=new FileInputStream("clientinf");

buffer=new byte[fis.available()];

fis.read(buffer);

fis.close();

File delete_file=new File("clientinf");

delete_file.delete();

String name=plist.get(0).toString();

int port=Integer.parseInt(prtlist.get(0).toString());

packet=new DatagramPacket(buffer,buffer.length,InetAddress.getByName(name),port);

socket.send(packet);

}

}

/* if distribution type is periodic then send the packets to the client for certain timing and send the request packet received from the server to the next corresponding peer*/

if(distype.equalsIgnoreCase("periodic"))

{

int no=plist.size();

System.out.println("Inside periodic "+no);

if(no>1)

{

if(start==end)

{

start=0;

plist.remove(cpeer);

prtlist.remove(cpeer);

cpeer=0;

System.out.println("Current Peer "+cpeer);

//return 0;

}

else

{

no=plist.size();

System.out.println("Inside periodic "+no);

cpeer=(cpeer+1)%no;

System.out.println("Current Peer "+cpeer);

}

cmd=new command();

cmd.putfilename(fname);

cmd.putclientIP(cip);

cmd.putclientport(tport);

cmd.putpeerslist(plist);

cmd.putportlist(prtlist);

cmd.putcur_peer(cpeer);

cmd.putdis_type(distype);

fos=new FileOutputStream("clientinf");

oos=new ObjectOutputStream(fos);

oos.writeObject(cmd);

oos.flush();

fos.flush();

oos.close();

fos.close();

fis=new FileInputStream("clientinf");

buffer=new byte[fis.available()];

fis.read(buffer);

fis.close();

File delete_file=new File("clientinf");

delete_file.delete();

String name=plist.get(cpeer).toString();

int port=Integer.parseInt(prtlist.get(cpeer).toString());

packet=new DatagramPacket(buffer,buffer.length,InetAddress.getByName(name),port);

socket.send(packet);

}

if(no==1)

{

if(start==end)

{

start=0;

//return 0;

}

else

sendfile(filenames);

}

}

}

catch(Exception e)

{

System.out.println(e);

}

return 0;

}

}
peer2

package peer;

import java.io.*;

import java.net.*;

import java.util.*;

import pack.*;

import command.*;

import rview.*;

/*which is used to upload the files to the client*/

public class sendpeers implements Runnable

{

Thread t;

static public String peerslist[];

int start=0,end;

pack hm;

FileOutputStream fos;

ObjectOutputStream oos;

byte buffer[];

FileInputStream fis;

ObjectInputStream ois;

File file;

int port =1500;

DatagramSocket socket;

DatagramPacket packet;

command cmd;

String fname;

InetAddress cip;

int tport;

Vector plist,prtlist;

int cpeer,time=5;

String distype;

String extension;

static public boolean uploading=false;

static public String text="";

public sendpeers()

{

try

{

t=new Thread(this);

socket=new DatagramSocket(3001);

plist=new Vector();

prtlist=new Vector();

t.start();

}

catch(Exception e)

{

System.out.println(e);

}

}

public void run()

{

while(true)

{

try

{

/*receives the client request object send by the server. then deserialize the received request packet to get the client ip, port, filename, distribution type*/

buffer=new byte[1024];

packet=
new DatagramPacket(buffer,buffer.length);

System.out.println("Waiting for client request");

socket.receive(packet);

System.out.println("Received Client Request");

fos= new FileOutputStream(""+1);

fos.write(buffer);

fos.close();

fis=new FileInputStream(""+1);

ois=new ObjectInputStream(fis);

cmd=new command();

cmd=(command)ois.readObject();

fname=cmd.getfilename();

System.out.println("Filename "+fname);

cip=cmd.getclientIP();

System.out.println("Client IP "+cip);

tport=cmd.getclientport();

System.out.println("Client Port "+tport);

plist=cmd.getpeerslist();

prtlist=cmd.getportlist();

cpeer=cmd.getcur_peer();

System.out.println("Current Peer "+cpeer);

distype=cmd.getdis_type();

System.out.println("Distribution Type"+distype);

fis.close();

File delete_file=new File(""+1);

delete_file.delete();

System.out.println("Hello");

String []filenames=new File("uploadedfiles/"+fname+"/").list();

end=filenames.length;

sendfile(filenames);

}

catch(Exception e)

{

System.out.println(e);

}

}

}

/*sendfile() method is to send the corresponding file packets to the client*/

public int sendfile(String []filenames)

{

try

{

String addr=cip.getHostName();

PeerView.DisType.setText("Distribution Type "+ distype);

text="UpLoading File "+ fname+ " to " + " Client" +addr;

for(int k=start;k<end;k++)

{

fis=new FileInputStream("uploadedfiles/"+fname+"/"+filenames[k]);

System.out.println("File Sent "+filenames[k]);

buffer=new byte[fis.available()];

fis.read(buffer);

packet=new DatagramPacket(buffer,buffer.length,cip,tport);

socket.send(packet);

System.out.println("Sending File " +k);

fis.close();

if(distype.equalsIgnoreCase("parallel"))

Thread.sleep(1500);

else

Thread.sleep(500);

start++;

if(uploading)

uploading=false;

else

uploading=true;

PeerView.jsourcePanel2.repaint();

if(start%time==0&&distype.equalsIgnoreCase("periodic"))

break;

}

uploading=false;

text="";

PeerView.jsourcePanel2.repaint();

System.out.println("START "+start);

System.out.println("End "+end);

/* if distribution type is parallel just send the packets to the client and stay back for further request from clients*/

if(distype.equalsIgnoreCase("parallel")&&start==end)

{

start=0;

System.out.println("Inside parallel");

}

/* if distribution type is chunk based then send the packets to the client and send the request packet received from the server to the next corresponding peer*/

if(distype.equalsIgnoreCase("chunk")&&start==end)

{

System.out.println("Inside Chunk");

start=0;

plist.remove(0);

prtlist.remove(0);

if(plist.size()>0)

{

System.out.println("Sending Port" +prtlist.get(0));

cmd=new command();

cmd.putfilename(fname);

cmd.putclientIP(cip);

cmd.putclientport(tport);

cmd.putpeerslist(plist);

cmd.putportlist(prtlist);

cmd.putcur_peer(cpeer);

cmd.putdis_type(distype);

fos=new FileOutputStream("clientinf");

oos=new ObjectOutputStream(fos);

oos.writeObject(cmd);

oos.flush();

fos.flush();

oos.close();

fos.close();

fis=new FileInputStream("clientinf");

buffer=new byte[fis.available()];

fis.read(buffer);

fis.close();

File delete_file=new File("clientinf");

delete_file.delete();

String name=plist.get(0).toString();

int port=Integer.parseInt(prtlist.get(0).toString());

packet=new DatagramPacket(buffer,buffer.length,InetAddress.getByName(name),port);

socket.send(packet);

}

}

/* if distribution type is periodic then send the packets to the client for certain timing and send the request packet received from the server to the next corresponding peer*/

if(distype.equalsIgnoreCase("periodic"))

{

int no=plist.size();

System.out.println("Inside periodic "+no);

if(no>1)

{

if(start==end)

{

start=0;

plist.remove(cpeer);

prtlist.remove(cpeer);

cpeer=0;

System.out.println("Current Peer "+cpeer);

//return 0;

}

else

{

no=plist.size();

System.out.println("Inside periodic "+no);

cpeer=(cpeer+1)%no;

System.out.println("Current Peer "+cpeer);

}

cmd=new command();

cmd.putfilename(fname);

cmd.putclientIP(cip);

cmd.putclientport(tport);

cmd.putpeerslist(plist);

cmd.putportlist(prtlist);

cmd.putcur_peer(cpeer);

cmd.putdis_type(distype);

fos=new FileOutputStream("clientinf");

oos=new ObjectOutputStream(fos);

oos.writeObject(cmd);

oos.flush();

fos.flush();

oos.close();

fos.close();

fis=new FileInputStream("clientinf");

buffer=new byte[fis.available()];

fis.read(buffer);

fis.close();

File delete_file=new File("clientinf");

delete_file.delete();

String name=plist.get(cpeer).toString();

int port=Integer.parseInt(prtlist.get(cpeer).toString());

packet=new DatagramPacket(buffer,buffer.length,InetAddress.getByName(name),port);

socket.send(packet);

}

if(no==1)

{

if(start==end)

{

start=0;

//return 0;

}

else

sendfile(filenames);

}

}

}

catch(Exception e)

{

System.out.println(e);

}

return 0;

}

}

peer3

package peer;

import java.io.*;

import java.net.*;

import pack.*;

import rview.*;

/* class gives the implementation for the downloading packets from the server*/

public class receivepeer implements Runnable

{

Thread t;

private DatagramSocket dsock;

private DatagramPacket dpack;

byte []buffer=new byte[1024*3];

FileInputStream fis;

FileOutputStream fos;

pack hm;

ObjectInputStream ois;

ObjectOutputStream oos;

String fname;

File deletefile;

int tot;

static public boolean downloading=false;

static public String text="";

public receivepeer()

{

try

{

t=new Thread(this);

dsock=new DatagramSocket(2504);

hm=new pack();

t.start();

}

catch(Exception e)

{

System.out.println(e);

}

}

public void run()

{

while(true)

{

try

{

/*receiveing the initial packet which contains the filename, number of files,extension of the file*/

buffer=new byte[1024*3];

dpack=new DatagramPacket(buffer,buffer.length);

dsock.receive(dpack);

System.out.println("REceived Initial Packets");

 fos= new FileOutputStream(""+1);

fos.write(buffer);

fos.close();

fis=new FileInputStream(""+1);

ois=new ObjectInputStream(fis);

hm=(pack)ois.readObject();

fis.close();

deletefile=new File(""+1);

deletefile.delete();

fname=hm.getFileName();

String extension=hm.getExtension();

tot=hm.getNumPackets();

//receivepackets(fname,tot,extension);

String addr=dpack.getAddress().getHostName();

text="DownLoading File "+ fname+ extension+ " from " + " Server " +addr;

for(int i=1;i<=tot;i++)

{

buffer=new byte[1024*3];

dpack=new DatagramPacket(buffer,buffer.length);

dsock.receive(dpack);

String fileName = "uploadedfiles/" + File.separator;

fileName += fname+extension +File.separator;

new File(fileName).mkdir();

fos= new FileOutputStream(fileName+fname+i);

fos.write(buffer);

System.out.println("Received Packet No" +i);

fos.close();

if(downloading)

downloading=false;

else

downloading=true;

Thread.sleep(100);

PeerView.jsourcePanel1.repaint();

}

downloading=false;

text="";

PeerView.jsourcePanel1.repaint();

}

catch(Exception e)

{

System.out.println(e);

}

}

}

}

SERVER:

package MAINSERVER;

import java.io.*;

import java.net.*;

import java.util.*;

import VIEW.*;

import FILEUPLOADING.*;

import FILEDOWNLOADING.*;

/* This function is executed when server is started . It gets the peers name from properties file */

public class server

{

static public String peerslist[];

static public String DistributionType="parallel";

static public int numpeers;

static public Vector vlist,plist;

String str;

FileReader fr;

BufferedReader br;

public server()

{

int i=0;

try

{

peerslist=new String[10];

fr=new FileReader("PROPERTYFILE/peerslist.txt");

br=new BufferedReader(fr);

vlist=new Vector();

plist=new Vector();

while((str=br.readLine())!=null)

{

if(str.equalsIgnoreCase(""))

break;

else

{

peerslist[i]=str;

vlist.add(str);

i++;

}

}

numpeers=i;

System.out.println("Number of peers"+numpeers);

fr=new FileReader("PROPERTYFILE/portlist.txt");

br=new BufferedReader(fr);

for(int j=0;j<server.numpeers;j++)

{

str=br.readLine();

plist.add(str);

System.out.println(vlist.get(j));

System.out.println(plist.get(j));

}

for(int j=1;j<=server.numpeers;j++)

{

if(j==1)

MainFrame.peer1.setVisible(true);

if(j==2)

MainFrame.peer2.setVisible(true);

if(j==3)

MainFrame.peer3.setVisible(true);

if(j==4)

MainFrame.peer4.setVisible(true);

}

new SendFilesNames();

new receiverequest();

}

catch(Exception e)

{

System.out.println(e);

}

}

}
Bibilography

1
[1] Y. M. Chiu and D. Y. Eun, "Minimizing file download time over stochastic channels in peer-to-peer networks," in Proc. 40th Annu. Conf. Information Sciences and Systems (CISS), Princeton, NJ, Mar. 2006.

2
Dongyu Qiu , R. Srikant, Modeling and performance analysis of BitTorrent-like peer-to-peer networks, Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications, August 30-September 03, 2004, Portland, Oregon, USA
3
[3] X. Yang and G. de Veciana, "Service capacity of peer to peer networks," in Proc. IEEE INFOCOM, Mar. 2004, pp. 2242-2252.
4
Krishna P. Gummadi , Richard J. Dunn , Stefan Saroiu , Steven D. Gribble , Henry M. Levy , John Zahorjan, Measurement, modeling, and analysis of a peer-to-peer file-sharing workload, Proceedings of the nineteenth ACM symposium on Operating systems principles, October 19-22, 2003, Bolton Landing, NY, USA
5
[5] M. Adler, R. Kumar, K. Ross, D. Rubenstein, D. Turner, and D. D. Yao, "Optimal peer selection in a free-market peer-resource economy," in Proc. Workshop on Economics of Peer-to-Peer Systems (P2PEcon), Cambridge, MA, Jun. 2004.

6
[6] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T. Suel, and D. D. Yao, "Optimal peer selection for P2P downloading and streaming," in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 1538-1549.

7
[7] D. S. Bernstein, Z. Fang, and B. N. Levine, "Adaptive peer selection," in Proc. Int. Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, Feb. 2003.

SEND FILE

PACKETS

TO CLIENT

PEER 2

SEND REQUEST

FILENAME TO SERVER

 SEND REQUESTED FILE NAME

IF PACKETS SEND

SEND FILE PACKETS TO CLIENT

PEER 1

SERVER RECEIVES�REQUEST

IF

TIME SLOTS

EXCEEDS

SEND FILE PACKETS TO CLIENT

PEER 3

Request

Server

Packet merged

Client

 peer3

 Peer2

 Peer1

Authenticated

Login

Screening on Different Levels

Peer3

Client

Peer1

Peer2

Server

Peer2

Received files

Peer1

Peer3

packet

Login

Request file

12:

If Valid

packet

Merged packet

Response file

Request for files

packet

 Server

Client Request

Both the files are decrypted

Error

message

if Invalid

