ABSTRACT
              An approach for filling-in blocks of missing data in wireless image transmission is presented in this project. When compression algorithms such as JPEG are used as part of the wireless transmission process, images are first tiled into blocks of 8x8 pixels. When such images are transmitted over fading channels, the effects of noise can destroy entire blocks of the image. 

                          An approach for filling-in blocks of missing data in wireless image transmission is presented in this project The switch between the two schemes is done in a fully automatic fashion based on the surrounding available blocks. The performance of this method is tested for various images and combinations of lost blocks.

            For our implementation, we consider PGM (Portable Gray Map) images for filling in of missing image blocks. We use Java 2, The Standard Edition for implementing the algorithm, and the holes (missing blocks) are placed randomly for testing the project.

TABLE OF CONTENTS

1. Introduction…………………………………………. 7
2. Description of problem……………………………... 8-9
          2.1
 Existing System
          2.2
 Proposed System

          2.3 
System Requirements
3.  System Analysis…………………………………….. 10-26
         3.1
Feasibility Study
          3.2
Technical Feasibility
          3.3
Economic Feasibility
          3.4
Operating Feasibility     

          3.5
Dataflow Diagram
                      3.5.1 Components
          3.6      Literature Review
                      3.6.1 Background
                      3.6.2 Image Processing Details
                            3.6.2.1 Purposes, Methods and Applications
4.  System Design……………………………………….. 27
 5. Implementation………………………………………  28-36
        5.1 Block Classification

        5.2 Texture Synthesis

          5.3 Image Inpainting

                   5.3.1 Inpainting Scheme

        5.4 Algorithm Overview

                  5.4.1 Algorithm Description

       5.5 Constraint Weights

       5.6 Determining Pixels
6. System Testing………………………………………  37-38
         6.1
Software Testing
7. Results………………………………………………  39-44
8. Conclusions…………………………………………  45
9.Future Enhancements………………………………  46
10.Bibilography……………………………………….   47
CHAPTER 1

 INTRODUCTION

                General purpose images are most commonly compressed by lossy JPEG. JPEG divides the image into blocks of 8 by 8 pixels and calculates a two-dimensional (2-D) discrete cosine transform (DCT), followed by quantization and Huffman encoding. In common wireless scenarios, the image is transmitted over the wireless channel block by block. Due to severe fading, we may lose an entire block, even several consecutive blocks of an image. It is also reported that average packet loss rate in a wireless environment is 3.6% and occurs in a bursty fashion. In the worst case, a whole line of image blocks might be lost. Note that JPEG uses differential encoding for storing the average (dc) value of successive pixels.

                 Hence, even if a single block is lost, the remaining blocks in that line (or reset interval) might be received without their correct average (dc) value. Two common techniques to make the transmission robust are forward error correction (FEC) and automatic retransmission query protocols (ARQ). Of these, FEC needs extra error correction packets to be transmitted. ARQ lowers data transmission rates and can further increase the network congestion which initially induced the packet loss. Instead, we show that it is possible to satisfactorily reconstruct the lost blocks by using the available information surrounding them.

                   This will result in an increase in bandwidth efficiency of the transmission. The basic idea is to first automatically classify the block as textured or structured (containing edges), and then fill-in the missing block with information propagated from the surrounding pixels. In the case of structured blocks, the inpainting algorithm in is used. We test the proposed scheme with a variety of images and simulated block losses. We also combine this approach with JPEG compression itself, where the encoder voluntarily skips blocks, and these are reconstructed at the decoder in the same fashion as in the wireless scenario. This process improves the compression ratio, at little or no quality degradation.

CHAPTER 2

DESCRIPTION OF PROBLEM 
The basic objective of the analysis is to develop a logical model of the system using the procedure oriented approach.  During the system analysis, the system analyst works with the user to develop a logical model of the system.

The requirement analysis is the software engineering task that bridges the gap between the system level software allocation and software design.  The purpose of the system requirement specification document is to be present in a precise and easily attested manner all software requirements up on the a formal review by the administration and its users.  It will satisfy the functional performance interface, design and verification requirements for the computer software to be developed as a part of the computerization of the technical information system. 

2.1 Existing System:
1. The images are commonly compressed by lossy JPEG compressing format.
2. Here the images are divided into a small blocks of 8X8 pixels.
3. The compression algorithm uses the Descrete Cosine Transform (DCS) algorithm, followed by quantization and Haffman encoding
4. JPEG uses differential encoding for storing the average (dc) value of successive pixels. Hence, even if a single block is lost, the remaining blocks in that line (or reset interval) might be received without their correct average (dc) value.
5. Two common techniques to make the transmission robust are forward error correction (FEC) and automatic retransmission query protocols (ARQ). Of these, FEC needs extra error correction packets to be transmitted. ARQ lowers data transmission rates and can further increase the network congestion which initially induced the packet loss.
2.2 Proposed System:

1. Here reconstruction is to classify the lost blocks into texture or structure.
2. Lost blocks are, excluded from the querying process. 

3. Alternatively, we may perform this procedure at the transmitter, and then transmit one bit per block, indicating the presence of texture or structure

4. Image In painting is the Structure in an image can be an edge between two regions or a deterministic change in color or gray value. When the block classification algorithm detected a structured block, this is restored

5. The above technique is applied for each available block of 8X8 pixels in the immediate neighborhood of the lost block. Even if a single block from this neighborhood contains structure, we first consider a decision in favor of structure.

6. Here we can get more accurate image than the previous technique

2.3 SYSTEM REQUIREMENTS
Hardware specifications :


 Processor



:

Intel Processor IV


 RAM



:

128 MB


 Hard disk



:

20 GB

 Software Specifications :
      Operating System     –       Windows XP/2000  

      Language used 
    –       Java(swings)

      Tools            
    -        Eclipse

CHAPTER 3

SYSTEM ANALYSIS

3.1 FEASIBILITY STUDY

An important objective of conducting the system analysis is to determine that the system requested is feasible. It is both necessary and prudent to evaluate the feasibility of a project at the earliest possible time. Feasibility and risk analysis are related in many ways. If project risk is great, the feasibility of producing quality software is reduced during system engineering.

3.2 TECHNICAL FEASIBILITY 

It is a study of function, performance and constraints that may affect the ability to achieve an acceptable system. During the technical analysis, we evaluate the technical merits of the system concept, at the same time collecting additional information about performance, reliability and maintainability. 

The technologies required to accomplish system function are IBM Rational 'C' complier. The proposed system is developed in such a way that, it is simple enough to understand and manipulate, and yet close enough to the operating reality to yield result. Since all the technical requirements are already available with the institute the proposed system will definitely work with the current equipment, existing software technology and available personnel.
3.3 ECONOMIC FEASIBILITY
It is an evaluation of development cost weighed against the ultimate income or benefit derived from the developed system. Economic justification includes a broad range of concerns that include Cost-benefits analysis, long-term corporate income strategies and cost of resources needed for development.

Since the costs involved in the proposed system is less because the institute had already equipped with required resources like operating system software, application software and required hardware. The only cost involved is the ongoing costs like system maintenance costs, rental costs, and depreciation costs on hardware, which are less compare to the benefits of the proposed system.

By utilizing the proposed system the institute will be more benefited compared to Its costs. So it is economically feasible.

3.4 OPERATING FEASIBILITY 

Will the system be used if it is developed and implemented? Will there be resistance from users that will undermine the possible application benefits? Since this is a real time embedded system, the software is embedded in the hardware. Hence the intended users will definitely use the system.

3.5 DATA FLOW DIAGRAM

A Data Flow diagram is a graphical representation of the “flow” of data through an information system. A Data flow diagram can also be used for the visualization of the data processing (structural design). It is a common practice for the designer to draw a context level DFD first which shows the interaction between the system and the outside entities. The context level DFD is then exploded to show more detail of the system being modeled with a data flow diagram, users are able to visualize how the system will operate, what the system will accomplish and how the system will be implemented.

3.5.1COMPONENTS:

      The four components of Data Flow diagram (DFD) are

External Entities/Terminators are outside of the system being modeled. Terminators represent where information comes from and where it goes.     

Processes modify the inputs in the process of generating the outputs.

Data stores represent a place in the process where the data comes to rest. A DFD does not say anything about the relative timing of the processes, so a data store might be a place over a year for the annual accounting process.

Data flows are how data moves between terminators, processes, and data stores (those that cross the system boundary are known as IO or Input Output Description).

                           
[image: image1.png]     

                           
[image: image2.png]     

                            
[image: image3.png]     

                           
[image: image4.png]                                     

Data Flow Diagram:





3.6 LITERATURE REVIEW

3.6.1 Background

              Most schemes reported in the literature deal with image transmission in error-prone environments using a combination of source and channel coding. The authors in [2] describe a packetization scheme in which the DCT coefficients array generated by JPEG is grouped such that bursty (consecutive) packet loss during transmission is scattered into a pseudo-random loss in  the image domain (i.e., consecutive blocks are rarely lost in the image domain).

The ensuing reconstruction scheme benefits because, most frequency components can be recovered from adjacent blocks. However, large bursts may cause the errors to cluster in the image, and reconstruction suffers. It should be noted that the packetization scheme, when used with the reconstruction scheme described in our project, is expected to further improve on the results reported here, and provide satisfactory reconstruction results even for very large bursts.

[image: image5.png]
Interleaving the image data before packetization avoids loss of contiguous areas in an image, facilitating reconstruction. This project demonstrates reconstruction in the transform domain by expressing the lost data as a linear combination of blocks in the 4-neighborhood of the lost block. Four optimal weights (coefficients) need to be calculated per block based on combinations of available adjacent blocks. These weights, which result in a 10% space overhead, are used later in reconstruction. Strong diagonal edges are not well reconstructed by this method.

         Additional work on the reconstruction of missing data in block-based compression schemes, where the DCT coefficients of a missing block are interpolated from those with the same position in the neighboring blocks. The novelty of our proposed scheme is in the separation of the lost blocks into different classes, followed by the use of state-of-the-art image filling-in algorithms for textured and structured regions. This is done in a complete automatic fashion and without any side information.

3.6.2 Image Processing Details

             Imaging began in the 19th Century with photography and continued with x-rays, television and electronic scanning in the 20th Century. Image processing as a field of study began in the 1950s with pictures of the earth from high flying "spy" airplanes and then with pictures of the earth’s surface taken from orbiting satellites. Electronic sensors were sent into space to probe the surfaces of the planets and their moons in the 1970s and 1980s. The newer infrared and optic sensors, and additionally synthetic array and high range resolution radars create images that require intensive processing to reveal details for detection and classification of man-made objects, crops and other foliage and of minerals. These are captured from ground stations, unmanned aerial vehicles, airplanes and satellites.

3.6.2.1 Purposes, Methods and Applications
The list below gives important processes, but not necessarily all:

1) Image Enhancement

a. improve image or prepare for some other purpose

b. smoothing, sharpening, contrast reduction/increase, color improvement, edge enhancement, edge detection

c. adjust histograms

d. enlarging/reducing image size, interpolation for values of new pixels

e. combining multiple images to show details better

f. preprocessing before applying some other methods

g. construction of complete image from multiple partial ones

2) Image Restoration

a. removal of speckle (dot) noise, short line noises or scratches

b. filtering out dark and light bands, elimination of artifacts

c. removal of motion blur

d. unwarping of spatial distortions

e. elimination of glint, glare and haze

3) Image Analysis

a. obtain numerical or graphical parameters from image properties

b. segment image into similar parts and extract features

c. obtain regional features

d. measure object parameters

e. detect cracks in material or foreign materials in packaged products, etc.

f. “see” to detect and track objects in scenes (computer vision)

4) Image Compression

a. reduce image file size in number of bytes of images for transmission/storage

b. lossless or lossy give respectively low or high ratio of original to compressed

c. size in bytes (e.g., 2-to-1 or 20-to-1)

5) Computer Vision

a. detect objects and extract features from images

b. use features to make decisions to control or respond to scene activity

c. enhance, analyze, measure and track objects in images

Methods of Image Processing
These are the kinds of processes done on image files:

1) Images

a. Images, grayscale and color pixels

b. grayscale image data structures

c. image file formats, PGM, PPM, TIFF, GIF, PNG, JPEG

2) Point Processes

a. threshold gray levels

b. contrast stretching and contraction

c. pixel transformations, histogram adjustment

d. map pixel values to hide or expose certain objects

e. histogram equalization, dual histogram equalization

3) Area Processes

a. transform pixel values according to the values of it and its neighbors

b. smooth, sharpen, detect edges, median filters

c. filter out noise, scratches (despeckling)

d. trimmed median and convolution filtering

4) Frame Processes

a. registration of two or more images

b. combining images via pixel-wise sums, subtraction, multiplication, division

c. combining images via pixel-wise boolean logic (or fuzzy logic) functions

d. combining by minimum or maximum operations at each pixel

e. fuse images by other mathematical methods

f. multi-spectral methods

5) Geometrical Processes

a. expand/shrink lighter areas relative to darker areas to smooth boundaries

b. fill holes and remove noise

c. affine/linear transformations to rotate, translate and scale images

d. interpolation, transformed pixel locations, down-sampling and up-sampling, zooming in and out

e. nonlinear transformations to remove distortion, mirror or flip images

f. segmentation, clustering of pixels, labeling

6) Frequency Domain Analysis

a. Discrete cosine transforms (DCT’s)

b. Fast Fourier transforms (FFT’s)

c. lowpass, bandpass, highpass and bandstop filters in the frequency domain

d. Gaussian filters in the frequency domain

e. Convolution and frequency filters in the spatial domain, spatial Gaussian filters

f. Deconvolution, blind deconvolution

g. registration using frequency features

7) Color Image Processing

a. capturing color images, color cameras, color scanners

b. human color perception

c. the color models RGB, CMY, HSI, CMYK and color model transformations

d. intensity levels in color images, processing color intensity

e. pseudo-color for image enhancement

f. color image file formats: PPM, GIF, TIFF, JPEG

8) Image Compression

a. lossless and lossy encoding

b. run length encoding

c. LZW compression, GIF and PNG

d. discrete cosine transforms (DCT’s) and JPEG

e. the Carlson semi-lossy 4-to-1 fast algorithm

9) Special Topics: Stereoscopy, Synthesis and Data Visualization

a. stereo vision

b. image synthesis

c. data visualization

Applications of Image Processing
            Nowadays, image processing is used in medical diagnostics, forensics, biological microscopy, inspection of parts and materials, crop yield estimates, foliage types and area estimates, minerals, defense intelligence, topographic maps (a type of stereo vision), ocean temperatures, meteorology and other areas. An important developing area that is based mainly on image processing is computer vision. It includes enhancing images, selecting objects, identification and recognition of objects, monitoring the behavior of the objects, tracking objects, and related areas.

Image Details:

Pixels:

           An image is a rectangular array of dots called pixels (picture elements) where the number of rows M and number of columns N of dots in an image are specified. At each row-column intersection (m,n) there is a pixel, or picture element. The point (m,n) is the location of the pixel, while the pixel value at that location is designated by p(m,n), or sometimes by f(m,n) or f(x,y). The following figure shows the location (m,n), where 0 < m < M-1 and 0 < n < N-1. Note that in the figure the downward vertical direction is x and y is the horizontal rightward direction. The origin is in upper left corner.

[image: image6.png]
Fig.2.2.1.1: Image co-ordinates

Pixel Values:

    The pixel values in an image may be:

· Grayscale (or)

· Color

Grayscale Pixel Values: 
       The grayscale images are simpler and each pixel value corresponds to one byte. Grayscale usually has a range from 0 (no light intensity, or full black) to 255 (full light intensity, or full white), in integer steps. Thus the 256 grayscale values for pixels are 0, 1, 2, ..., 255. Each of these takes one byte of storage in a computer or in a file, so if an image has MxN = 256x256 = 65,536 pixels then that image takes 65,536 bytes of pixel storage in computer memory or on a storage device. An MxN = 1024x1280 image has 1,310,720 pixels. A pixel value p(x,y) or p(m,n), where 0 <= m <= M and 0 <= n <= N, is a byte (0 to 255 in binary) in grayscale or 3 bytes in color, where the respective bytes are the red (R), green (G) and blue (B) values.

Color Pixel Values: 
         Color images most often take one of two different forms. The most common method is called true-color and uses one byte for each of red, green and blue. Thus a single pixel value requires 3 bytes of memory or disk storage. From these values we can form (256)x(256)x(256) = 16,777,216 discrete colors, which is about the maximum number of different colors that humans can distinguish. An MxN = 256x256 color image of three bytes per pixel would then require 3(65,536) = 196,608 bytes. For an MxN = 1024x1280 color image the requirement is 3(1,310,720) = 3,932,160. It is clear that more colors and more pixels are more costly in computer storage and time to send on the Internet.

           An older format for color is to allow only 256 colors at any one time on the screen. A byte indicates a color but it is actually the address from 0 to 255 of one of 256 color registers, each of which contains 18 bits for 6 bits each of R, G and B. The 256 color set, called a palette, must be loaded into the registers before the image can be displayed, or else the palette can be read from the image file.

Grayscale Processing:
       Grayscale images are suitable and enough for any image processing application/project to apply and analyze all types of image-processing techniques such as interpolation, filtering, enhancing, etc. Even when we process color images we often process the intensity part, which is grayscale, and then put the color back into the processed image. In color-images, true-color presents all the colors that human eye can visualize. This is suitable for many types of images, but the current trend is toward even more colors than true-color, which may be a waste of resources due to the fact that such fine resolution of color is wasted on humans.

The following figure shows the grayscale pixel values as a function f(m,n) of the pixel locations at rows m and columns n. Thus we can picture an image as a 3-D surface that has elevation (gray level) as range above the image plane that is the domain. The gray levels are discrete values, so the surface is made of discrete steps at the pixels.

[image: image7.png]
Fig: Display of a Pixel Value

PPM/PGM/PBM File Formats:
           An image is stored in a particular file format. The most popular formats nowadays are GIF (Graphics Interchange Format), JPEG (Joint Photographic Experts Group), PNG (Portable Network Graphics), TIFF (Tagged Image File Format), PGM (Portable Gray Map) and PPM (Portable Pixel Map). Examples of the file names for the image lena256 are lena256.gif, lena256.jpg (or lena256.jpeg), lena256.png, lena256.tif, lena256.pgm and lena256.ppm. The PGM format is strictly grayscale and is the simplest file format for processing. These files contain the actual pixel values without any compression or decomposition of the data into file sections; and hence these images are more suitable for any image processing applications.

These formats are a convenient (simple) method of saving image data, they are equally easy to read in ones own applications. Unfortunately the standards aren't always implemented as well as they could. 

PPM

A PPM file consists of two parts, a header and the image data. The header consists of at least three parts normally delinineated by carriage returns and/or linefeeds but the PPM specification only requires white space. The first "line" is a magic PPM identifier, it can be "P3" or "P6" (not including the double quotes!). The next line consists of the width and height of the image as ascii numbers. The last part of the header gives the maximum value of the colour components for the pixels, this allows the format to describe more than single byte (0..255) colour values. In addition to the above required lines, a comment can be placed anywhere with a "#" character, the comment extends to the end of the line. 

The following are all valid PPM headers. 

Header example 1
P6 1024 788 255

Header example 2
P6 

1024 788 

# A comment

255

Header example 3
P3

1024 # the image width

788 # the image height

# A comment

1023

The format of the image data itself depends on the magic PPM identifier. If it is "P3" then the image is given as ascii text, the numerical value of each pixel ranges from 0 to the maximum value given in the header. The lines should not be longer than 70 characters. 

PPM example 4
P3

# example from the man page

4 4

15

 0  0  0    0  0  0    0  0  0   15  0 15

 0  0  0    0 15  7    0  0  0    0  0  0

 0  0  0    0  0  0    0 15  7    0  0  0

15  0 15    0  0  0    0  0  0    0  0  0

If the PPM magic identifier is "P6" then the image data is stored in byte format, one byte per colour component (r,g,b). Comments can only occur before the last field of the header and only one byte may appear after the last header field, normally a carriage return or line feed. "P6" image files are obviously smaller than "P3" and much faster to read. Note that "P6" PPM files can only be used for single byte colours. 

While not required by the format specification it is a standard convention to store the image in top to bottom, left to right order. Each pixel is stored as a byte, value 0 == black, value 255 == white. The components are stored in the "usual" order, red - green - blue. 
PGM

          This format is identical to the above except it stores greyscale information, that is, one value per pixel instead of 3 (r,g,b). The only difference in the header section is the magic identifiers which are "P2" and "P5", these correspond to the ascii and binary form of the data respectively. 
PGM example 

An example of a PGM file of type "P2" is given below 

P2

24 7

15

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  3  3  3  3  0  0  7  7  7  7  0  0 11 11 11 11  0  0 15 15 15 15  0

0  3  0  0  0  0  0  7  0  0  0  0  0 11  0  0  0  0  0 15  0  0 15  0

0  3  3  3  0  0  0  7  7  7  0  0  0 11 11 11  0  0  0 15 15 15 15  0

0  3  0  0  0  0  0  7  0  0  0  0  0 11  0  0  0  0  0 15  0  0  0  0

0  3  0  0  0  0  0  7  7  7  7  0  0 11 11 11 11  0  0 15  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

PBM

            PBM stores single bit pixel image as a series of ascii "0" or "1"'s. Traditionally "0" refers to white while "1" refers to black. The header is identical to PPM and PGM format except there is no third header line (the maximum pixel value doesn't have any meaning. The magic identifier for PBM is "P1". 
PBM example 

          Here is an example of a small bitmap in this format, as with PPM files there can be no more than 70 characters per line. 

P1

# PBM example 

24 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CHAPTER 4
SYSTEM DESIGN

Sequence Diagram:
[image: image8.emf]UserSystem

Sending Image

Apply Correlation

Apply Mean Filter

Sending the output Diagram


            A Sequence diagram depicts the sequence of actions that occur in a system. The invocation of methods in each object, and the order in which the invocation occurs is captured in a Sequence diagram. This makes the Sequence diagram a very useful tool to easily represent the dynamic behavior of a system.

            A Sequence diagram is two-dimensional in nature. On the horizontal axis, it shows the life of the object that it represents, while on the vertical axis, it shows the sequence of the creation or invocation of these objects.              
                                               CHAPTER 5
IMPLEMENTATION

SYSTEM OVERVIEW
        The reconstruction of lost blocks follows three computationally efficient steps:

a) classify lost blocks into texture and structure;

b) synthesize blocks which were classified as texture (use texture synthesis).
c) fill in blocks which were classified as structure (use image in painting).

We now proceed to describe each one of these components.

5.1 Block Classification

           The first step in the reconstruction is to classify the lost blocks into texture or structure. This decision is taken at the receiver by querying the region surrounding the lost block. Lost blocks are, of course, excluded from the querying process. (Alternatively, we may perform this procedure at the transmitter, and then transmit one bit per block, indicating the presence of texture or structure. This entails the overhead of one extra bit per block.) At the core of this classification,. To determine whether or not a block has texture (or noise), we use a simple coarseness measure given by the number of local extrema in the neighborhood of the lost block. The number of local extrema are simply the pixels which are local row extrema as well as local column extrema.

The number of local extrema in a window of side[image: image9.png] is given by

[image: image10.png]
where UB and LB are respectively the upper and lower bounds for texture coarseness and are selected by the user. These coarseness values vary from 0 (no extrema) to 1 (all pixels in the selected window are extrema).

            The above technique is applied for each available block of 8 x 8 pixels in the immediate neighborhood of the lost block. Even if a single block from this neighborhood contains structure, we first consider a decision in favor of structure. However, reconstruction being our primary goal, this criteria alone might be insufficient, as we illustrate now. Consider for example that we have lost a block containing an edge between two textured regions. The edge between two regions is certainly an expression of structure, and needs to be given precedence over texture even if the block in question has more than the necessary coarseness. The logic behind this will be understood in the next section, wherein, we require the textured region surrounding the block to fill it up. If we were to classify a block containing an edge as texture, we would not be able to reconstruct the edge later, as will become clear after examining the texture synthesis algorithm.

            To overcome this limitation, we impose an additional constraint as follows. We consider the 8-neighborhood of a 8 x 8 block and calculate differences between the average values of the blocks on opposite sides of the center block (considering only av\ailable blocks). If the four resulting differences are above a threshold, we decide that an edge does indeed pass through the textured block. We then designate the block as structure, not withstanding its high coarseness. This simple additional constraint has provided a correct classification in all tested images.

5.2 Texture Synthesis

           From the earlier classification, we conclude that when a block is classified as having texture, the entire 8-neighborhood of that block has texture. The missing block is then filled-in with the texture from its surrounding. Let the region to be filled be denoted by . The lost block will now be filled, pixel by pixel, in a raster fashion. Let It be a representative template touching the left of a pixel [image: image11.png]. We proceed to find a [image: image12.bmp] from the available neighborhood, such that a given distance [image: image13.png] is minimized. d is a normalized sum of squared differences (SSD) metric. Once such a [image: image14.bmp] is found, we choose the pixel to the immediate right of , as our candidate for [image: image15.png]. For stochastic textures, the algorithm selects at random one of the pixels neighboring .

              The template It can be a simple seed-block of 3 x 3 pixels as shown in Fig. 1. Then, of all possible 3 x 3 blocks in the 8-neighborhood, the one with the minimum normalized SSD is found and a pixel to its right is copied into the current pixel in the lost block, as shown..

5.3 Image Inpainting

          Structure in an image can be an edge between two regions or a deterministic change in color or gray value. When the block classification algorithm detected a structured block, this is restored using the digital inpainting procedure. Once again let Ω be the region to be filled in (inpainted) and [image: image16.bmp] be its boundary. The basic idea in inpainting is to smoothly propagate the information surrounding Ω in the direction of the isophotes entering [image: image17.bmp]. Both gray values and isophote directions are propagated inside the region. Denoting by the image, this propagation is achieved by numerically solving the partial differential equation ( is an artificial time marching parameter)

[image: image18.png]
where (, ∆ , [image: image19.bmp] and stand for the gradient, Laplacian, and orthogonal-gradient (isophote direction) respectively. This equation is solved only inside , with proper boundary conditions in [image: image20.bmp] for the gray values and isophote directions. Note that at steady state,  [image: image21.png], and [image: image22.png]. This means that [image: image23.bmp] is constant in the direction [image: image24.bmp] of the isophotes, thereby achieving a smooth continuation of the Laplacian inside the region to be inpainted.

5.3.1 Inpainting Scheme

             Image inpainting refers to the process of changing an image so that an observer seeing only the resulting image would not guess the image was intended any other way. This technique is often used in reference to the problem of image restoration. Historically many paintings may have required maintenance and touch-ups to keep them looking pristine (for example, filling in chipped paint). In the context of computer graphics, inpainting can be used to remove unwanted blemishes in an image such as scratches or an unpopular relative.

5.4 Algorithm Overview

The main steps are:

1. Statistics collection – the range of colors within the image is divided into a number of evenly sized bins (each representing an interval of color). For each bin and each offset within a pixel’s neighborhood, we build a histogram over the image of the color values seen. From this distribution representation we can compute the mean and variance and use them in our measures of certainty.

2. Creating the weight table – for each bin and neighborhood offset pair (for which we have statistics now), we compute a weighting that represents how certain we are of the color at the particular offset. A small standard deviation in the histogram means a color of this particular bin would tightly constrain the color at the particular offset. A large standard deviation in the histogram data would mean this bin color does not constrain the offset’s color much. With this intuition, our weight is chosen simply as an affine function of the standard deviation.

3. Finding the most constrained pixel – For each “damaged” pixel, we compute how much its neighbors constrain it (based on the weights computed in the previous step). Since the order in which we fill in the damaged region matters (most texture synthesis methods are sensitive to ordering), we seek to fill in the pixel that is most constrained by its neighbors.

4. Copying the best match – once the pixel to replace is determined, we look at the determined neighbors and find a pixel in the image with the best neighborhood match. This pixel is the used to replace the damaged one. Once the replacement has taken place, the neighbors get their weights updated since this new replacement places some additional constraint on its neighbors. The last two steps of this process are repeated until the entire damaged region is filled.

           The user is first prompted to load in an image and specify a damaged region; the specification of the damaged region will take the form of an image mask (that is the same size as the source image). The mask values can take any real number between 0 and 1 (the current user interface implements only a binary 0 or 1, but the rest of the algorithm handles a continuous specification of certainty). A value of 1 means the pixel is already completely determined. A value of 0 means the pixel value is completely unreliable and damaged. A value in between can be thought of as some probability of the pixel value being good. A quick loop through the mask determines how many pixels must be replaced (have mask values less than 1).

5.4.1 Algorithm Description

Binning and Statistics Collection

             For this implementation, each color channel had its range ([0,1] for floating point) divided into 4 equally sized bins. Since there are 3 color channels (RGB) to the image, this gives 43 different color bins. Each color bin is further divided into sub-bins with one subbin for each possible pixel neighborhood offset. This sub-binning gives the statistics collection process some spatial information. A pixel neighborhood is a 5x5 pixel region. So there are 25 sub-bins within each color bin. The idea is that each pixel will have a certain color, corresponding to a particular bin. That color (of the pixel) will then constrain each neighborhood pixel (5x5 pixel region centered around pixel of interest) to have some certain color. To understand how a particular color constrains its neighbors we build a histogram over the entire image. Now that we have a histogram for each color bin and neighborhood offset pair, we can compute the standard deviations for each and use this information to derive some measure of how much each color constrains its neighbors.

            The decision to use 4 color bins per channel was made as a tradeoff between having too little discrimination between colors (too few bins) and not getting enough data in each histogram to make good estimates (splitting data between too many bins). A 5x5 pixel neighborhood was chosen because a larger neighborhood radius would likely incur too many texture lookups, whereas having a smaller radius would yield results too sensitive to noise. Ideally, some search over multiply sized neighborhoods would be used to locate matches on the order of the underlying feature scales.

5.5 Constraint Weights

                As noted before, a weight is determined for each bin and offset pair. For every histogram we sum the variances for each channel and take the square root (to get units comparable to channel units); call this value s. We then choose to make the assigned weight an affine function of this value s. The particular affine function chosen is: w = 1.5−4.1s (1) where w is the weight assigned to the (bin,offset) pair. The coefficient 4.1 is chosen to make the separation between varying levels of certainty more pronounced. The constant 1.5 was chosen to simply add enough so that the weights are almost always positive. When a sub-bin has no histogram data, we rather arbitrarily set the weight to be 0.4.

           After computing the weights, the mask is remade. Already determined pixels are given a large negative value. The undetermined pixels are given a mask value equal to the sum of the weights their neighbors place on them divided by the number of neighbors. Making the determined pixels have mask value a large negative number means we can just look for the max mask value when determining which pixel to determine next. Note that any undetermined pixel will have a mask value that is nonnegative.
5.6 Determining Pixels

         The undetermined pixel with the greatest mask value is chosen as the next pixel to determine. It is the pixel most constrained by the colors of its neighbors (as voted by the image’s content). We find the pixel in the image that has a completely determined neighborhood and matches the undetermined pixel’s determined neighborhood best. This pixel is then copied into the RGB channels of the undetermined one. The color copied also determines the weights added to the newly determined pixel’s neighbors.

Mapping

           This process is actually split into four calls. The following figure illustrates the process. The first call is used to find the mask location with the highest value. A single pass is used to render the mask values into the alpha channel of the scratch space. The red and green channels are used to store the texture location of each sample (so the red values go from 0.5 to width-0.5; similarly for heights). The blue channel is unused for this part. This allows a single fragment program to handle a quadratic search by running some logarithmic number of iterations. Between each iteration, we swap the scratch space and index buffers’ designations as rendering source and target. The render target only requires one fourth the pixels of the previous step since the highest mask value among four source pixels is stored for each

[image: image25.png]
destination pixel. We make sure to iterate such that we end up with the final answer (max mask value location) in the (0,0) pixel of the indexing buffer. Along with the active image buffer, the indexing buffer becomes an input texture to the next call. This call simply needs to compute the match distance between each active image pixel and the pixel singled out in the previous step. Note that this will involve a number of texture lookups (including dependent texture reads). When finding good matches we only really want to consider pixels that have fully defined neighborhoods. Partially defined neighborhoods mean the pixel isn’t fully determined. Since excessive conditional testing is expensive in fragment programs, we simply penalize (by a large amount) any pixel with an incomplete neighborhood by adding in a large value modulated by a step function.

The distance measure used for determining good matches is a weighted sum of the neighborhood pixel differences. The weights for the sum (one weight for each neighborhood offset) are set according to how strongly each offset in the pixel neighborhood to match constrains the undetermined pixel. For this step, the scratch space is used as the output buffer. The red and green channels store the texture location (of the pixels in the destination buffer); the blue channel is used to store the indexing buffer’s (x,y) position (turned into a single value to fit in one channel); the alpha channel stores the match distance. The format used for the output buffer in the last step allows it now to be searched over again (also using a quadratic search). We seek the minimum distance this time. But since we already had a max finder, we simply modify the above so the negated match distances are stored in the alpha channel and we do another max search over the scratch buffer.

In the last phase, we copy the best matching pixel into the most constrained pixel’s location and update all the neighbors’ weights to reflect the fact that this newly assigned value additionally constrains its neighbors. Adding more weight to the neighbors is complicated slightly by the fact that destination pixels are written to in parallel, but with some use of conditional testing and step function modulation this can be worked out fine.

After each succession of these four calls, the buffers corresponding to “active image” and “scrach space” are switched. The four calls are iterated as many times as there are undetermined pixels to fill.

CHAPTER 6
       SYSTEMTESTING

6.1 SOFTWARE TESTING

Once source code has been generated, software must be tested to uncover (and correct) as many errors as possible before delivery to your customer. Your goal is to design a series of test cases that have a high likelihood of finding errors. To do so we have techniques provide systematic guidance for designing tests that: (1) exercise the internal logic of software components, and (2) exercise the input and output domains of the program to uncover errors in program function, behavior, and performance. Resource presented in this section address the following topic categories.Software Testing is the process of confirming the functionality and correctness of software by running it. Software testing is usually performed for one of two reasons:
1) Defect detection

2) Reliability estimation.

The problem of applying software testing to defect detection is that software can only suggest the presence of flaws, not their absence (unless the testing is exhaustive). The problem of applying software testing to reliability estimation is that the input distribution used for selecting test cases may be flawed. In both of these cases, the mechanism used to determine whether program output is correct is often impossible to develop. Obviously the benefit of the entire software testing process is highly dependent on many different pieces. If any of these parts is faulty, the entire process is compromised.

Software is now unique unlike other physical processes where inputs are received and outputs are produced. Where software differs is in the manner in which it fails. Most physical systems fail in a fixed (and reasonably small) set of ways. By contrast, software can fail in many bizarre ways. Detecting all of the different failure modes for software is generally infeasible.

`The key to software testing is trying to find the myriad of failure modes – something that requires exhaustively testing the code on all possible inputs. For most programs, this is computationally infeasible. It is commonplace to attempt to test as many of the syntactic features of the code as possible (within some set of resource constraints) are called white box software testing technique. Techniques that do not consider the code’s structure when test cases are selected are called black box technique.

Functional testing is a testing process that is black box in nature. It is aimed at examine the overall functionality of the product. It usually includes testing of all the interfaces and should therefore involve the clients in the process.

Final stage of the testing process should be System Testing. This type of test involves examination of the whole computer system, all the software components, all the hard ware components and any interfaces.

The whole computer based system is checked not only for validity but also to meet the objectives.

CHAPTER 7
RESULTS

STEP 1:
[image: image26.png]
                                                   Fig 7.1
      The above is the form created to take image consisting of missing blocks as an input.The “Browse” button helps us to browse the image from the location where the images exist.The “Apply filter” button is used to apply the mean filter to the image taken.The frames Input - image & output-Image are used to show the input image taken & the output obtained respectively  

STEP 2:

[image: image27.png]
Fig 7.2
        The above fig shows how we browse for the images to give input by using the “Browse button”

STEP 3:

[image: image28.png]
Fig 7.3
           This fig explains how we select an image from the location to give input
STEP 4:

[image: image29.png]
Fig 7.4
The above fig shows the path after selecting the image from the desired location
STEP 5:

[image: image30.png]
Fig 7.5
The above fig shows the processing after the “Apply filter “button is clicked

STEP 6:
[image: image31.png]
Fig 7.6
The above fig shows the desired output after applying the filter to the input image
CONCLUSION
             In this project we have proposed a new technique for the filling-in of missing blocks in wireless transmission of JPEG or block based) compressed images. We have shown that as long as the features in the image are not completely lost, they can be satisfactorily reconstructed using a combination of computationally efficient image inpainting and texture synthesis algorithms. This eliminates the need for retransmission of lost blocks. When the image resolution is increased, the quality of reconstruction improves and a retransmission request is rarely required, resulting in a better effective data transmission rate.

             Further, by intentionally (and automatically) dropping image blocks, and using this filling-in approach, we can improve the compression ratio provided by lossy JPEG, without altering the existing JPEG algorithm. As seen in Table II, the improvement in compression ratio becomes more significant as the image resolution is increased. 

FUTURE ENHANCEMENTS
                   A number of research directions should be taken following the results reported here.We have tried to use image-dependent information, i.e., texture and structure, to enhance the performance of JPEG. The compression ratio can be further increased by finding better masks by providing more image information. In a more general setting, the extension of the approach presented here, to color data needs to be investigated. Since the missing blocks in the different channels need not be in the same image position, information from different channels can be used in the block classification and reconstruction. Adding this to the current neighboring information used is expected to improve even further the quality of the results. A preliminary example is presented in Fig. 8. Further results on this will be reported elsewhere.
BIBLIOGRAPHY

Reference Image



Read Image



Output Image



Apply Correlation



Apply MEANFILTER





42

_1245917692

_1245917693

_1245917694

_1245917691

