PAGE

 CHAPTER 1

INTRODUCTION
 AIM OF THE PROJECT:

We are of the belief that the easiest way to keep something from prying eyes is to place it right in front of the person looking for it and make it look as innocuous as possible.

Everyone has a taste for a certain kind of music. Hence, it is more than likely that the person will have that kind of music on the storage device of his computer. Also, it is quite common case where people share and transfer different music files to one another. If one were able to hide the message can be. Also, transfer of this message can be done quite conveniently without raising any eyebrows.

Our aim is to come up with a technique of hiding the message in the audio file in such a way, that there would be no perceivable changes in the audio file after the message insertion. At the same time, if the message that is to be hidden were encrypted, the level of security would be raised to quite a satisfactory level. Now, even if the hidden message were to be discovered the person trying to get the message would only be able to lay his hands on the encrypted message with no way of being able to decrypt it.

STEGANOGRAPHY IN AUDIO:

Data hiding in audio signals is especially challenging, because the Human Auditory System (HAS) operates over a wide dynamic range. The HAS perceives over a range of power greater than one billion to one and a range of frequencies greater than thousand to one. Sensitivity to additive random noise is also acute.

The perturbations in a sound file can be detected as low as one part in ten million which is 80dB below ambient level. However there are some ‘holes’ available. While the has a large dynamic range, it has a fairly small differential range. As a result, loud sounds tend to mask out the quieter sounds.

Additionally, the HAS is unable to perceive absolute phase, only relative phase. Finally there are some environmental distortions so common as to be ignored by the listener in most cases.
LOW-BIT ENCODING:

Low-bit encoding is the one of the simplest way to embed data into other data structures. By replacing the least significant bit of each sampling point by a coded binary string, we can encode a large amount of data in an audio signal.

Ideally, the channel capacity is 1 kb per second (kbps) per 1 kilohertz(kHz), e.g., in a noiseless channel, the bit rate will be 8 kbps in an 8 kHz sampled sequence and 44 kbps in a 44kHz sampled sequence. In return for this large channel capacity, audible noise is introduced. The impact of this noise is a direct function of the content of the host signal, e.g., crowd noise during a live sports event would mask low-bit encoding noise that would be audible in a string quartet performance.

Adaptive data attenuation has been used to compensate this variation. The major advantage of this method is its poor immunity to manipulation. Encoded information can be destroyed by channel noise, re-sampling, etc., unless it is encoded using redundancy techniques.

In order to be robust, these techniques reduce the data rate which could result in the requirement of a host of higher magnitude, often by one to two orders of magnitude. In practice, this method is useful only in closed, digital-to-digital environments.

[image: image25.png]
PROJECT DESCRIPTION:
1.1 Objection of the project:

In Order to be able to define our system architecture, we must first dearly state what our objective that will deriver system behavior at the same one of our objective is to create an experience, which is not only unique to the (user) client, but also makes him feel that he has loyal attachment to the system and approaches us whenever he/she needs.

To achieve better results and success by implement computerized process instead of manual process.

1.2 Modules and their Description
Data hiding and extracting from an audio file is done in two main modules.
· Embed module.

· Extract module.

Embed Module (To embed the text file into the audio file)

 In this module, the first step is selecting an input audio file . The selection is made through opening a new dialog box and the path selected is displayed through a textbox. The second step is selecting an output audio file in which text data or a text file is embedded. The third step is choosing a text file or typing any text message for embedding. Fourth step is selecting a key file. In the fifth step what ever the files that we have selected are viewed and verification of the path is done. In the sixth process data is embedded in to the audio file using low bit encoding technique.

After embedding the content both the audio files are played and a listener cannot find any difference between the audios.

Extract Module (To extract the text file from the audio file)

 In this module, the first step is the process of selecting the encrypted audio file. This is the file that a user has to extract information from the output audio. Second process involved in selecting a new text file to display the embedded meassage.Symmetric encryption method is used here, so the key selected during the embedding process is used in decrypting the message. All the process done till now are displayed using a list box and finally the embedded message can be viewed with the help of a file or in a textbox.

CHAPTER 2

SOFTWARE PROJECT PLAN
 This chapter discuss about that time schedule for the project and it contain the various phases of the project.
The Various Phases of the Project:
	S.NO

	TASK
 TASK
	DURATION

	1
	Requirement Specification
	10 Day’s

	2
	Requirement document specification

	10 Day’s

	3
	Design analysis
	20 Day’s

	4
	Design Documentation
	15 Day’s

	5
	Design Review
	20 Day’s

	6
	Coding
	15 Day’s

	
	Total
	90 Day’s

CHAPTER 3

CUSTOMER REQUIREMENTS DETERMINATION
3.1 EXISTING SYSTEM:

 Nowadays, several methods are used for communicating secret messages for defense purposes or in order to ensure the privacy of communication between two parties. So we go for hiding information in ways that prevent its detection.

Some of the methods used for privacy communication are the use of invisible links, covert channels are some of existing systems that are used to convey the messages.

3.2 PROPOSED SYSTEM:

 The proposed system uses Audio file as a carrier medium which add another step in security. The objective of the newly proposed system is to create a system that makes it very difficult for an opponent to detect the existence of a secret message by encoding it in the carrier medium as a function of some secret key and that remains as the advantage of this syste
 CHAPTER 4
SOFTWARE REQUIREMENTS SPECIFICATION

Software Requirements Specification (SRS) is the starting point of the software development activity. Little importance was given to this phases in the early days of software development. The emphasis was first on coding and then shifted to design.

As systems grew more complex, it become evident that the goal of the entire system cannot be easily comprehended. Hence need for the requirements analysis phase arose. Now, for large software systems, requirements analysis is perhaps the most difficult activity and also the most error prone.

Some of the difficulty is due to the scope of this phase. The software project is imitated by the client needs. In the beginning these needs are in the minds of various people in the client organization. The requirement analyst has to identify the requirements by tacking to these people and understanding there needs. In situations where the software is to automated a currently manuals process, most of the needs can be understood by observing the current practice.

The SRS is a means of translating the ideas in the minds of the clients (the output) into formal document (the output of the requirements phase). Thus the output of the phase is a set of formally specified requirements, which hopefully are complete and consistent, while the input has none of these properties.

4.1 Functional Requirement

 4.2 Performance Requirements

The project must the end user requirements. Accuracy and fast must be imposed in the project.

The project is development as easy as possible for the sake of end user. The project has to be developed with view of satisfying the future requirements and future enhancement.

The tool has been finally implemented satisfying the needs specified by the company. As per the performance is concerned this system said is performing

This processing as well as tine taken to generate well reports where also even when large amount of data was used. The system is designed in such a way that even when large amount of data used for processing there would less performance degradation.

4.3 Interface Requirements

4.3.1 Hardware Interface

The stranded input device like keyboard and mouse are to get input. The output will be generated and display in the monitor. The reports can also be exported to a SQL-server document are text file. The stranded printer in used to take outputs.

4.3.2 Software Interface

The design part and interface id done the front end ASP.Net and SQL server as a backend of the project.

4.4 Operational Requirements

The database or databases that are being failed over to the stand by server cannot be used for anything else. But databases on the standby server not being used for failover can still be used normally.

When it comes time for actual fail over,you much one of two things to make your application work either rename the standby server the same name as the failed production server(and the IP address),or re-point your user’s applications to new standby server.in some cases,neither of this option is practical.

4.5 Resource Requirements
4.5.1 Software Specification:-
 OPERATING SYSTEM

: Windows XP Professional

 FRONT END

: Microsoft Visual Studio .Net 2008
 BACK END

: SQL SERVER 2005

 CODING LANGUAGE
 : C# .Net

4.5.2 Hardware Specification:-
 SYSTEM
 : Pentium III 700 MHz

 HARD DISK

 : 40 GB

 FLOPPY DRIVE

 : 1.44 MB

 MONITOR

 : 15 VGA colour monitor

 MOUSE
 : Logitech.

 RAM
 : 128 MB

 KEYBOARD
 : 110 keys enhanced.

4.6 Security Requirements

Web application are available via network access, it is a difficult. If not possible, to limit the population of the end-user who may access the applications? In order to product sensitive connect and provide secure mode be implemented throughout the infrastructure that the supports web application and within the application itself.

Web Application have become heavy integrated with critical corporate and database.

E-commerce application extracts and then store sensitive customer information.

4.7 Design Requirements

To create project, add base masters and masters to the project, assign behaviors to the master, create and assign behavior sets, and then apply, test and validate those behaviors. It also shows how to create and build a stencil to hold the shapes.

4.8 Quality and Reliability Requirements

A software component that is developed for reuse would be correct and would contain no defects. In reality, formal verification is not carried out routinely, and defects can add to occur.However,with each reuse,,defects are found eliminated, and a components qualify improve as a result. Over time the components virtually defect free.

Software reliability is defined in statical term as” the probability of faultier-free operation of a computer program in a specified environment for specified tine”. The software quality and reliability, failure is nonconformance to software requirements. Failure can be only anything or catastrophic. one failure can be corrected within seconds while another requirements week even mouths to correct. Complicating the issue even further, the correction of the one failure may in fact result in the introduction of the errors that ultimately result in other failure.

Web
 Correct link processing

Application
Reliability
 Error recovery

Quality
 Input validation and recovery

CHAPTER 5

SYSTEM ANALYSIS

In this section discussed about data flow diagram, Entity relationship diagram. these things are represented as diagrams with proper notation.

5.1 Data Flow Diagram

The data flow diagram is one of the most improvement tools used by the system analyst DeMacro (1978) Nad Gand Sarson (1979) popularized the use if the data flow diagram as modeling tools through their structured system analysis methodologies.

A data flow diagram should be the first tool used by system analyst to model system components. These components are the system processes; the data used by this processes and external entities that interact with the system and the information flows in the system.

There are four kinds of system components

5.1.1. Process

Process show what system does. Each process has one or more data inputs and produce one or more data output, Circles in a data flow diagram represent process. Each process has unique name and number. This name and number appear inside the circle that represents the processes in a data flow diagram.

This process is represented as circle

5.1.2. Data Stores:

File or data store is depositary of data. They contain data that is retained in the system. Processes can enter the data into a data store or retrieve data from the data store. Each data store is represented by thin line in the data flow diagram and each data store has a unique name.

The data store is represented in form of a line

5.1.3 External Entities:

External entities are outside the system but they either supply input data into the system or use the system output, they are entities which the designer has no control. Square or rectangle may represent external entities that supply data into a system or some times called sources. External entities that use the system data are sometimes called sinks.

 SHAPE * MERGEFORMAT

5.1.4 Data Flows:

Dataflow model the passage of data in the system and are represented lines joining system components. An arrow indicates the direction of the flow and the line labeled by the name of the data flow.

UML Diagram:

 Select Input Audio File

 Select Output Audio File

Embedded Data

Select Key

 Embedded Audio file

 Select encrypt audio file

Enter New Text

Select Key
 Extract Audio File

 View Output

Data Flow Diagram

USECASE DIAGRAM1: (EMBEDDING MODULE):

[image: image2.png]
USECASEDIAGRAM2: (EXTRACTION MODULE):

[image: image3.png]
CLASS DIAGRAM:

[image: image4.png]
 SHAPE * MERGEFORMAT

 CHAPTER 6

SYSTEM DESIGN

Design is multi-step process that focuses on data structure software architecture, procedural details, (algorithms etc.) and interface between modules. The design process also translates the requirements into the presentation of software that can be accessed for quality before coding begins.

Computer software design changes continuously as new methods; better analysis and broader understanding evolved. Software Design is at relatively early stage in its revolution.

Therefore, Software Design methodology lacks the depth, flexibility and quantitative nature that are normally associated with more classical engineering disciplines. However techniques for software designs do exist, criteria for design qualities are available and design notation can be applied.
6.1 INPUT DESIGN

Input design is the process of converting a user-oriented description of the inputs to a computer based business system into a program-oriented specification.

 The objectives in the input design:

· To produce a cost-effective method of input.

· To achieve a highest possible level of accuracy.

· To ensure that input is acceptable to and understood by the user staff.
AUDIO FILE FORMAT:

 An audio format is a medium for storing sound and music.It is a container format for storing audio data on a computer system. There are numerous file formats for storing audio files.

 The general approach towards storing digital audio formats is to sample the audio voltage (corresponding to a certain position in the membrane of a speaker) in regular intervals (e.g. 44,100 times per second for CD audio or 48,000 or 96,000 times per second for DVD video) and store the value with a certain resolution (e.g. 16 bits per sample in CD audio). Therefore sample rate, resolution and number of channels are key parameters in audio file formats.

Types of formats:
 There are three major groups of audio file formats:

1) Common formats, such as WAV, AIFF and AU.

2) Formats with lossless compression, such as FLAC, Monkey’s Audio (filename extensionAPE), WavPack, Shorten, TTA, Apple Lossless,and lossless Windows Media Audio(WMA).

3) Formats with lossy compression, such as MP3, Vorbis, lossy Windows Media Audio (WMA) and AAC.

 WAV is a flexible file format designed to store more or less any combination of sampling rates or bitrates. This makes it an adequate file format for storing and archiving an original recording.
WAV FORMAT:

WAV (or WAVE), short for Waveform audio format, is a Microsoft and IBM audio fileformat standard for storing audio on PCs . It is a variant of the RIFF bitstream format method for storing data in "chunks".

A WAVE file is often just a RIFF file with a single "WAVE" chunk which consists of two sub-chunks -- a "fmt " chunk specifying the data format and a "data" chunk containing the actual sample data.

[image: image6.png]
The canonical WAVE format starts with the RIFF header:

0 - 4 ChunkID Contains the letters "RIFF" in ASCII form

4 - 4 ChunkSize 36 + SubChunk2Size, or more precisely:

 4 + (8 + SubChunk1Size) + (8 + SubChunk2Size)

 This is the size of the rest of the chunk

 Following this number. This is the size of the

 Entire file in bytes minus 8 bytes for the

 Two fields not included in this count:

 ChunkID and ChunkSize.

8 - 4 Format Contains the letters "WAVE"

The "WAVE" format consists of two subchunks: "fmt " and "data":

The "fmt” subchunk describes the sound data's format:

12 - 4 Subchunk1ID Contains the letters "fmt "

16 - 4 Subchunk1Size 16 for PCM. This is the size of the

 Rest of the Subchunk which follows this

 Number.

20 - 2 AudioFormat PCM = 1 (i.e. Linear quantization)

 Values other than 1 indicate some

 Form of compression.

22 - 2 NumChannels Mono = 1, Stereo = 2, etc.

24 - 4 SampleRate 8000, 44100, etc.

28 - 4 ByteRate = SampleRate * NoChannels * BitsPerSample/8

32 - 2 BlockAlign = NumChannels * BitsPerSample/8

 The number of bytes for one sample including

 All channels.

34 - 2 BitsPerSample 8 bits = 8, 16 bits = 16, etc.

The "data" subchunk contains the size of the data and the actual sound:

36 - 4 Subchunk2ID Contains the letters "data"

40 - 4 Subchunk2Size = NoSamples * NoChannels* BitsPerSample/8

 This is the number of bytes in the data.

 You can also think of this as the size

 of the read of the subchunk following this

 Number.

44 * Data The actual sound data.

As an example, here are the opening 72 bytes of a WAVE file with bytes shown as hexadecimal numbers:

52 49 46 46 24 08 00 00 57 41 56 45 66 6d 74 20 10 00 00 00 01 00 02 00

22 56 00 00 88 58 01 00 04 00 10 00 64 61 74 61 00 08 00 00 00 00 00 00

24 17 1e f3 3c 13 3c 14 16 f9 18 f9 34 e7 23 a6 3c f2 24 f2 11 ce 1a 0d

Here is the interpretation of these bytes as a WAVE soundfile:

[image: image7.png]
 Though a WAV file can hold compressed audio, the most common WAV format contains uncompressed audio in the pulse-code modulation (PCM) format. PCM audio is the standard audio file format for CDs at 44,100 samples per second, 16 bits per sample. Since PCM uses an uncompressed, lossless storage method, which keeps all the samples of an audio track, professional users or audio experts may use the WAV format for maximum audio quality. WAV audio can also be edited and manipulated with relative ease using software.

The usage of the WAV format has more to do with its familiarity, its simplicity and simple structure, which is heavily based on the IFF file format. Because of this, it continues to enjoy widespread use with a variety of software applications.

Limitations:

The WAV format is limited to files that are less than 4 GiB in size, due to its use of a 32 bit unsigned integer to record the file size header (some programs limit the file size to 2 GiB). It is sometimes necessary to go over this limit, especially when higher sampling rates or bit resolutions are required. The W64 format was therefore created for use in Sound Forge. Its 64-bit header allows for much longer recording times.
6.2 OUTPUT DESIGN

 Output design generally refers to the results and information that are generated by the system for many end-users; output is the main reason for developing the system and the basis on which they evaluate the usefulness of the application.

In the project, if the employee has to communicate with other employees they can communicate through send and receive message.
6.3 INTERFACE DESIGN

The ODBC (Open Database Connectivity) interface is a pure .NET to execute SQl statement. The ODBC provides a set classes and interfaces that can be used by developers to write database applications. Basic ODBC interactions in its simplest form, can be broken down into four steps:

1. Open a connection to the database.

2. Execute a SQL statement

3. Process the result

4. Close the connection to the database

6.4 TABLE AND DATABASE DESIGN:

Admin Login Table

[image: image8.png]
6.4.1 Normalization:

Normalization is the process of strutting relational database schema such that most ambiguity is removed. The stage of normalization are referred to as forms and progress from the least restrictive(first normal form)through the most restrictive(Fifth normal form), generally , most database designers do not attempt to implement anything higher then normal form of Boyce code Normal Form.
6.4.1.1FIRST NORMAL FORM:

 A relation is said to be in First normal form (INF) if and each attributed of the relation is atomic. More simply, to be INF, each column must contain only a single value and each now contain in the same column.
6.4.1.2 SECOND NORMAL FORM:
 In the Second normal Form, a relation must first fulfill the requirement to be in first Normal Form. Additional, each donkey attribute in the relation must be functionality dependent upon the primary key.

6.4.1.3 THIRD NORMAL FORM:

A table is said to be in third normal form and every non key attribute is functionality dependent only on the primary key. This normalization process is applied to this system and the normalized tables are given in the above section.
6.4.2 Database Design:

The database design is a must for any application developed especially more for the data store projects. Since the chatting method involves storing the message in the table and produced to the sender and receiver, proper handling of the table is a must.

In the project, login table is designed to be unique in accepting the username and the length of the username and password should be greater than zero

The complete listing of the tables and their fields are provided in the annexure under the title ‘Table Structure’.

6.5 FRONT END DESIGN
 What is .NET?

When .NET was announced in late 1999, Microsoft positioned the technology as a platform for building and consuming Extensible Markup Language (XML) Web services. XML Web services allow any type of application, be it a Windows- or browser-based application running on any type of computer system, to consume data from any type of server over the Internet. The reason this idea is so great is the way in which the XML messages are transferred: over established standard protocols that exist today. Using protocols such as SOAP, HTTP, and SMTP, XML Web services make it possible to expose data over the wire with little or no modifications to your existing code.

Figure 1.1 presents a high-level overview of the .NET Framework and how XML Web services are positioned.
 Stateless XML Web services model.

[image: image9.png]
Since the initial announcement of the .NET Framework, it's taken on many new and different meanings to different people. To a developer, .NET means a great environment for creating robust distributed applications. To an IT manager, .NET means simpler deployment of applications to end users, tighter security, and simpler management. To a CTO or CIO, .NET means happier developers using state-of-the-art development technologies and a smaller bottom line. To understand why all these statements are true, you need to get a grip on what the .NET Framework consists of, and how it's truly a revolutionary step forward for application architecture, development, and deployment.

.NET Framework:

Now that you are familiar with the major goals of the .NET Framework, let's briefly examine its architecture. As you can see in Figure 1-2, the .NET Framework sits on top of the operating system, which can be a few different flavors of Windows and consists of a number of components .NET is essentially a system application that runs on Windows.

[image: image10.png]
Conceptually, the CLR and the JVM are similar in that they are both runtime infrastructures that abstract the underlying platform differences. However, while the JVM officially supports only the Java language, the CLR supports any language that can be represented in its Common Intermediate Language (CIL). The JVM executes bytecode, so it can, in principle, support many languages, too. Unlike Java's bytecode, though, CIL is never interpreted. Another conceptual difference between the two infrastructures is that Java code runs on any platform with a JVM, whereas .NET code runs only on platforms that support the CLR. In April, 2003, the International Organization for Standardization and the International Electrotechnical Committee (ISO/IEC) recognized a functional subset of the CLR, known as the Common Language Interface (CLI), as an international standard. This development, initiated by Microsoft and developed by ECMA International, a European standards organization, opens the way for third parties to implement their own versions of the CLR on other platforms, such as Linux or Mac OS X. For information on third-party and open source projects working to implement the ISO/IEC CLI and C# specifications

The layer on top of the CLR is a set of framework base classes. This set of classes is similar to the set of classes found in STL, MFC, ATL, or Java. These classes support rudimentary input and output functionality, string manipulation, security management, network communications, thread management, text management, reflection functionality, collections functionality, as well as other functions.

On top of the framework base classes is a set of classes that extend the base classes to support data management and XML manipulation. These classes, called ADO.NET, support persistent data management—data that is stored on backend databases. Alongside the data classes, the .NET Framework supports a number of classes to let you manipulate XML data and perform XML searching and XML translations.

Classes in three different technologies (including web services, Web Forms, and Windows Forms) extend the framework base classes and the data and XML classes. Web services include a number of classes that support the development of lightweight distributed components, which work even in the face of firewalls and NAT software. These components support plug-and-play across the Internet, because web services employ standard HTTP and SOAP.

Web Forms, the key technology behind ASP.NET, include a number of classes that allow you to rapidly develop web Graphical User Interface (GUI) applications. If you're currently developing web applications with Visual Interdev, you can think of Web Forms as a facility that allows you to develop web GUIs using the same drag-and-drop approach as if you were developing the GUIs in Visual Basic. Simply drag-and-drop controls onto your Web Form, double-click on a control, and write the code to respond to the associated event.

Windows Forms support a set of classes that allow you to develop native Windows GUI applications. You can think of these classes collectively as a much better version of the MFC in C++ because they support easier and more powerful GUI development and provide a common, consistent interface that can be used in all languages.

The Common Language Runtime:

At the heart of the .NET Framework is the common language runtime. The common language runtime is responsible for providing the execution environment that code written in a .NET language runs under. The common language runtime can be compared to the Visual Basic 6 runtime, except that the common language runtime is designed to handle all .NET languages, not just one, as the Visual Basic 6 runtime did for Visual Basic 6. The following list describes some of the benefits the common language runtime gives you:

· Automatic memory management

· Cross-language debugging

· Cross-language exception handling

· Full support for component versioning

· Access to legacy COM components

· XCOPY deployment

· Robust security model

You might expect all those features, but this has never been possible using Microsoft development tools. Figure 1.3 shows where the common language runtime fits into the .NET Framework.
 The common language runtime and the .NET Framework.

[image: image11.png]
Note

 Code written using a .NET language is known as managed code. Code that uses anything but the common language runtime is known as unmanaged code. The common language runtime provides a managed execution environment for .NET code, whereas the individual runtimes of non-.NET languages provide an unmanaged execution environment.

Inside the Common Language Runtime:

 The common language runtime enables code running in its execution environment to have features such as security, versioning, memory management and exception handling because of the way .NET code actually executes. When you compiled Visual Basic 6 forms applications, you had the ability to compile down to native node or p-code. Figure 1.4 should refresh your memory of what the Visual Basic 6 options dialog looked like.

 Visual Basic 6 compiler options dialog.

 [image: image12.png]
 When you compile your applications in .NET, you aren't creating anything in native code. When you compile in .NET, you're converting your code—no matter what .NET language you're using—into an assembly made up of an intermediate language called Microsoft Intermediate Language (MSIL or just IL, for short). The IL contains all the information about your application, including methods, properties, events, types, exceptions, security objects, and so on, and it also includes metadata about what types in your code can or cannot be exposed to other applications. This was called a type library in Visual Basic 6 or an IDL (interface definition language) file in C++. In .NET, it's simply the metadata that the IL contains about your assembly.

Note

 The file format for the IL is known as PE (portable executable) format, which is a standard format for processor-specific execution.

 When a user or another component executes your code, a process occurs called just-in-time (JIT) compilation, and it's at this point that the IL is converted into the specific machine language of the processor it's executing on. This makes it very easy to port a .NET application to any type of operating system on any type of processor because the IL is simply waiting to be consumed by a JIT compiler.

Note

 The first time an assembly is called in .NET, the JIT process occurs. Subsequent calls don't re-JIT the IL; the previously JITted IL remains in cache and is used over and over again. when you learn about Application Center Test, you also see how the warm-up time of the JIT process can affect application performance.

 Understanding the process of compilation in .NET is very important because it makes clear how features such as cross-language debugging and exception handling are possible. You're not actually compiling to any machine-specific code—you're simply compiling down to an intermediate language that's the same for all .NET languages. The IL produced by J# .NET and C# looks just like the IL created by the Visual Basic .NET compiler. These instructions are the same, only how you type them in Visual Studio .NET is different, and the power of the common language runtime is apparent.

 When the IL code is JIT ted into machine-specific language, it does so on an as-needed basis. If your assembly is 10MB and the user is only using a fraction of that 10MB, only the required IL and its dependencies are compiled to machine language. This makes for a very efficient execution process. But during this execution, how does the common language runtime make sure that the IL is correct? Because the compiler for each language creates its own IL, there must be a process that makes sure what's compiling won't corrupt the system. The process that validates the IL is known as verification. Figure 1.5 demonstrates the process the IL goes through before the code actually executes.

Figure 1.5. The JIT process and verification.

[image: image13.png]
When code is JIT compiled, the common language runtime checks to make sure that the IL is correct. The rules that the common language runtime uses for verification are set forth in the Common Language Specification (CLS) and the Common Type System (CTS).

The .NET Framework Class Library

 The second most important piece of the .NET Framework is the .NET Framework class library (FCL). As you've seen, the common language runtime handles the dirty work of actually running the code you write. But to write the code, you need a foundation of available classes to access the resources of the operating system, database server, or file server. The FCL is made up of a hierarchy of namespaces that expose classes, structures, interfaces, enumerations, and delegates that give you access to these resources.

 The namespaces are logically defined by functionality. For example, the System.Data namespace contains all the functionality available to accessing databases. This namespace is further broken down into System.Data.SqlClient, which exposes functionality specific to SQL Server, and System.Data.OleDb, which exposes specific functionality for accessing OLEDB data sources. The bounds of a namespace aren't necessarily defined by specific assemblies within the FCL; rather, they're focused on functionality and logical grouping. In total, there are more than 20,000 classes in the FCL, all logically grouped in a hierarchical manner. Figure 1.8 shows where the FCL fits into the .NET Framework and the logical grouping of namespaces.
 The .NET Framework class library.

[image: image14.png]
 To use an FCL class in your application, you use the Imports statement in Visual Basic .NET or the using statement in C#. When you reference a namespace in Visual Basic .NET or C#, you also get the convenience of auto-complete and auto-list members when you access the objects' types using Visual Studio .NET. This makes it very easy to determine what types are available for each class in the namespace you're using. As you'll see over the next several weeks, it's very easy to start coding in Visual Studio .NET.

The Structure of a .NET Application

 To understand how the common language runtime manages code execution, you must examine the structure of a .NET application. The primary unit of a .NET application is the assembly. An assembly is a self-describing collection of code, resources, and metadata. The assembly manifest contains information about what is contained within the assembly. The assembly manifest provides:

· Identity information, such as the assembly’s name and version number

· A list of all types exposed by the assembly

· A list of other assemblies required by the assembly

· A list of code access security instructions, including permissions required by the assembly and permissions to be denied the assembly

 Each assembly has one and only one assembly manifest, and it contains all the description information for the assembly. However, the assembly manifest can be contained in its own file or within one of the assembly’s modules.

 An assembly contains one or more modules. A module contains the code that makes up your application or library, and it contains metadata that describes that code. When you compile a project into an assembly, your code is converted from high-level code to IL. Because all managed code is first converted to IL code, applications written in different languages can easily interact. For example, one developer might write an application in Visual C# that accesses a DLL in Visual Basic .NET. Both resources will be converted to IL modules before being executed, thus avoiding any language-incompatibility issues.

 Each module also contains a number of types. Types are templates that describe a set of data encapsulation and functionality. There are two kinds of types: reference types (classes) and value types (structures). These types are discussed in greater detail in Lesson 2 of this chapter. Each type is described to the common language runtime in the assembly manifest. A type can contain fields, properties, and methods, each of which should be related to a common functionality. For example, you might have a class that represents a bank account. It contains fields, properties, and methods related to the functions needed to implement a bank account. A field represents storage of a particular type of data. One field might store the name of an account holder, for example. Properties are similar to fields, but properties usually provide some kind of validation when data is set or retrieved. You might have a property that represents an account balance. When an attempt is made to change the value, the property can check to see if the attempted change is greater than a predetermined limit. If the value is greater than the limit, the property does not allow the change. Methods represent behavior, such as actions taken on data stored within the class or changes to the user interface. Continuing with the bank account example, you might have a Transfer method that transfers a balance from a checking account to a savings account, or an Alert method that warns users when their balances fall below a predetermined level.

Compilation and Execution of a .NET Application

 When you compile a .NET application, it is not compiled to binary machine code; rather, it is converted to IL. This is the form that your deployed application takes—one or more assemblies consisting of executable files and DLL files in IL form. At least one of these assemblies will contain an executable file that has been designated as the entry point for the application.

 When execution of your program begins, the first assembly is loaded into memory. At this point, the common language runtime examines the assembly manifest and determines the requirements to run the program. It examines security permissions requested by the assembly and compares them with the system’s security policy. If the system’s security policy does not allow the requested permissions, the application will not run. If the application passes the system’s security policy, the common language runtime executes the code. It creates a process for the application to run in and begins application execution. When execution starts, the first bit of code that needs to be executed is loaded into memory and compiled into native binary code from IL by the common language runtime’s Just-In-Time (JIT) compiler. Once compiled, the code is executed and stored in memory as native code. Thus, each portion of code is compiled only once when an application executes. Whenever program execution branches to code that has not yet run, the JIT compiler compiles it ahead of execution and stores it in memory as binary code. This way, application performance is maximized because only the parts of a program that are executed are compiled.

The .NET Framework base class library contains the base classes that provide many of the services and objects you need when writing your applications. The class library is organized into namespaces. A namespace is a logical grouping of types that perform related functions. For example, the System.Windows.Forms namespace contains all the types that make up Windows forms and the controls used in those forms.

Namespaces are logical groupings of related classes. The namespaces in the .NET base class library are organized hierarchically. The root of the .NET Framework is the System namespace. Other namespaces can be accessed with the period operator. A typical namespace construction appears as follows:

System

System.Data

System.Data.SQLClient

 The first example refers to the System namespace. The second refers to the System.Data namespace. The third example refers to the System.Data.SQLClient namespace. Table 1.1 introduces some of the more commonly used .NET base class namespaces.

	Table 1-1. Representative .NET Namespaces

	Namespace
	Description

	System
	This namespace is the root for many of the low-level types required by the .NET Framework. It is the root for primitive data types as well, and it is the root for all the other namespaces in the .NET base class library.

	System.Collections
	This namespace contains classes that represent a variety of different container types, such as ArrayList, SortedList, Queue, and Stack. You also can find abstract classes, such as CollectionBase, which are useful for implementing your own collection functionality.

	System.ComponentModel
	This namespace contains classes involved in component creation and containment, such as attributes, type converters, and license providers.

	System.Data
	This namespace contains classes required for database access and manipulations, as well as additional namespaces used for data access.

	System.Data.Common
	This namespace contains a set of classes that are shared by the .NET managed data providers.

	System.Data.OleDb
	This namespace contains classes that make up the managed data provider for OLE DB data access.

	System.Data.SQLClient
	This namespace contains classes that are optimized for interacting with Microsoft SQL Server.

	System.Drawing
	This namespace exposes GDI+ functionality and provides classes that facilitate graphics rendering.

	System.IO
	In this namespace, you will find types for handling file system I/O.

	System.Math
	This namespace is home to common mathematics functions such as extracting roots and trigonometry.

	System.Reflection
	This namespace provides support for obtaining information and dynamic creation of types at runtime.

	System.Security
	This namespace is home to types dealing with permissions, cryptography, and code access security.

	System.Threading
	This namespace contains classes that facilitate the implementation of multithreaded applications.

	System.Windows.Forms
	This namespace contains types involved in creating standard Windows applications. Classes that represent forms and controls reside here as well.

The namespace names are self-descriptive by design. Straightforward names make the .NET Framework easy to use and allow you to rapidly familiarize yourself with its contents.

Introduction to Object-Oriented Programming

 Programming in the .NET Framework environment is done with objects. Objects are programmatic constructs that represent packages of related data and functionality. Objects are self-contained and expose specific functionality to the rest of the application environment without detailing the inner workings of the object itself. Objects are created from a template called a class. The .NET base class library provides a set of classes from which you can create objects in your applications. You also can use the Microsoft Visual Studio programming environment to create your own classes. This lesson introduces you to the concepts associated with object-oriented programming.

Objects, Members, and Abstraction

 An object is a programmatic construct that represents something. In the real world, objects are cars, bicycles, laptop computers, and so on. Each of these items exposes specific functionality and has specific properties. In your application, an object might be a form, a control such as a button, a database connection, or any of a number of other constructs. Each object is a complete functional unit, and contains all of the data and exposes all of the functionality required to fulfill its purpose. The ability of programmatic objects to represent real-world objects is called abstraction.

Classes Are Templates for Objects

 Classes were discussed in Chapter 1 and represent user-defined reference types. Classes can be thought of as blueprints for objects: they define all of the members of an object, define the behavior of an object, and set initial values for data when appropriate. When a class is instantiated, an in-memory instance of that class is created. This instance is called an object. To review, a class is instantiated using the New (new) keyword as follows:

Visual Basic .NET

' Declares a variable of the Widget type

Dim myWidget As Widget

' Instantiates a new Widget object and assigns it to the myWidget

' variable

myWidget = New Widget()

 When an instance of a class is created, a copy of the instance data defined by that class is created in memory and assigned to the reference variable. Individual instances of a class are independent of one another and represent separate programmatic constructs. There is generally no limit to how many copies of a single class can be instantiated at any time. To use a real-world analogy, if a car is an object, the plans for the car are the class. The plans can be used to make any number of cars, and changes to a single car do not, for the most part, affect any other cars.

Objects and Members

 Objects are composed of members. Members are properties, fields, methods, and events, and they represent the data and functionality that comprise the object. Fields and properties represent data members of an object. Methods are actions the object can perform, and events are notifications an object receives from or sends to other objects when activity happens in the application.

 To continue with the real-world example of a car, consider that a Car object has fields and properties, such as Color, Make, Model, Age, GasLevel, and so on. These are the data that describe the state of the object. A Car object might also expose several methods, such as Accelerate, ShiftGears, or Turn. The methods represent behaviors the object can execute. And events represent notifications. For example, a Car object might receive an EngineOverheating event from its Engine object, or it might raise a Crash event when interacting with a Tree object.

Object Models

 Simple objects might consist of only a few properties, methods, and perhaps an event or two. More complex objects might require numerous properties and methods and possibly even subordinate objects. Objects can contain and expose other objects as members. For example, the TextBox control exposes a Font property, which consists of a Font object. Similarly, every instance of the Form class contains and exposes a Controls collection that comprises all of the controls contained by the form. The object model defines the hierarchy of contained objects that form the structure of an object.

 An object model is a hierarchical organization of subordinate objects contained and exposed within a main object. To illustrate, let’s revisit the example of a car as an object. A car is a single object, but it also consists of subordinate objects. A Car object might contain an Engine object, four Wheel objects, a Transmission object, and so on. The composition of these subordinate objects directly affects how the Car object functions as a whole. For example, if the Cylinders property of the Engine subordinate object is equal to 4, the Car will behave differently than a Car whose Engine has a Cylinders property value of 8. Contained objects can have subordinate objects of their own. For example, the contained Engine object might contain several SparkPlug objects.

Encapsulation

 Encapsulation is the concept that implementation of an object is independent of its interface. Put another way, an application interacts with an object through its interface, which consists of its public properties and methods. As long as this interface remains constant, the application can continue to interact with the component, even if implementation of the interface was completely rewritten between versions.

 Objects should only interact with other objects through their public methods and properties. Thus, objects should contain all of the data they require, as well as all of the functionality that works with that data. The internal data of an object should never be exposed in the interface; thus, fields rarely should be Public (public).

 Returning to the Car example. If a Car object interacts with a Driver object, the Car interface might consist of a GoForward method, a GoBackward method, and a Stop method. This is all the information that the Driver needs to interact with the Car. The Car might contain an Engine object, for example, but the Driver doesn’t need to know about the Engine object—all the Driver cares about is that the methods can be called and that they return the appropriate values. Thus, if one Engine object is exchanged for another, it makes no difference to the Driver as long as the interface continues to function correctly.

Polymorphism

 Polymorphism is the ability of different classes to provide different implementations of the same public interfaces. In other words, polymorphism allows methods and properties of an object to be called without regard for the particular implementation of those members. For example, a Driver object can interact with a Car object through the Car public interface. If another object, such as a Truck object or a SportsCar object, exposes the same public interface, the Driver object can interact with them without regard to the specific implementation of that interface. There are two principal ways through which polymorphism can be provided: interface polymorphism and inheritance polymorphism.

Interface Polymorphism

 An interface is a contract for behavior. Essentially, it defines the members a class should implement, but states nothing at all about the details of that implementation. An object can implement many different interfaces, and many diverse classes can implement the same interface. All objects implementing the same interface are capable of interacting with other objects through that interface. For example, the Car object in the previous examples might implement the IDrivable interface (by convention, interfaces usually begin with I), which specifies the GoForward, GoBackward, and Halt methods.

Other classes, such as Truck, Forklift, or Boat might implement this interface and thus are able to interact with the Driver object. The Driver object is unaware of which interface implementation it is interacting with; it is only aware of the interface itself. Interface polymorphism is discussed in detail in Lesson 3.

Inheritance Polymorphism

 Inheritance allows you to incorporate the functionality of a previously defined class into a new class and implement different members as needed. A class that inherits another class is said to derive from that class, or to inherit from that class. A class can directly inherit from only one class, which is called the base class. The new class has the same members as the base class, and additional members can be added as needed. Additionally, the implementation of base members can be changed in the new class by overriding the base class implementation. Inherited classes retain all the characteristics of the base class and can interact with other objects as though they were instances of the base class. For example, if the Car class is the base class, a derived class might be SportsCar. The SportsCar class might be the base class for another derived class, the ConvertibleSportsCar. Each newly derived class might implement additional members, but the functionality defined in the original Car class is retained. Inheritance polymorphism

Microsoft Visual Basic.Net

With its release for the .NET platform, the Visual Basic language has undergone dramatic changes.

For example:

•
The language itself is now fully object-oriented.

•
Applications and components written in Visual Basic .NET have full access to the .NET Framework, an extensive class library that provides system and application services.

•
All applications developed using Visual Basic .NET run within a managed runtime environment, the .NET common language runtime.

Visual Basic .NET is the next generation of Visual Basic, but it is also a significant departure from previous generations. Experienced Visual Basic 6 developers will feel comfortable with Visual Basic .NET code and will recognize most of its constructs. However, Microsoft has made some changes to make Visual Basic .NET a better language and an equal player in the .NET world. These include such additions as a Class keyword for defining classes and an Inherits keyword for object inheritance, among others. Visual Basic 6 code can't be compiled by the Visual Basic .NET compiler without significant modification. The good news is that Microsoft has provided a migration tool to handle the task.

6.6 BACK END DESIGN
 FEATURES OF SQL-SERVER 2005
 The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2005 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2005 Meta Data Services. References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Service

SQL-SERVER database consist of six type of objects,

They are,

1. TABLE

2. QUERY

3. FORM

4. REPORT

5. MACRO

TABLE:

 A database is a collection of data about a specific topic.

VIEWS OF TABLE:

 We can work with a table in two types,

1. Design View

2. Datasheet View

Design View

 To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.

Datasheet View

 To add, edit or analyses the data itself we work in tables datasheet view mode.

QUERY:

A query is a question that has to be asked the data. Access gathers data that answers the question from one or more table. The data that make up the answer is either dataset (if you edit it) or a snapshot (it cannot be edited).Each time we run query, we get latest information in the dataset. Access either displays the dataset or snapshot for us to view or perform an action on it, such as deleting or updating.

FORMS:

 A form is used to view and edit information in the database record by record .A form displays only the information we want to see in the way we want to see it. Forms use the familiar controls such as textboxes and checkboxes. This makes viewing and entering data easy.

Views of Form:

 We can work with forms in several primarily there are two views,

 They are,

 1. Design View

 2. Form View

Design View

 To build or modify the structure of a form, we work in forms design view. We can add control to the form that are bound to fields in a table or query, includes textboxes, option buttons, graphs and pictures.

Form View

 The form view which display the whole design of the form.

REPORT:

A report is used to vies and print information from the database. The report can ground records into many levels and compute totals and average by checking values from many records at once. Also the report is attractive and distinctive because we have control over the size and appearance of it.

MACRO:

A macro is a set of actions. Each action in macros does something. Such as opening a form or printing a report .We write macros to automate the common tasks the work easy and save the time.

MODULE:

 Modules are units of code written in access basic language. We can write and use module to automate and customize the database in very sophisticated ways.It is a personal computer based RDBMS. This provides most of the features available in the high-end RDBMS products like Oracle, Sybase, and Ingress etc.
6.6 Algorithm Used

Step 1: Select source file from local system for encryption and select destination folder for encrypted document.

Step 2: meanwhile the key for encrypting document will be selected from the local system.

Step 3: Based on the distributed encryption key, the document will be converted to cipher text.
Step 4: Select destination file format for decryption.

Step 5: Format for hiding the file will be selected, whether it may be an audio or AVI file.

Step 6: Extracting encrypted data from the hidden source.

Step 7: View output in a plain text format.
 CHAPTER 7
CODINGS

This is the Embed class.

using System;

namespace DHAF

{ /// Summary description for clsEmbed.

public class clsEmbed

{

private int CurEmbedStep=0;

private string AudioFileName="";

private string KeyFileName="";

private string OutputAudioFile="";

private string EmdedDataType ="";

private string EmbedTextFileName="";

 private string EmbedTextMessage="";

public int PropEmbedStep

 {

 get

{

 return CurEmbedStep;

}

 set

 {

 CurEmbedStep = value;

 }

 }

public string PropAudioFileName

{

 get

 { // Returns the value stored in the local variable

 return AudioFileName;

 }

 set

 { // Sets the value of the local variable

 AudioFileName = value;

 }

 }

public string PropKeyFileName

 {

 get

 {

 return KeyFileName;

 }

 set

 {

 KeyFileName=value;

 }

 }

public string PropOutputAudioFile

 {

 get

 {

 return OutputAudioFile;

 }

 set

 {

 OutputAudioFile=value;

 }

 }

public string PropEmbedDataType

{

 get

{

 return EmdedDataType;

}

 set

{

 EmdedDataType=value;

}

 }

public string PropEmbedTextMessage

{

 get

{

 return EmbedTextMessage;

}

 set

{

 EmbedTextMessage=value;

}

 }

public string PropEmbedTextFileName

{

 get

 {

 return EmbedTextFileName;

 }

 set

 {

 EmbedTextFileName=value;

 }

 }

 public clsEmbed()

{

//

// TODO: Add constructor logic here

//

}

 }

//This is the extract class

using System;

namespace DHAF

{ // Summary description for clsEmbed.

 public class clsExtract

{

private int CurEmbedStep=0;

private string AudioFileName="";

private string KeyFileName="";

private string OutputTextFile="";

private string EmdedDataType =""; // File,Text

private string EmbedTextFileName="";

 //This will be assigned when embedDataType='File'

private string EmbedTextMessage="";

public int PropEmbedStep

{

 get

{

return CurEmbedStep;

}

set

{

CurEmbedStep = value;

}

}

 public string PropAudioFileName

 {

 get

{

// Returns the value stored in the local variable

return AudioFileName;

}

 set

{

 // Sets the value of the local variable

AudioFileName = value;

}

}

public string PropKeyFileName

{

 get

{

return KeyFileName;

}

 set

{

KeyFileName=value;

}

 }

public string PropOutputTextFile

{

get

{

 return OutputTextFile;

}

set

{

OutputTextFile=value;

}

}

public string PropEmbedDataType

{

get

{

return EmdedDataType;

}

set

{

 EmdedDataType=value;

}

}

public string PropEmbedTextMessage

{

get

{

return EmbedTextMessage;

}

set

{

 EmbedTextMessage=value;

}

}

public string PropEmbedTextFileName

{

get

{

return EmbedTextFileName;

}

set

{

EmbedTextFileName=value;

}

}

public clsExtract()

{

//

// TODO: Add constructor logic here

//

}

}

}

//Embedding method:

public void EmbedData()

{

Stream sourceStream = null;

FileStream destinationStream = null;

WaveStream audioStream = null;

//create a stream that contains the message, preceeded by

 its length

 Stream messageStream = GetMessageStream();

 //open the key file

 Stream keyStream =new FileStream(obj1.PropKeyFileName,

 FileMode.Open);

 textBox6.Text ="Key File Data gathered...";

 try

 {

 //how many samples do we need?

 Long countSamplesRequired =

 WaveUtility.CheckKeyForMessage(keyStream,

 messageStream.Length);

 textBox6.Text +="\r\n" + countSamplesRequired.ToString () + "

 Samples Required..." ;

 Console.WriteLine (countSamplesRequired.ToString ());

 if(countSamplesRequired > Int32.MaxValue)

{

 throw new Exception("Message too long, or bad key! This

 message/key combination requires"+countSamplesRequired+"

 samples, only "+Int32.MaxValue+" samples are allowed.");

}

//use a .wav file as the carrier

sourceStream = new FileStream(obj1.PropAudioFileName ,

 FileMode.Open);

 //this.Cursor = Cursors.WaitCursor;

//create an empty file for the carrier wave

 destinationStream = new FileStream(obj1.PropOutputAudioFile ,

 FileMode.Create);

textBox6.Text +="\r\n" + "Output Audio File Created...";

//copy the carrier file's header

audioStream= new WaveStream(sourceStream, destinationStream);

if (audioStream.Length <= 0)

 {

 throw new Exception("Invalid WAV file");

 }

/are there enough samples in the carrier wave?

if(countSamplesRequired > audioStream.CountSamples)

 {

 String errorReport = "The carrier file is too small for this message

 And key”+audioStream.CountSamples+ "\r\n

 +"Samples needed:"+countSamplesRequired;

 throw new Exception(errorReport);

 }

 //hide the message

 WaveUtility utility=new WaveUtility(audioStream,

 destinationStream);

 textBox6.Text +="\r\n" + "Start Hiding...";

 MessageBox.Show ("Starting...");

 utility.Hide(messageStream, keyStream);

 textBox6.Text +="\r\n" + "Finished Hiding...";

 }

 catch(Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 finally

 {

 if(keyStream != null){ keyStream.Close(); }

 if(messageStream != null){ messageStream.Close(); }

 if(audioStream != null){ audioStream.Close(); }

 if(sourceStream != null){ sourceStream.Close(); }

 if(destinationStream != null){ destinationStream.Close(); }

 this.Cursor = Cursors.Default;

}

//Extract method:

public void ExtractData()

{

 this.Cursor = Cursors.WaitCursor;

FileStream sourceStream = null;

WaveStream audioStream = null;

//create an empty stream to receive the extracted message

MemoryStream messageStream = new MemoryStream();

//open the key file

Stream keyStream = new FileStream(txtKeyFile.Text,

 FileMode.Open);

textBox6.Text ="Key File Opened...\r\n";

try

{

 //open the carrier file

 sourceStream = new FileStream(txtInputAudioFile.Text,

 FileMode.Open);

 textBox6.Text +="Audio File Opened...\r\n";

 audioStream = new WaveStream(sourceStream);

 WaveUtility utility = new WaveUtility(audioStream);

 //exctract the message from the carrier wave

 textBox6.Text +="Start Extracting ...\r\n";

 utility.Extract(messageStream, keyStream);

 textBox6.Text +="Finished Extracting ...\r\n";

 messageStream.Seek(0, SeekOrigin.Begin);

 //save result to a file

 FileStream fs = new FileStream(txtOutputTextFile.Text,

 FileMode.Create);

 byte[] buffer = new byte[messageStream.Length];

 messageStream.Read(buffer, 0, buffer.Length);

 messageStream.Seek (0, System.IO.SeekOrigin.Begin);

 txtExtractedMessage.Text= new

 StreamReader(messageStream).ReadToEnd();

fs.Write(buffer, 0, buffer.Length);

 fs.Close();

}

else

 {

 // display result

txtExtractedMessage.Text = new

 StreamReader(messageStream).ReadToEnd();

}

}

catch(Exception ex)

{

this.Cursor = Cursors.Default;

MessageBox.Show(ex.Message);

}

finally

{

 if(keyStream != null){ keyStream.Close(); }

if(messageStream != null){ messageStream.Close(); }

if(audioStream != null){ audioStream.Close(); }

if(sourceStream != null){ sourceStream.Close(); }

this.Cursor = Cursors.Default;

}

}

CHAPTER 8

SYSTEM TESTING

TESTING:

System testing is the stage of implementation that is aimed at ensuring that the system works accurately and efficiently before live operation commences. Testing is vital to the success of the system. System testing makes logical assumption that if all the parts of the system are correct, then the goal will be successfully achieved. A series of testing are done for the proposed system before the system is ready for the user acceptance testing.

The following are the types of Testing:

1. Unit Testing

2. Integration Testing

3. Validation Testing

6.1 UNIT TESTING:

The procedure level testing is made first. By giving improper inputs, the errors occurred are noted and eliminated. Then the web form level testing is made. For example storage of data to the table in the correct manner.

In the company as well as seeker registration form, the zero length username and password are given and checked. Also the duplicate username is given and checked. In the job and question entry, the button will send data to the server only if the client side validations are made.

 The dates are entered in wrong manner and checked. Wrong email-id and web site URL (Universal Resource Locator) is given and checked.

6.2 INTEGRATION TESTING:

Testing is done for each module. After testing all the modules, the modules are integrated and testing of the final system is done with the test data, specially designed to show that the system will operate successfully in all its aspects conditions. Thus the system testing is a confirmation that all is correct and an opportunity to show the user that the system works.
6.3 VALIDATION TESTING:

The final step involves Validation testing, which determines whether the software function as the user expected. The end-user rather than the system developer conduct this test most software developers as a process called “Alpha and Beta Testing” to uncover that only the end user seems able to find.

The compilation of the entire project is based on the full satisfaction of the end users. In the project, validation testing is made in various forms. In question entry form, the correct answer only will be accepted in the answer box. The answers other than the four given choices will not be accepted.

MAINTENANCE:

 The objectives of this maintenance work are to make sure that the system gets into work all time without any bug. Provision must be for environmental changes which may affect the computer or software system. This is called the maintenance of the system. Nowadays there is the rapid change in the software world. Due to this rapid change, the system should be capable of adapting these changes. In our project the process can be added without affecting other parts of the system.

 Maintenance plays a vital role. The system liable to accept any modification after its implementation. This system has been designed to favour all new changes. Doing this will not affect the system’s performance or its accuracy

 CHAPTER 9
 PROBLEM FACED

 When there is a clear goal in sight but no clear set of directions or means to attain that goal, then is called a problem. Problems can be broken down into four aspects; goal, givens,means oftrans forming conditions, and obstacles.

 Goal –The goal is the desired end state which the problem solving is being directed toward.

 The hope is to reach that end state and be able to assess whether or not you achieved what you wanted.
 Given-These are the objects, conditions, and constraints that accompany a problem, and can be either explicit or implicit.

 Means of Transforming conditions-There should be away of changing the initial state of the problem. This is most usually a person’s knowledge or skill level. For instance, a computer programmer presented with a problem would utilize his or her knowledge of programming languages to transform the state of the problem.

 Obstacles-The problem should present a challenge. If there are no challenges involved and the situation can be easily solved then it is not so a problem so much as a routine task.

 Every problem has a problem faced, which is the whole range of possible states and operators. Only some of these states and operators will bring the person closer to the goal state.The problem starts at the initial state and operators are applied to change the state, creating a series of intermediate states that should hopefully lead to the final goal state.
 CHAPTER 10
FUTURE PLANS
 Every application has its own merits and demerits. The project has covered almost all the requirements. Further requirements and improvements can easily be done since the coding is mainly structured or modular in nature. Changing the existing modules or adding new modules can append improvements. Further enhancements can be made to the application, so that the web site functions very attractive and useful manner than the present one.

 CONCLUSION
Steganography transmits secrets through apparently innocuous covers in an effort to conceal the existence of a secret. Audio file Steganography and its derivatives are growing in use and application. In areas where cryptography and strong encryption are being outlawed, citizens are looking at Steganography to circumvent such policies and pass messages covertly.

Although the algorithm presented is a simple one and not without its drawbacks, it represents a significant improvement over simplistic steganographic algorithms that do not use keys. By using this algorithm, two parties can be communicated with a fairly high level of confidence about the communication not being detected.

In designing the “Steganography” utmost care was taken to meet user requirements as much as possible. The analysis and design phase was reviewed. Care was taken strictly to follow the software engineering concepts. And principles so as to maintain good quality in the developed system as per the user requirements.

 APPENDIX
SCREENSHOTS:

EMBEDDING MODULE:

Step 1: Selection of an input audio file. This is the wav file in which the user is going to hide the text file.
[image: image15.png]
EMBEDDING MODULE

Step 2: Selection of an output Audio file. This is the name of the file given by the user to save the message embedded audio file.

[image: image16.png]
EMBEDDING MODULE:

Step 3: Selection of the text file (or the message) to be hidden and sent to the destination.
[image: image17.png]
EMBEDDING MODULE:

Step 4: Selection of the Key file (Used for Encryption)

[image: image18.png]
 EMBEDDING MODULE:

Step 6: Actual process of embedding the text file into the selected audio file.

[image: image19.png]
 The data file is successfully hidden in the selected audio file. After embedding process, when we play the encrypted audio file it will listen the same as before without any changes.

EXTRACTION MODULE:

The Hidden message is extracted from the audio file and can be viewed through the following process.
Step 1: Selection of the Encrypted audio file. This is the name of the file given in step 2 of the Embedding module.

[image: image20.png]
EXTRACTION MODULE:

Step 2: Selection of a new text file. This is the name of the file given by the receiver to save the embedded message.

[image: image21.png]
EXTRACTION MODULE:

Step 3: Selection of the Key file. This is the same file as selected in step 4 of the Embedding module. (Symmetric Encryption)

[image: image22.png]
EXTRACTION MODULE:

Step 5: Extracting the data from the encrypted audio file.

[image: image23.png]
EXTRACTION MODULE:

Step 6: Viewing the extracted message.

[image: image24.png]
REFERENCES
Books:
Visual C#.net programming by Harold Davis.
Introduction to C#.net by Balaguruswamy.

 BIBLIOGRAPHY

Websites:

www.garykessler.net/library/steganography.html

http://www.frontlinedefenders.org/manual/en/esecman/chapter2_8.html

http://www.computerworld.com/securitytopics/security/story/0,10801,71726,00.html

www.aes.org/events/113/papers/I.cfm

en.wikipedia.org/wiki/WAV

www.borg.com/~jglatt/tech/wave.htm

Embedded Audio File

Select Key

Embedded Data

Select Output Audio File

Select Input Audio File	

Extract

Embedding

DB

Learning Process

Authorization Signatory

Programmer Training Certificate

Complete Certificate

Certificate

 Reports

Document

Testing

Validationnnn

Coding

Networking Design:

Internet Explorer 6.0

Front-end Asp.net

Back-end: SQL Server

Code behind:c#.net

Problem Analysis:

TEXT HIDING IN AUDIO FILE

Training

Students

Authorization

Certificate

Title Submission

Software development life cycle:

Select Encrypt Audio File

Enter New Text

Select Key

Extract Audio File

View Output

Start

Start

Extract

Embedding

Embedded Audio File

Embedded Data

Select Key

Select Output Audio File

Select Input Audio File	

Select Encrypt Audio File

Extract Audio File

View Output

Select Key

Enter New Text

Embedded

Extract

PAGE
74

_1238234324

_1238235863

_1238234001

