A

PROJECT REPORT

ON

RETAIL BUSINESS ANALYTICAL PROCESS
Submitted in partial fulfillment of the Requirements

For the Award of the Degree

Master of Computer Applications

BY
 M.NAVEEN KUMAR (154-09-031)

Submitted to

OSMANIA UNIVERSITY
[image: image60.png]
 Under the Guidance of

 Mr. M. NARASIMHA
 H.O.D, M.C.A, SIIM
DEPARTMENT OF INFORMATICS

SRI INDU INSTITUTE OF MANAGEMENT

(Recognized by AICTE, New Delhi, Affiliated to O.U, Hyd)

Sheriguda, IBRAHIMPATNAM, R.R dist, A.P-501510.

2008- 2011

DECLARATION

 I M.NAVEEN KUMAR student of Sri Indu Institute of Management ,pursuing MCA here declare that the project work entitled “RETAIL BUSINESS ANALYTICAL PROCESS ” is an original work done a “ECLAT SOLUTIONS,HYDERABAD” by me availing the guidance of my project guide submitted to has been carried out by me alone under the guidance of Mr. NARSIMHA.
Place:
Date :
 (M.NAVEEN KUMAR)

 (154-09-031)

ACKNOWLEDGEMENT

 I would like to express immense gratitude and sincere thanks to Mr.Arun kumar for giving us the opportunity to do my project in ECLAT SOLUTIONS.

 I am extremely thankful to our beloved Chairman R.Venkat Rao, for having included us and encouraged us to annex the Golden opportunity of studying this course in this college.

 My sincere gratitude to the Principal Dr. G. Purushothama Chary for having given me chance to do the project in this esteemed organization and for giving guidance in all phases of the Project work.
 I am indeed indebted to the Mr. M. Narasimha, HOD, Department of Informatics, who provided us great advice, timely help, acknowledgement assistance and useful recommendations.

 I thank Mr.K.Ravi Kumar, Mr.K.Obul Babu, Mrs.Deepa.D, for providing me all kind of help in every aspect.

 Above all, I thank my parents and my friends for providing me all kind of help in successful completion of this project.

 Mr. M.NAVEEN KUMAR
 (154-09-031)
 ABSTRACT
 In this project ,mainly provides,a basic view how to analyze the Business & Requirements for Decession Making In a way to organize and analyze the business lies the basic requirements of the project, the term Data Warehousing mainly explains us basic idea useful for storing and analising the stored data.

 In this project titled RBAP (Retail Business Analytical Processing) mainly revals all the possible ways to explain all analytical works to adore for the needs of strategic business requirements mainly for sales,stock comparision and strategic planning for decession suport systems.

 The project mainly reveals all the needs for super markets, Departmental stores, and Customer analytical needs for the way to organize all the possible ways used for the means of better needs for Business Requirements.

CONTENTS

Chapter - I
 Retail Business Analytical Process (Problem Definition)
· Overview

· Existing System(Database)

· Benefits of Data warehouse over Database Maintainence.
Chapter – II

 Approach Adopted In Present Study

· Data warehouse system

· Data warehouse System Architectures

· About Oracle 8.0 and its features

Chapter – III

 System Analysis

· Structured System Analysis and Design

· Dataflow diagram concept

· Entity- Relationship diagram(E-R diagram).

· System Configuration
Chapter – IV
 System Design

· Functional Diagrams

· Dataflow Diagrams

· Data warehouse Design

Chapter – V
 Normalization

Chapter – VI
 Data Dictionary

Chapter – VII

 Screens and Reports

· Screens

· Reports

Chapter – VIIl

· Testing

· Implementation

· Bibliography

 COMPANY PROFILE

The company;-

 ECLAT SOLUTIONS was established in 2000.The activities of ECLAT SOLUTIONS Pvt. Ltd. Encompass consultancy, software development and trading. The company possesses experience and skills to design, develop, deploy and maintain to large software projects. Its strength lies in its project management including quality assurance, well-defined maintenance mechanism, and custom built tools and methodologies.

Software Development Products;-

 Our specialization is software development under the Windows environment, using the latest advanced development tools like Microsoft Visual Studio 97, Borland Delphi, C++ Builder and ORACLE Developer/Designer 2000. We have undertaken several database based projects involving Inventory Control, Production Control, Payment Control, Financial Control, Management Information Systems and various other Custom Software Projects.

• E-Business applications development

• Enterprise Architecture Design

• Replatforming legacy applications to J2EE and .net

• Product Co-Development• Customizations

• Application Maintenance

• Quality Assurance and Testing

• Technical Documentation

• Internationalization

• IT Consulting & Research

Consultancy:-

 We can identify the appropriate persons who can work along with the clients'

Engineers and technical persons for specific needs. Though Onsite Consultancy is relatively more expensive than Offsite Development, Onsite Consultancy enables

Continuous presence of the consultants at the client's workplace, for more effective process development and control.

RETAIL BUSINESS
ANALYTICAL PROCESS
(PROBLEM DEFINATION)

PROJECT OVERVIEW

The fundamental goal of this project is categorized as study of transaction database, requirement study of decision makers for business model, designing data warehouse, transforming and loading data from transactional databases and creating cubes for report generation.

The project will be consisting of a team of 2 professional at different level, mainly for the roles of study and analyze the existing source databases and to interact with decision makers for analyzing their business plans and decision making patterns and my role is that to design data warehouse, to define ETL (extract, transform & load) processes algorithm, to generate reports integration and testing and deployment of the project.

 The deliverables provided for this project are scope, objective, success factor & acceptance criteria document, functional requirement document, organization structure, process flow diagram, technical requirement document and phase wise planning & implementation document.

 For fulfilling the project deliverables we require the completed planning document, screen flow diagram, data warehouse design diagrams, transformation flow diagram, technical presentation of the project and OLAP reports design.

 The business scenario of Retail Business Analytical Process (RBAP) includes the details of the super market, retail business unit of consumer goods with domestic sales of Rs.35 lakhs which is currently using by the transactional processing system to drive many core business functions and looking to implement decision support system using data warehouse for forecasting, designing business model, cost and expenses analysis for better utilization of resource.

EXISTING SYSTEM

 Currently we are using the database system this project. The general theme behind a database is to handle information as an integrated whole. A data base is a collection of interrelated data stored with minimum redundancy to serve many users quickly and efficiently. The general objective is to make information access easy, quick, expensive and flexible for the user. In database designing several objectives are considered.

CONTROLLED REDUNDENCY:

 Redundancy data occupies space and, therefore is wasteful. If variations of the data are in different phases of updating the system often gives conflict information. A unique aspect of data base design is storing only once, which controls redundancy and improves system performance.

The main drawback of using database system is that it takes much time for retrieving the lakhs of records data. It is not possible that creating sessions and batches in database system. And for the repeating transactions or for the similar transaction we are able to do the work repetitively. To avoid this we are using data warehousing since the tools of data warehousing are used to extract, transform the lakhs of records in very efficient manner.

BENEFITS OF DATAWAREHOUSE OVER

DATABASE DESIGN

 Although a database is a general-purpose piece of software, it serves a variety of purposes with a variety of technical requirements, such as:

Recording and storing data

Requires reliably storing data and protection each user’s data from the effects of other user’s changes.

Reading data for online viewing and reports

Requires a consistent view of the data

Analyzing data to detect business trends

Requires summarizing data and relating many different summaries to each other Together, the last two purposes listed are known as data warehousing.

Data warehousing has become one of the most powerful trends in information technology. There is a very simple motivation behind this trend. Data warehousing allows businesses to use their data to aid in making strategic decisions. Data warehousing unlocks the hidden value embedded in an organization’s data stores.

Recognizing this trend, oracle began adding data warehousing –related features to oracle7 in the early 1990s. Oracle8, Oracle8i, and Oracle9i have all contained additional features for warehousing, particularly to improve the performance and management of very large data warehouses. Oracle has also developed additional tools for building a complete data warehouse infrastructure, including business analysis and data-movement tools.

 The use of data for strategic analysis has four very specific characteristics.

Strategic analysis discerns trends in data, rather than individual facts.

Because of this, data warehousing typically creates fairly simple reports based on aggregate values culled from enormous if data. If OLTP (online transaction processing) data bases attempted to create these aggregates on the fly they would use a lot of resources, which would impact their ability to process transactions in a timely manner.

The information in a data warehouse is almost exclusively read, instead of written

This means that the overhead of transaction control, an important part of a normal OLTP database system, isn’t really needed for a data warehouse.

The data used for analysis doesn’t typically have to be up-to –the minute accurate.

Because strategic analysis is concerned with trends over time, the data used can be a day, a week, or even a month old, depending on the analysis being done. This means that data in a data warehouse can have some or all of tits aggregate values created as part of batch process offline. However, as warehouses increasingly are used for tactical management, near real time data in the warehouse is becoming a more frequent requirement.

The design required for an efficient data warehouse differs from the standard normalized design for a relational database.

Queries are typically read against a fact table, which may contain summary information using a specific type of schema design called star schema. This design lets you access facts quite flexibly along key dimensions or look up values.

APPROACH ADOPTED
IN
 PRESENT STUDY

 EVOLUTION OF DATA WAREHOUSE SYSTEM

Data warehousing is not a new idea. The use of corporate data for strategic decision making, as opposed to the use of data for tracking and enabling operations, has gone on for almost as long as computing itself.

Quite early, companies building operational systems began to recognize the potential business benefits of analyzing the data housed in such systems. In fact, much of the early growth in personal computers was tied to the use of spreadsheets that performed analysis against data downloaded from the operational systems. Business executives began to direct IT efforts toward understanding the flow of business from the existing business data. This understanding was used to develop business solutions and strategies, and many of these early joint initiatives led to successful data warehousing project. Today, warehouses are used in business areas such as customer relationship management, sales and marketing campaign analysis product management and packaging finical analysis and risk detection and fraud analysis.

In the 1980s, many companies began using dedicated systems for these applications, which were collectively known as decision support systems (DSS). Decision support queries tended to be CPU- and memory-bound and took

place in a primarily read-only environment, while traditional OLTP was typically I/O bound with a large amount of write activity. The characteristics of the queries were much less predictable than what had been experienced in OLTP systems. This led to the development of data stores for decision support apart from those for OLTP.

 DATA WAREHOUSE ARCHITECTURE

Initially conceived as a large, enterprise-wide source of all information, the topology of the data warehouse has evolved into multi-tier architecture, as shown in the following figure.

[image: image1.png][image: image4.png][image: image5.png][image: image6.png][image: image7.png]
[image: image8.png][image: image9.png][image: image10.png][image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png][image: image16.png][image: image17.png][image: image18.png][image: image19.png][image: image20.png][image: image21.png][image: image22.png][image: image23.png][image: image24.png][image: image25.png][image: image26.png][image: image27.png][image: image28.png][image: image29.png][image: image30.png][image: image31.png][image: image32.png][image: image33.png][image: image34.png]
Figure: Typical data warehousing topology

The evolution from a traditional client/server environment to multiple tiers occurred for a variety of reasons. Initial efforts at creating a single warehouse often resulted in “analysis paralysis.” Just as efforts to define an enterprise-wide OLTP model often take years, similar attempts in the data warehousing also ended up taking much longer than business were willing to accept. These efforts were further hampered by the continually changing analysis requirements necessitated by a continually changing marketplace. While the data elements and requirements for operational systems can remain relatively stagnant over time, understanding business trends can be like trying to catch lightning in a bottle.

Consequently, attempts at building such enterprise-wide models in an effort to satisfy everyone often satisfied no one.

DATAMARTS:

The currently accepted definition of a data mart is simply a subject- or application-specific data warehouse, usually implemented within a department. Typically, these data marts are built for performance and may include a large number of summary tables. Data marts were initially thought of as being small, since not all the detail data for a department or data from other departments needed to be loaded in the mart. However, some marts get quite large as they incorporate data from outside sources that isn’t relevant in other parts of business.

In some companies, data marts are sometimes deployed to meet specific project goals with models optimized for performance for that particular project. Such data marts are retired when the project is completed and the hardware is reused for other projects. As the analysis requirements for a business change, the topology of any particular data warehouse is subject to evolution over time.

OPERATIONAL DATA STORES (ODS): -

The operational data store (ODS) may best be described as a distribution center for current data. Like the OLTP servers, the schema is highly normalized and the data is recent. The ODS serves as a consolidation point for reporting and can give the business one location for viewing current data that crosses divisions or departments. The popularity midst of acquisitions and mergers. These organizations often face mixed application environments. The ODS acts as a staging location that can be used as the source for further transformation into a data warehouse or into data marts.

The warehouse server, or enterprise data warehouse, is a multi subject historical information store usually supporting multiple departments and often serving as the corporate database of record. When an ODS is established, the warehouse server is often fed from the ODS. When
an ODS isn’t present, data for the warehouse is directly extracted and transformed from operational sources. External data may also feed the warehouse server.

ORACLE 8.0 AND ITS FEATURES

Oracle Corporation is the world’s largest vendor of information management Software, with annual revenue of over $4.2 billion. Oracle software runs on almost every computer in the world, from personal digital assistants to supercomputers, managing everything from personal information to global information networks.

Oracle’s technology innovations have driven the computer industry, and more importantly, have enabled Oracle’s customers to be more productive and more competitive using computers that cost less, but do more. This focus on software innovation explains why Oracle’s information management software has emerged as the technology backbone for the Information age, making possible tasks ranging from managing huge amounts of corporate information to delivering a favorite movie to your living room.

Oracle Product components are as follows:

Server Components:
· Oracle 8 Server release

· Oracle 8 Distributed Database Option

· Oracle 8 Parallel Query Option

· Oracle 8 Parallel Server Option

· Oracle 8 Advanced Replication Option

· Oracle 8 Web Server

· Oracle 8 Context Option

· Oracle 8 Spatial Data Option

· Oracle Video Server
Systems Management:

· Oracle Enterprise Manager

· Oracle Enterprise Manager Power Pack Option
PL/SQL and Programmatic Interfaces:
· PL/SQL

· Oracle call interface

· Oracle Pro C/C++

· Oracle Pro Cobol

· Oracle Pro Fortran

· SQL * Module (C,ADA)

Networking:
· SQL Net

· Oracle 8 Advanced Networking Option

SQL * Net:
 SQL * Net eliminates many of the inefficiencies that existed for client/server applications. With SQL *Net any client can access any server without regard to the network protocols available. It permits connectivity between clientsapplication and database servers independently of connectivity between the computers they run on.

Developer/2000:
 Oracle Developer/2000 enhancements are geared towards rapid application development (RAD) and productivity. These applications range from the individual workstation to the corporate distributed database. The three main components of Developer/2000 are Oracle Forms, Oracle Reports, and Oracle Graphics.

Developer/2000 Library Set:
 This extensive library set provides robust documentation for the application developer including advanced techniques and reference information for Oracle’s flagship development tool. The Developer/2000 Documentation library set is an impressive collection of four other documentation sets bundled together into one comprehensive library. It contains all the manuals for each individual component of Developer/2000; including Forms, Reports, Graphics, and Procedure Builder.

Discoverer/2000:

 Discoverer/2000 provides decision support and analysis for online systems and data warehouse solutions. Using a second generation meta-layer, Discoverer/2000 maps any database schema to your user’s business requirements. Create complex queries and cross tabular reports without programming.

Oracle Precompilers:

 Oracle Precompilers enables you to embed SQL statements in programming languages like Ada, C, COBOL, FORTRAN, Pascal, and PL/I.

The SQL Command Set:
Command

Description
Select
This is the most commonly Used command; it is used to Retrieve data from database.

Insert, update, delete
These three commands are used to Delete, enter and modify the rows from tables in the database respectively. They are sometimes called DML or Data Manipulation commands.

Create, Alter, Drop
These rhree commands are used dynamiclly to setup,change and remove any data Structure and also known as DDL or Datadefinition commands.

Grant, Revoke
These two commands are used to give or remove access rights To both Oracle database andThe structures within it.

Data Types:
 Each literal or column value manipulated by Oracle data type. A data type associates a fixed set of properties with the value. These properties cause Oracle to treat values of one data type differently from values of another. The various data types supported by Oracle are:

 Number,Char,Varchar,Varchar2,Date,Raw,Rowid,and double.Enhanced data types of Oracle 8.0 are Nchar, Nchar varying, Lob, Blobs, Clobs, Nclobs, and bfiles.
Integrity Constraints:

Oracle allows integrity constraints to be defined for tables and columns to enforce certain rules, either within a table or between tables, Constraints are used:

· By oracle 8 server to enforce rules at table level whenever a row is inserted, updated or deleted from the table. The constraint must be satisfied for the operation to succeed.

· To prevent the deletion of a table if there are dependencies from other tables.

· By certain oracle tools such as oracle forms, to provide for use in an application

Constraints are classified as either:

Table Constraints :
 These may reference on or ore columns and are defined separately from the definitions of columns in the table.

Column Constraints :

 These reference a single column and are defined within the specification for the column.

Constraint Types:
You may define the following constraint types:

NULL/NOTNULL

UNIQUE

PRIMARY KEY

FOREIGN KEY

CHECK

SQL Functions:
String Manipulation Functions:

Initcap - Changes the first letter of the word to upper case.

Instr – Finds the location of a character IN a STRing.

Length – Tells the LENGTH of a string.

Lower – Converts every letter into LOWERcase.

Lpad – Makes a string a certain length by adding a certain set of characters to the

left.

LTrim – Trims all the occurrences of any one of a set characters off of the left side of the string.

Rpad – Makes a string a certain length by adding a certain set of characters to the right.

RTrim – Trims all the occurrences of any one of a set characters off of the right side of the string.

Numeric Manipulation Functions:

Abs(value), ceil(value), cos(value), cosh(value), exp(value), floor(value), ln(value), log(value), mod(value, divisor), nvl(value, substitute), power(value,exponent), round(value, precision), sign(value), sin(value), sinh(value), sqrt(value), tan(value), tanh(value), trunc(value, precision), vsize(value).

Date Functions:
Add_months (date, count), Greatest (date1, date2…), least (date1, date2…), last_day (date), months_between (date2, date1), next_day (date,’day’), new_time (date, ‘this’, ‘other’)

 SYSTEM ANALYSIS
STRUCTURED SYSTEM ANALYSIS AND DESIGN:

 A system is made up of the interrelated elements of a work process. These elements are called subsystems which do not standalone; each subsystem serves one or higher order subsystems, which fit together supporting one another to achieve an objective.
 System elements may include personal, machines, and nonphysical entities working in an interrelated fashion. The system approach is a group of concepts, methods and techniques used for problem solving, decision-making, analyzing organizations and process, and evaluating performance. For example, a system that contributes to effectiveness and productivity of an operation involves a relational process of planning and developing a group of related elements. A system is based on a creative process that questions the assumption on which old techniques have been built. Hence system approach provides a new outlook and approach in order to provide innovations capable of bringing feasible solutions to problems.

 The approach of SSAD starts from studying the current physical model and finish with proposed physical model.

The Life Cycle of a computer-based system consists of 4 phases.

(a) System Analysis Phase: System Analysis means prepare specification for the required system. It is needed to understand the existing system and its problems properly. After developing good understanding does it become feasible to propose useful changes, which can improve the system is called System Analysis. While analysis, analyst has to design the current physical system and then logically it into current logical system.
(b) System Design Phase: Once the understanding of the existing system is over, the next step is to design the current existing system. Generally design begins by using identified system problems as a basis for developing objectives for the new system. System design proceeds two steps. First, the new logical model is developed; it includes any new processes or changes to existing processes necessary to meet the system objectives. Second step is for physical design, where many activities take place. Decisions are made on which processes are to remain manual and which are to be computerized.
(c) System Implementation Phase: Once the system design has been completed, the next step is to select the hardware and software for implementing the system. Hardware mends which platform would be used. For example LAN, RDBMS, UNIX, DOS etc. Software means the selection of programming language for coding. Here system analyst decides which hardware and software will be suitable for fulfilling the customer’s requirements.
(d) System Maintenance Phase: Implementation is the process of having system personnel check out and put new equipment into use, train, install the new application and construct any file of data needed to use it.
 Once installed, applications are often used for many years. However, both are organization and the users will change, and the environment will be different over weeks and months. Therefore, the application will undoubtedly have to be maintained, modifications and changes will be made to the software, files, or procedures to meet emerging user requirements. Since organization systems and the business environment undergo continual change, the information systems should keep pace. In this sense, implementation is an on going process.

SSAD has the following characteristics:

(a) It defines a problem in relation to the system to which it belongs.

(b) It views the systems objectives in relation to large system.

(c) It evaluates the extent to which a design diverges from optimum design.

(d) It requires the planning, evaluation, innovation and creative alternatives be initiated in the system.

(e) It involves inductive reasoning.

(f) It encourages the choice of alternatives that alleviate the unwanted effects of previous system.

 Hence all these factors should be considered during system development. Structured System Analysis and Design (SSAD) help the project team in:

· Accurately establishing the requirements.

· Designing the best system to meet the requirements.

DATA FLOW DIAGRAMS (DFD):-

Data flow diagrams are one of the most important tools used by system analysts. It works as a system-depicting tool, of describing data processing environments. It depicts the following.

· System Boundaries.

· Sources and Sinks.

· Processes which manipulate data.

· Events (inference) which trigger the processes.

· Data stores and Data flows.

Data flow symbols has following characteristics.
· Flow of data may be continuous or intermittent.

· Data does not alter along the flow line.

· Flow line does not bifurcate.

· Double-headed arrows are not allowed.
Advantages Of Flow Diagrams(DFD)
· Simple pictorial representation is easy to understand by user and management.

· Permits unambiguous, precise and concise specification.

· Allow clear separation of physical and aspects.

PHYSICAL AND LOGICAL DFD:

System analyst uses data flow diagram to design the present existing system in the initial stage. This physical DFD is an easier way for the system analyst to communicate with user or customer. Here most of the processes are physical processes.

Therefore there is need to logically the system for understanding the core logic. Logicalization of physical DFD results in logical DFD, it acquires by removing all the nonautomated physical activities.

ENTITY RELATIONSHIP DIAGRAM (E-R DIAGRAM):

E-R diagram depicts all the entities and their relationships.
· Entities which are distinct things in the enterprise.

· Relationships, which are meaningful interactions between objects.

· Attributes, which are properties of entities and relationships.

Entities are the primary things of a business about which the users need to record data. The relationship has cardinality. Cardinality identifies how many instances of one entity are related to how many instances of another entity.

Cardinality can be of type:

1. One to One: One occurrence of one entity is related to one occurrence of another.

2. One to Many: One occurrence of one entity is related to several occurrences of another.

3. Many to Many: Several occurrence of one entity is related to several occurrence of another entity.
 For a good database one to many cardinality is must.

 Many to Many relationships can be resolved into one to many by introducing a new entity. Symbols used in E-R diagram are:

1. Rectangles: which represent entity sets.

2. Ellipses: which represent attributes.
3. Diamond: which represent relationship sets.
4. Lines: which like attributes to entity set and entity set to relationship sets.
PROCESS-SPECIFICATION:-

All process in a DFD must have a process description. Different methods can be used to describe systems processes. The methods used to describe top-level processes differ from those used to describe detailed processes. Top-level processes are usually described using natural language. But the natural language is not usually used to describe processes at detailed levels. Low-level processes involve detailed computations that must be defined precisely and unambiguously. The methods, which remove ambiguities from system description and can be easily understood by both users and programmers. The main techniques proposed for this purpose in structured system analysis are:

· Structured English.

· Tight English.

· Decision Table.

· Decision Trees.

Structured English and tight English put verbal description into logical structure which removes logical ambiguities.

This provides the better of two areas. The structure removes logical ambiguities, but English narratives can still be used to describe activities. Therefore process description look very similar to program structure which appears in block structured languages. Decision Tables and Decision Trees are preferred where one of a large number of actions is to be selected. The action selected depends on a large number of conditions. Structured or Tight English is not usually used for this purpose because the logic structure would become repetitive.

COMPUTER INTERFACE:

The computer interface is an important part of user procedure design. It defines how users interact with a computer, and has an important bearing on user’s acceptance of a system. A good and easy to use a computer interface will make user’s job straightforward and pleasant. The purpose of computer interface is quite simple, it is to capture information about the system from user and make this information available to all system from users. Interfacing is of two types:

(i) Online-interfacing.

(ii) Offline-interfacing.

In an online interface, the user directly communicates with computer. One important property of an online interaction is that an output is obtained from computer very soon after the input. Offline interfaces use proper media to carry information. Therefore interfacing is an important task for the software developer while doing system analysis and design.

CONCLUSION:-

SSAD approach ensures the efficiently and effectiveness of the developed system. It also allows easy up gradation and modification of the system.

HARDWARE AND SOFTWARE SPECIFICATIONS;-

Hardware Requirements:-
Processor
 - Pentium III

Clock Speed
 -
 500 MHz

RAM

 -
 128 MB

Hard Disk
 - 40GB

Keyboard - AT or ATX

Mouse

 - 2 or 3 buttons

Monitor

 - SVGA

Card

 - 32 bit SCSI

SOFTWARE REQUIREMENTS:

 Operating System - Windows Nt or Windows 2000

 Back End
 - Oracle 8.0

 ETL Tools - Informatica

 Reporting tools - Cognos, Businessobjects.

SYSTEM DESIGN

FUNCTIONAL DECOMPOSITION DIAGRAMS:-

At the start of analysis phase, the main function of the system is broken down into small, manageable and significantly independent functions.

DATA FLOW DIAGRAMS:-

One of the tools of structured analysis is the DATAFLOW DIAGRAM. A dataflow diagram is a graphic documentation a system. DATAFLOW Diagram’s are serve two purposes:

Provide a graphic tool which can be used by the analyst to explain his understanding of the system to the user

Before the use of data flow diagrams, an analyst’s understanding of the system was given a descriptive format. Users were not inclined to go through this document fully, which meant that the analyst’s understanding of the system could be imperfect.

 There are two different standard set of data flow diagram symbols, but each set consists of four symbols that represent the same things: Dataflow’ s, Data store’s, Process and Source/Sinks (or external entities). These diagrams can be represented in two formats as:

· Gane and Sarson method.

· Demacro and Yourdon method.

DATA FLOW:-

 A data flow can be best understood as data in motion, moving from one place in a system to another. A data flow could represent the result of a query a database, the contents of a printed report, or data on a data entry in a display form.
DATA STORE:-

It is data at rest. A data store may represent one of many different physical locations for data. A data store might contain data about tables that are related for a project.
PROCESS:-

A process is the work or actions performed on data. So that they are transformed, stored, and distributed
SOURCE/SINK:-

Source is the origin of data and sink is the destination for data. These are sometimes referred to as external entities because they are outside the system. Once processed, data or information level the system and go to some other place.

Gane and Sarson Set

[image: image35.png] Demarco and Yourdon Set

[image: image36.png][image: image37.png][image: image38.png] Process:

[image: image39.png][image: image40.png]

[image: image41.png] Data store:

[image: image42.png][image: image43.png] Source/Sink:

[image: image44.png][image: image45.png] Dataflow:
[image: image46.png]
[image: image47.png][image: image48.png]
[image: image49.png]
[image: image50.png]
[image: image51.png]
[image: image52.png][image: image53.png] SHAPE * MERGEFORMAT

[image: image2]

Product Geography
 SHAPE * MERGEFORMAT

 Channel

Time
 NORMALIZATION

NORMALIZATION

Given a body of data to be represented in a database, how do we decide on a suitable logical structure for that data? In other words, how do we decide what relations are needed and what their attributes should be? This is the database design problem.

Designing a database can be an extremely complex. Normalization theory is useful aid in the design process. Anyone designing a relational database is advised to be familiar with the basic techniques of normalization.

Normalization theory is built around the concept of normal forms. A relation is said to be in a particular normal form if it satisfies a certain specified set of constraints. For example, a relation is said to be in first normal form if it satisfies the constraint that it contains atomic values only. Numerous normal forms have been defined. Codd originally defined first, second, and third normal form in reference. Here all normal forms are in first normal form. Second normal form is more desirable than first normal form.

Similarly third is more desirable than second normal form.

Codd’s original definition of third normal form suffered from certain inadequacies, as we shall see. A revised definition, due to Boyce and Codd, was given in stronger in the sense that any relation that was third normal form by the new definition was certainly third normal form by the old, but a relation could be third normal form by the old definition and not by the new.

The new third normal form is sometimes called Boyce/Codd normal form (BCNF) to distinguish normal form and, more recently, another normal form which will be called as “projection-join normal form”.

Normalization is done in a series of steps, each of which leaves the model in a specific normal form. Each normal form includes all the constraints of the previous normal forms, so they must be applied in strict order. The normal forms usually applied include First Normal Form, Second Normal Form, Third Normal Form, Boyce-Codd Normal Form, Fourth Normal Form and Fifth Normal Form. Typically, Third Normal Form achieves most transformations and the remaining forms are increasingly subtle and relevant to fewer systems.

First Normal Form (1NF):-

 A relation R is said to be in first normal form (1NF) if and only if all underlying domain contain atomic values only.

This definition merely states that any normalized relation is in 1NF, which is of course correct. A relation that is only in first normal form has a structure that is undesirable for a number of reasons.

Second Normal Form (2NF):-

 A relation R is said to be in second normal form (2NF) if and only if it is in 1NF and every non key attribute is fully dependent on the primary key.

Third Normal Form (3NF):-

 A relation R is said to be in third normal form (3NF) if and only if it is in 2NF and every non key attribute is no transitively dependent on the primary key.

BCNF:-

 The original definition of 3NF was subsequently replaced by a stronger definition. The new definition is due to Boyce and Codd; hence the term

“Boyce/Codd Normal Form” (BCNF) is often used to distinguish the new 3NF from the old. The definition of BCNF is conceptually simpler than that of 3NF, in that it makes no explicit reference to first and second normal form as such, nor to the concepts of full and transitive dependence. Let us agree to call an attribute, possibly composite, on which some other attribute is fully functionally dependent, a (functional) determinant. Then we can define BCNF as follows:

 A relation R is in Boyce/Codd Normal form (BCNF) if and only if every determinant is a candidate key.

Observe that we are now talking in terms of candidate keys not just the primary key. The motivation of introducing BCNF is that the original 3NF definition does not satisfactorily handle the case of relation possessing two or more composite and overlapping candidate keys. Although BCNF is stronger than 3NF, it is still true that any relation can be decomposed in a no loss way into an equivalent collection of BCNF relations.
Fourth Normal Form:-

A relation R is in fourth normal form (4NF) if and only if whenever there exits an MVD in R, say A ((B, then all attribute of R are also functionally dependent on A (i.e., A(X for all attributes X of R)

In other words, the only dependencies (FD’s or MVDs) in R ae the form K(X (i.e. a functionally dependency from a candidate key K to some other attribute X)

Fagin proves tow further important results in that enables to incorporate 4NF in to the overall normalization procedure that we are gradually building up in this chapter.

1. 4NF is strictly stronger than BCNF0i.e., any 4NF relations is necessarily in BCNF;

2. Any relation can be nonloss-decomposed in to an equivalent collection of 4NF relations.

Fifth Normal Form:-

 Sometimes there exist relations that cannot be nonloss-decomposed into two projections but can be nonloss-decomposed into three (or more). This phenomenon was first noted by Aho, Beri and Ullman, and was also studied by Nicolas. Consider relation SPJ. This relation is “all key” and involves no nontrivial FDs or MVDs, and so is 4NF,

 Here SPJ could be splitted up into three more relations

 S-P, P-J, & S-J.

A relation R is in fifth normal form also called projection-join normal if every join dependency in R is implied by the candidate keys of R.

Here the relation SPJ is not in 5NF, its single candidate key, the combination

(S#, P#, J#) certainly does not imply that the relations can be nonloss-decomposed into its projections SP, PJ, and JS. The projections SP, PJ, and JS are in 5NF, since they do not involve any JD’s at all.

 Any relation that is used in database design could be decomposed as follows:
1. Take projections of the original 1NF relation to eliminate any non full functional dependencies. This will produce a collection of 2NF relations.

2. Take projections of these 2NF relations to eliminate any transitive dependencies. This will produce a collection of 3NF relations.

3. Take projections of these 3NF relations to eliminate any remaining functional dependencies in which the determinant is not a candidate key. This will produce a collection of BCNF relations.

4. Take projections of these BCNF relations to eliminate any multivalued dependencies that are not also functional dependencies. This will produce a collection of 4NF relations.

5. Take projections of these 4NF relations to eliminate any join dependencies that are not implied by the candidate keys.

At each step in the process the concept of independent components can be used to guide the choice of which projections to take.

 DATA DICTIONARY

 DATA DICTIONARY
Name
Null? Type

----------------------------------- ------------ ------------

BRAND_ID NOT NULL NUMBER

BRAND_NAME VARCHAR2(20)

COMPANY_CATEGORY_ID NUMBER

Name Null? Type

-------------------------- ------------------------------------

 BRANCH_ID NOT NULL NUMBER

 BRANCH_NAME VARCHAR2(20)

 BRANCH_HEAD VARCHAR2(20)

 BRANCH_ADDRESS VARCHAR2(20)

 BRANCH_PHONES VARCHAR2(20)

Name Null? Type

 --------------------------- -------- ----------------------------

 CARD_ID NOT NULL NUMBER

 CARD_ISSUE_DATE DATE

 CARD_EXPIRY_DATE DATE

 CARD_TYPE VARCHAR2(1)

 CUSTOMER_ID NUMBER

SQL> desc category

 Name Null? Type

 --- -------- ----------------------------

 CATEGORY_ID NOT NULL NUMBER

 CATEGORY_NAME VARCHAR2(20)

 PARENT_CATEGORY_ID NUMBER

SQL> desc clerk

 Name Null? Type

 --- -------- ----------------------------

 CLERK_ID NOT NULL NUMBER

 CLERK_NAME VARCHAR2(20)

 CLERK_SEX VARCHAR2(1)

 CLERK_MSTATUS VARCHAR2(1)

SQL> desc clerk_counter

 Name Null? Type

 --- -------- ----------------------------

 CLERK_COUNTER_ID NOT NULL NUMBER

 CLERK_ID NUMBER

 COUNTER_ID NUMBER

SQL> desc counter;

 Name Null? Type

 --- -------- ----------------------------

 COUNTER_ID NOT NULL NUMBER

 COUNTER_TYPE VARCHAR2(1)

 COUNTER_LOCATION VARCHAR2(20)

 COUNTER_PRODUCTS_LIMIT NUMBER

SQL> desc clerk

 Name Null? Type

 --- -------- ----------------------------

 CLERK_ID NOT NULL NUMBER

 CLERK_NAME VARCHAR2(20)

 CLERK_SEX VARCHAR2(1)

 CLERK_MSTATUS VARCHAR2(1)

SQL> desc shift

 Name Null? Type

 --- -------- ----------------------------

 SHIFT_ID NOT NULL NUMBER

 SHIFT_START_TIME VARCHAR2(20)

 SHIFT_END_TIME VARCHAR2(20)

 SHIFT_DAYS VARCHAR2(7)

SQL> desc clerk_shift

 Name Null? Type

 --- -------- ----------------------------

 CLERK_SHIFT_ID NOT NULL NUMBER

 SHIFT_ID NUMBER

 CLERK_ID NUMBER

SQL>

SQL> desc desc company

Usage: DESCRIBE [schema.]object[@db_link]

SQL> desc company

 Name Null? Type

 --- -------- ----------------------------

 COMPANY_ID NOT NULL NUMBER

 COMPANY_NAME VARCHAR2(20)

 COMPANY_ADDRESS VARCHAR2(20)

 COMPANY_CITY VARCHAR2(20)

 COMPANY_STATE VARCHAR2(20)

 COMPANY_COUNTRY VARCHAR2(20)

 COMPANY_URL VARCHAR2(20)

SQL> desc compny_category

ERROR:

ORA-04043: object compny_category does not exist

SQL> desc company_category

 Name Null? Type

 --- -------- ----------------------------

 COMPANY_CATEGORY_ID NOT NULL NUMBER

 COMPANY_ID NUMBER

 CATEGORY_ID NUMBER

SQL> select * from tab;

TNAME TABTYPE CLUSTERID

------------------------------ ------- ----------

BRANCH TABLE

BRAND TABLE

CARD TABLE

CATEGORY TABLE

CLERK TABLE

CLERK_COUNTER TABLE

CLERK_SHIFT TABLE

COMPANY TABLE

COMPANY_CATEGORY TABLE

COUNTER TABLE

CUSTOMER TABLE

TNAME TABTYPE CLUSTERID

------------------------------ ------- ----------

GROUP_TBL TABLE

PRODUCT TABLE

PRODUCT_INGREDIENT TABLE

PRODUCT_NUTRITION TABLE

PRODUCT_SUPPLIER TABLE

PROMOTION TABLE

PROMOTION_GROUP TABLE

PROMOTION_GROUP_FREE_PRODUCTS TABLE

PROMOTION_GROUP_PRODUCT TABLE

SALES_HEADER TABLE

SALES_LINE TABLE

TNAME TABTYPE CLUSTERID

------------------------------ ------- ----------

SHIFT TABLE

SUPPLIER TABLE

UOM TABLE

25 rows selected.

SQL> desc customer;

 Name Null? Type

 --- -------- ----------------------------

 CUSTOMER_ID NOT NULL NUMBER

 CUSTOMER_NAME VARCHAR2(20)

 CUSTOMER_ADDRESS VARCHAR2(20)

 CUSTOMER_CITY VARCHAR2(20)

 CUSTOMER_STATE VARCHAR2(20)

 CUSTOMER_COUNTRY VARCHAR2(20)

 CUSTOMER_ZIP VARCHAR2(6)

 CUSTOMER_PHONES VARCHAR2(20)

 CUSTOMER_FAXES VARCHAR2(20)

 CUSTOMER_EMAILS VARCHAR2(30)

 CUSTOMER_URL VARCHAR2(30)

SQL> dept group_tbl

SP2-0734: unknown command beginning “dept group…” – rest of line ignored.

SQL> desc group_tbl

 Name Null? Type

 --- -------- ----------------------------

 GROUP_ID NOT NULL NUMBER

 GROUP_NAME VARCHAR2(20)

SQL> desc product

 Name Null? Type

 --- -------- ----------------------------

 PRODUCT_ID NOT NULL NUMBER

 BRAND_ID NUMBER

 UOM_ID NUMBER

 PRODUCT_NAME VARCHAR2(20)

 PRODUCT_DESCRIPTION VARCHAR2(20)

 PRODUCT_NUTRITION_FLAG VARCHAR2(1)

 PRODUCT_INGREDIENT_FLAG VARCHAR2(1)

 PRODUCT_SHELF_WIDTH_CM NUMBER

 PRODUCT_SHELF_HEIGHT_CM NUMBER

 PRODUCT_SHELF_DEPTH_CM NUMBER

SQL> desc product_nutrition

 Name Null? Type

 --- -------- ----------------------------

 PRODUCT_NUTRITION_ID NOT NULL NUMBER

 NUTRITION_NAME VARCHAR2(20)

 PRODUCT_ID NUMBER

SQL> desc product_ingredient

 Name Null? Type

 --- -------- ----------------------------

 PRODUCT_INGREDIENT_ID NOT NULL NUMBER

 INGREDIENT_NAME VARCHAR2(20)

 PRODUCT_ID NUMBER

SQL> desc supplier

 Name Null? Type

 --- -------- ----------------------------

 SUPPLIER_ID NOT NULL NUMBER

 SUPPLIER_NAME VARCHAR2(20)

 SUPPLIER_ADDRESS VARCHAR2(20)

 SUPPLIER_CITY VARCHAR2(20)

 SUPPLIER_STATE VARCHAR2(20)

 SUPPLIER_COUNTRY VARCHAR2(20)

 SUPPLIER_ZIP VARCHAR2(6)

 SUPPLIER_PHONES VARCHAR2(20)

 SUPPLIER_FAXES VARCHAR2(20)

 SUPPLIER_EMAILS VARCHAR2(20)

 SUPPLIER_URL VARCHAR2(20)

 SUPPLIER_TYPE VARCHAR2(1)

 SUPPLIER_STATUS VARCHAR2(1)

 SUPPLIER_CREDIT_PERIOD NUMBER

 SUPPLIER_INTEREST_RATE NUMBER

SQL> desc product_supplier

 Name Null? Type

 --- -------- ----------------------------

 PRODUCT_SUPPLIER_ID NOT NULL NUMBER

 SUPPLIER_ID NUMBER

 PRODUCT_ID NUMBER

SQL> desc promotion

 Name Null? Type

 --- -------- ----------------------------

 PROMOTION_ID NOT NULL NUMBER

 PROMOTION_NAME VARCHAR2(20)

 PROMOTION_START_DATE DATE

 PROMOTION_END_DATE DATE

 PROMOTION_STATUS VARCHAR2(1)

 PROMOTION_TYPE VARCHAR2(1)

SQL> desc promotion_group;

 Name Null? Type

 --- -------- ----------------------------

 PROMOTION_GROUP_ID NOT NULL NUMBER

 PROMOTION_ID NUMBER

 GROUP_ID NUMBER

 PROMOTION_DISCOUNT NUMBER(4,2)

SQL> desc promotion_group_product;

 Name Null? Type

 --- -------- ----------------------------

 PGP_ID NOT NULL NUMBER

 PRODUCT_ID NUMBER

 PROMOTION_GROUP_ID NUMBER

SQL> desc promotion_group_free_products;

 Name Null? Type

 --- -------- ----------------------------

 PGFP_ID NOT NULL NUMBER

 PRODUCT_ID NUMBER

 PROMOTION_GROUP_ID NUMBER

SQL> desc sales_header;

 Name Null? Type

 --- -------- ----------------------------

 SALES_ID NOT NULL NUMBER

 BILL_NO NUMBER

 BILL_DATE DATE

 BRANCH_ID NUMBER

 COUNTER_ID NUMBER

 CARD_ID NUMBER

SQL> desc sales_liner;

ERROR:

ORA-04043: object sales_liner does not exist

SQL> desc sales_line;

 Name Null? Type

 --- -------- ----------------------------

 SALES_LINE_ID NOT NULL NUMBER

 PRODUCT_ID NUMBER

 PRODUCT_QTY NUMBER

 PRODUCT_RATE NUMBER

 PRODUCT_DISCOUNT NUMBER

 PRODUCT_SALES_TYPE VARCHAR2(20)

 SALES_ID NUMBER

SQL> desc supplier;

 Name Null? Type

 --- -------- ----------------------------

 SUPPLIER_ID NOT NULL NUMBER

 SUPPLIER_NAME VARCHAR2(20)

 SUPPLIER_ADDRESS VARCHAR2(20)

 SUPPLIER_CITY VARCHAR2(20)

 SUPPLIER_STATE VARCHAR2(20)

 SUPPLIER_COUNTRY VARCHAR2(20)

 SUPPLIER_ZIP VARCHAR2(6)

 SUPPLIER_PHONES VARCHAR2(20)

 SUPPLIER_FAXES VARCHAR2(20)

 SUPPLIER_EMAILS VARCHAR2(20)

 SUPPLIER_URL VARCHAR2(20)

 SUPPLIER_TYPE VARCHAR2(1)

 SUPPLIER_STATUS VARCHAR2(1)

 SUPPLIER_CREDIT_PERIOD NUMBER

 SUPPLIER_INTEREST_RATE NUMBER

SQL> desc uom

 Name Null? Type

 --- -------- ----------------------------

 UOM_ID NOT NULL NUMBER

 UOM_NAME VARCHAR2(20)

 SCREENS AND REPORTS
[image: image54.png][image: image55.png]
[image: image56.png][image: image57.png]
[image: image58.png][image: image59.png]

 TESTING

TESTING

Testing is a dynamic method for verification and validation, where the system to be tested is executed and the behavior of the system is observed. Due to this, testing observes the failures of the system, from which the presence of faults can be deduced.

The code developed during the coding activity is likely to have some requirement errors and design errors, in addition to errors introduced during the coding activity. Because code is frequently the only product that can be executed and whose actual behavior can be observed, testing is the phase where the errors remaining from all the previous phases must be detected. Hence testing performs a very critical role for quality assurance and for ensuring the reliability of the software.

Testing cannot show the absence of defects, it can only show that software errors are present.

Testing Objectives:

1.
 Testing is a process of executing a program with the intent of finding an error.

2.
 A good test case is one that has the high probability of finding an as-yet undiscovered error.

3.
 A successful list is one that uncovers an as yet undiscovered error.

If testing is conducted successfully, it will uncover errors in the software. As a secondary benefit, testing demonstrates that software functions appear to specification and that performance requirements appear to have been met. In Addition, data collected as testing is conducted provides a good indication of software reliability and some indication of software quality as a whole.

Any engineered product can be listed in one of two ways:

Knowing the specified function that a product has been designed to perform, tests can be conducted that demonstrate each function is fully operational, at the same time searching for errors in each function.

Knowing the internal workings of a product, tests can be conducted to ensure that “all gearsmesh,” that is, that internal operation performs according to specification and all internal components has been adequately exercised. The first test approach is called black-box testing and second, white box testing

 TESTING TECHNIQUES:-

For testing to be successful, proper selection of test case is essential. There are two different approaches to selecting test cases the software or the module to be tested is treated as a black box, and the test cases are decided based on the specifications of the system or the module. For this reason, this form of testing is also called “black box testing”. The focus here is on testing the external behavior of the system. In structural testing, the test cases are decided based on the logic of the module to be tested. A common approach here is to achieve some type of coverage of the statements in the code. One common coverage criterion of the statement coverage, which requires that test cases be selected testing, is sometimes called “glass box testing”. The two forms of testing are complementary: one tests the external behavior, the other tests the internal structure. Often structural testing is used only for lower levels of testing, while functional testing is used for higher levels.

Testing is an extremely critical and time-consuming activity. It requires proper planning of the overall testing process. Frequently the testing process starts with a test plan. This plan identifies all the testing related activities that must be performed and specifies the schedule, allocates the resources, and specifies guidelines for testing. The test plane specifies conditions that should be tested, different units to be tested, and the manner in which the modules will be integrated together. Then for different test unit, a test case specification document is produced, which lists all the different test

Cases, together with the expected outputs that will be used for testing. During the testing of the unit, the specified test cases are executed and the actual results compared with the expected outputs. The final output of the testing phase is the test report and the error report, or a set of such reports. Each test report contains the set of test cases and the result of executing the code with the test cases. The error report describes the errors encountered and the action taken to remove the error.

The software is tested thoroughly using various testing techniques such as

· Unit testing

· Integration testing

· Stress testing

· Scalability

· Browser compatibility.

UNIT TESTING:-

 The unit testing focussed verification effort on the smallest unit of software design, the module. The module interface is tested to ensure that information properly flows into and out of the procedure under test. The data integrity is maintained during all steps of the program's execution. Boundary conditions are tested to ensure that the module operates properly at boundaries established or restrict processing.

INTEGRATION TESTING:

It is used to test whether all the modules that work independently can work well when we put them together. It was checked whether data is lost or preserved across an interface. In this project whether data moved properly across the procedures is tested . Modules are integrated by moving downzone through the control hierarchy beginning with the main control module.

VALIDATION TESTING:

This tests whether the software functions in a manner that can be reasonably expected by the user. Reasonable expectations are as defined in the software requirements specifications.

STRESS TESTING: -

This is used to test when many users all around the same time access the software. It has given a reasonably good performance when tested in an Intranet environment.

SYSTEM TESTING:

The software is incorporated with system elements like hardware and various browsers. It worked satisfactorily when tested on these elements.

Security

Security measures prevent unauthorized persons to access the system. Any system to have a security measures should be provided with login – id and password protection. Security is provided for the Database level and application level. The database cannot be accessed until the correct username and password is provided. The database can be the user provides access only of the correct login and password.
 IMPLEMENTATION

IMPLEMENTATION

The implementation phases in the period during which the system is used. The major activities if this are

· Complete Conversion

· Operate System

· Evaluate system performance

· Maintain System and Manage Charges.

The implementation phase follows the development phase. Usually it is the longest of the all life cycle phases and it is characterized by four distinct stages. Initially the news system must be introduced into business activity mainstream. This state is called changeover. The changeover transaction period may weeks or even months. After it is completed the system enters the operation and routing Maintenance State. Early in this stage an evaluation should be made based on performance measurements that determine whether the specific benefits claimed for the system have been achieved. Finally the new system has all operational system must be able to accommodate change. Change is perhaps the most important state in the life of a computer based business system. Whether or not change can be managed is the final measure of success or failure of the entire system effort.

 The principal activities and documents that characterize the stage of the implementation phase are

SYSTEM CHANGEOVER :-

Normally A period of transaction is required to change from an old system to new one. If all the development phase implementation activities have been performed adequately the necessary manuals and documentation for the new system are available. There is a nucleus of trained personnel to assume responsibility for the new system. However it is critically important for the project team to remain heavily involved and in control during changeover. Changeover usually is one way process will arise. System changeover is the most critical period in the entire life cycle of the computer based system. Positive support by all user organization is essential.

ROUTINE OPERATION:-

At the conclusion of the changeover process the system has been operational for a reasonable period, its performance is formally evaluated. The result of the evaluation is documented in an evaluation report, which should be presented to a management review board. The principle user of the system should head the board.

SYSTEM CHANGE:-

The modern system environment is dynamic subject to many internal and external influences. The business environment may trigger a change request, which is then reviewed by management. This process may form a brief analysis of the requested change to an extensive investigation. This investigation could cause a return to the study phase, in which case the resulting new design and development activities might yield a greatly modified system.

 At the conclusion of the review and analysis of the requested changed the responsible management organization issues a change action notice. The actual action is then taken.

BIBLIOGRAPHY

BIBLIOGRAPHY

Oracle 8 Developer’s Guide

By Carol McCullough

By Ivan ray vross

Data Warehousing Fundamentals

By Paulraj ponniah.

BY Ralph Kimbal.

Informatica,Business Objects

By Online Help

OLTP Servers

Operational Data Store

Warehouse Server

Data marts

Clients

Year

Quarter

Month

Week, Day

Manufacturer

Distributor

Store Chain

Store

Fact Table

Sales

Transactions

Region

District

State

City

Category

Type

Brand

Model

WAREHOUSE

WAREHOUSE

TRANSFORMATION PROCESS

STAGING

STAGING

DATA ACQUISITION

SOURCE

OLAP TOOLS/MINING TOOLS

USERS

