TOOLS, PLATFORM/LANGUAGES USED

SELECTED SOFTWARE

Microsoft.NET Framework

The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET Framework is designed to fulfill the following objectives: 

· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely. 

· To provide a code-execution environment that minimizes software deployment and versioning conflicts. 

· To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party. 

· To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments. 

· To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications. 

· To build all communication on industry standards to ensure that code based on the .NET Framework can integrate with any other code. 

The .NET Framework has two main components: the common language runtime and the .NET Framework class library. The common language runtime is the foundation of the .NET Framework. You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code. The class library, the other main component of the .NET Framework, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET Framework not only provides several runtime hosts, but also supports the development of third-party runtime hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side environment for managed code. ASP.NET works directly with the runtime to enable Web Forms applications and XML Web services, both of which are discussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime enables you to embed managed components or Windows Forms controls in HTML documents. Hosting the runtime in this way makes managed mobile code (similar to Microsoft® ActiveX® controls) possible, but with significant improvements that only managed code can offer, such as semi-trusted execution and secure isolated file storage.

The following illustration shows the relationship of the common language runtime and the class library to your applications and to the overall system. The illustration also shows how managed code operates within a larger architecture.

Features of the Common Language Runtime

The common language runtime manages memory, thread execution, code execution, code safety verification, compilation, and other system services. These features are intrinsic to the managed code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of trust, depending on a number of factors that include their origin (such as the Internet, enterprise network, or local computer). This means that a managed component might or might not be able to perform file-access operations, registry-access operations, or other sensitive functions, even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable embedded in a Web page can play an animation on screen or sing a song, but cannot access their personal data, file system, or network. The security features of the runtime thus enable legitimate Internet-deployed software to be exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type- and code-verification infrastructure called the common type system (CTS). The CTS ensures that all managed code is self-describing. The various Microsoft and third-party language compilers generate managed code that conforms to the CTS. This means that managed code can consume other managed types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common software issues. For example, the runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. This automatic memory management resolves the two most common application errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers can write applications in their development language of choice, yet take full advantage of the runtime, the class library, and components written in other languages by other developers. Any compiler vendor who chooses to target the runtime can do so. Language compilers that target the .NET Framework make the features of the .NET Framework available to existing code written in that language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today and yesterday. Interoperability between managed and unmanaged code enables developers to continue to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it is executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications, such as Microsoft® SQL Server™ and Internet Information Services (IIS). This infrastructure enables you to use managed code to write your business logic, while still enjoying the superior performance of the industry's best enterprise servers that support runtime hosting.

. NET Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with the common language runtime. The class library is object oriented, providing types from which your own managed code can derive functionality. This not only makes the .NET Framework types easy to use, but also reduces the time associated with learning new features of the .NET Framework. In addition, third-party components can integrate seamlessly with classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you can use to develop your own collection classes. Your collection classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework types enable you to accomplish a range of common programming tasks, including tasks such as string management, data collection, database connectivity, and file access. In addition to these common tasks, the class library includes types that support a variety of specialized development scenarios. For example, you can use the .NET Framework to develop the following types of applications and services: 

· Console applications. 

· Scripted or hosted applications. 

· Windows GUI applications (Windows Forms). 

· ASP.NET applications. 

· XML Web services. 

· Windows services. 

For example, the Windows Forms classes are a comprehensive set of reusable types that vastly simplify Windows GUI development. If you write an ASP.NET Web Form application, you can use the Web Forms classes.

Client Application Development

Client applications are the closest to a traditional style of application in Windows-based programming. These are the types of applications that display windows or forms on the desktop, enabling a user to perform a task. Client applications include applications such as word processors and spreadsheets, as well as custom business applications such as data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus, buttons, and other GUI elements, and they likely access local resources such as the file system and peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now replaced by the managed Windows Forms control) deployed over the Internet as a Web page. This application is much like other client applications: it is executed natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C/C++ in conjunction with the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment such as Microsoft® Visual Basic®. The .NET Framework incorporates aspects of these existing products into a single, consistent development environment that drastically simplifies the development of client applications.

The Windows Forms classes contained in the .NET Framework are designed to be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and other screen elements with the flexibility necessary to accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual attributes associated with forms. In some cases the underlying operating system does not support changing these attributes directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many ways in which the .NET Framework integrates the developer interface, making coding simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's computer. This means that binary or natively executing code can access some of the resources on the user's system (such as GUI elements and limited file access) without being able to access or compromise other resources. Because of code access security, many applications that once needed to be installed on a user's system can now be safely deployed through the Web. Your applications can implement the features of a local application while being deployed like a Web page.

Server Application Development

Server-side applications in the managed world are implemented through runtime hosts. Unmanaged applications host the common language runtime, which allows your custom managed code to control the behavior of the server. This model provides you with all the features of the common language runtime and class library while gaining the performance and scalability of the host server.

The following illustration shows a basic network schema with managed code running in different server environments. Servers such as IIS and SQL Server can perform standard operations while your application logic executes through the managed code.

Server-side managed code
ASP.NET is the hosting environment that enables developers to use the .NET Framework to target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete architecture for developing Web sites and Internet-distributed objects using managed code. Both Web Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for applications, and both have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are distributed, server-side application components similar to common Web sites. However, unlike Web-based applications, XML Web services components have no UI and are not targeted for browsers such as Internet Explorer and Netscape Navigator. Instead, XML Web services consist of reusable software components designed to be consumed by other applications, such as traditional client applications, Web-based applications, or even other XML Web services. As a result, XML Web services technology is rapidly moving application development and deployment into the highly distributed environment of the Internet.

If you have used earlier versions of ASP technology, you will immediately notice the improvements that ASP.NET and Web Forms offers. For example, you can develop Web Forms pages in any language that supports the .NET Framework. In addition, your code no longer needs to share the same file with your HTTP text (although it can continue to do so if you prefer). Web Forms pages execute in native machine language because, like any other managed application, they take full advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and interpreted. ASP.NET pages are faster, more functional, and easier to develop than unmanaged ASP pages because they interact with the runtime like any managed application.

The .NET Framework also provides a collection of classes and tools to aid in development and consumption of XML Web services applications. XML Web services are built on standards such as SOAP (a remote procedure-call protocol), XML (an extensible data format), and WSDL ( the Web Services Description Language). The .NET Framework is built on these standards to promote interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the .NET Framework SDK can query an XML Web service published on the Web, parse its WSDL description, and produce C# or Visual Basic source code that your application can use to become a client of the XML Web service. The source code can create classes derived from classes in the class library that handle all the underlying communication using SOAP and XML parsing. Although you can use the class library to consume XML Web services directly, the Web Services Description Language tool and the other tools contained in the SDK facilitate your development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework provides a set of classes that conform to all the underlying communication standards, such as SOAP, WSDL, and XML. Using those classes enables you to focus on the logic of your service, without concerning yourself with the communications infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web service will run with the speed of native machine language using the scalable communication of IIS.

Active Server Pages.NET

ASP.NET is a programming framework built on the common language runtime that can be used on a server to build powerful Web applications. ASP.NET offers several important advantages over previous Web development models:

· Enhanced Performance. ASP.NET is compiled common language runtime code running on the server. Unlike its interpreted predecessors, ASP.NET can take advantage of early binding, just-in-time compilation, native optimization, and caching services right out of the box. This amounts to dramatically better performance before you ever write a line of code.

· World-Class Tool Support. A rich toolbox and designer in the Visual Studio integrated development environment complement the ASP.NET framework. WYSIWYG editing, drag-and-drop server controls, and automatic deployment are just a few of the features this powerful tool provides.

· Power and Flexibility. Because ASP.NET is based on the common language runtime, the power and flexibility of that entire platform is available to Web application developers. The .NET Framework class library, Messaging, and Data Access solutions are all seamlessly accessible from the Web. ASP.NET is also language-independent, so you can choose the language that best applies to your application or partition your application across many languages. Further, common language runtime interoperability guarantees that your existing investment in COM-based development is preserved when migrating to ASP.NET.

· Simplicity. ASP.NET makes it easy to perform common tasks, from simple form submission and client authentication to deployment and site configuration. For example, the ASP.NET page framework allows you to build user interfaces that cleanly separate application logic from presentation code and to handle events in a simple, Visual Basic - like forms processing model. Additionally, the common language runtime simplifies development, with managed code services such as automatic reference counting and garbage collection.

· Manageability. ASP.NET employs a text-based, hierarchical configuration system, which simplifies applying settings to your server environment and Web applications. Because configuration information is stored as plain text, new settings may be applied without the aid of local administration tools. This "zero local administration" philosophy extends to deploying ASP.NET Framework applications as well. An ASP.NET Framework application is deployed to a server simply by copying the necessary files to the server. No server restart is required, even to deploy or replace running compiled code.

· Scalability and Availability. ASP.NET has been designed with scalability in mind, with features specifically tailored to improve performance in clustered and multiprocessor environments. Further, processes are closely monitored and managed by the ASP.NET runtime, so that if one misbehaves (leaks, deadlocks), a new process can be created in its place, which helps keep your application constantly available to handle requests.

· Customizability and Extensibility. ASP.NET delivers a well-factored architecture that allows developers to "plug-in" their code at the appropriate level. In fact, it is possible to extend or replace any subcomponent of the ASP.NET runtime with your own custom-written component. Implementing custom authentication or state services has never been easier.

· Security. With built in Windows authentication and per-application configuration, you can be assured that your applications are secure. 

Language Support

The Microsoft .NET Platform currently offers built-in support for three languages: C#, Visual Basic, and JScript.

What is ASP.NET Web Forms? 

The ASP.NET Web Forms page framework is a scalable common language runtime-programming model that can be used on the server to dynamically generate Web pages. 

Intended as a logical evolution of ASP (ASP.NET provides syntax compatibility with existing pages), the ASP.NET Web Forms framework has been specifically designed to address a number of key deficiencies in the previous model. In particular, it provides: 

· The ability to create and use reusable UI controls that can encapsulate common functionality and thus reduce the amount of code that a page developer has to write. 

· The ability for developers to cleanly structure their page logic in an orderly fashion (not "spaghetti code"). 

· The ability for development tools to provide strong WYSIWYG design support for pages (existing ASP code is opaque to tools). 

ASP.NET Web Forms pages are text files with an. aspx file name extension. They can be deployed throughout an IIS virtual root directory tree. When a browser client requests. aspx resources, the ASP.NET runtime parses and compiles the target file into a .NET Framework class. This class can then be used to dynamically process incoming requests. (Note that the .aspx file is compiled only the first time it is accessed; the compiled type instance is then reused across multiple requests). 

An ASP.NET page can be created simply by taking an existing HTML file and changing its file name extension to .aspx (no modification of code is required). For example, the following sample demonstrates a simple HTML page that collects a user's name and category preference and then performs a form postback to the originating page when a button is clicked: 

ASP.NET provides syntax compatibility with existing ASP pages. This includes support for <% %> code render blocks that can be intermixed with HTML content within an .aspx file. These code blocks execute in a top-down manner at page render time.

Code-Behind Web Forms 

ASP.NET supports two methods of authoring dynamic pages. The first is the method shown in the preceding samples, where the page code is physically declared within the originating .aspx file. An alternative approach--known as the code-behind method--enables the page code to be more cleanly separated from the HTML content into an entirely separate file. 

Introduction to ASP.NET Server Controls 

In addition to (or instead of) using <% %> code blocks to program dynamic content, ASP.NET page developers can use ASP.NET server controls to program Web pages. Server controls are declared within an .aspx file using custom tags or intrinsic HTML tags that contain a runat="server" attribute value. Intrinsic HTML tags are handled by one of the controls in the System.Web.UI.HtmlControls namespace. Any tag that doesn't explicitly map to one of the controls is assigned the type of System.Web.UI.HtmlControls.HtmlGenericControl. 

Server controls automatically maintain any client-entered values between round trips to the server. This control state is not stored on the server (it is instead stored within an <input type="hidden"> form field that is round-tripped between requests). Note also that no client-side script is required. 

In addition to supporting standard HTML input controls, ASP.NET enables developers to utilize richer custom controls on their pages. For example, the following sample demonstrates how the <asp:adrotator> control can be used to dynamically display rotating ads on a page.

1. ASP.NET Web Forms provide an easy and powerful way to build dynamic Web UI. 

2. ASP.NET Web Forms pages can target any browser client (there are no script library or cookie requirements). 

3. ASP.NET Web Forms pages provide syntax compatibility with existing ASP pages. 

4. ASP.NET server controls provide an easy way to encapsulate common functionality. 

5. ASP.NET ships with 45 built-in server controls. Developers can also use controls built by third parties. 

6. ASP.NET server controls can automatically project both uplevel and downlevel HTML. 

7. ASP.NET templates provide an easy way to customize the look and feel of list server controls. 

8. ASP.NET validation controls provide an easy way to do declarative client or server data validation. 

Crystal Reports 

Crystal Reports for Visual Basic .NET is the standard reporting tool for Visual Basic.NET; it brings the ability to create interactive, presentation-quality content — which has been the strength of Crystal Reports for years — to the .NET platform. 

With Crystal Reports for Visual Basic.NET, you can host reports on Web and Windows platforms and publish Crystal reports as Report Web Services on a Web server. 

To present data to users, you could write code to loop through recordsets and print them inside your Windows or Web application. However, any work beyond basic formatting can be complicated: consolidations, multiple level totals, charting, and conditional formatting are difficult to program. 

With Crystal Reports for Visual Studio .NET, you can quickly create complex and professional-looking reports. Instead of coding, you use the Crystal Report Designer interface to create and format the report you need. The powerful Report Engine processes the formatting, grouping, and charting criteria you specify.

Report Experts
Using the Crystal Report Experts, you can quickly create reports based on your development needs: 

· Choose from report layout options ranging from standard reports to form letters, or build your own report from scratch. 

· Display charts that users can drill down on to view detailed report data. 

· Calculate summaries, subtotals, and percentages on grouped data. 

· Show TopN or BottomN results of data. 

· Conditionally format text and rotate text objects. 
ACTIVE X DATA OBJECTS.NET

ADO.NET Overview

ADO.NET is an evolution of the ADO data access model that directly addresses user requirements for developing scalable applications. It was designed specifically for the web with scalability, statelessness, and XML in mind. 

ADO.NET uses some ADO objects, such as the Connection and Command objects, and also introduces new objects. Key new ADO.NET objects include the DataSet, DataReader, and DataAdapter. 

The important distinction between this evolved stage of ADO.NET and previous data architectures is that there exists an object -- the DataSet -- that is separate and distinct from any data stores. Because of that, the DataSet functions as a standalone entity. You can think of the DataSet as an always disconnected recordset that knows nothing about the source or destination of the data it contains. Inside a DataSet, much like in a database, there are tables, columns, relationships, constraints, views, and so forth. 

A DataAdapter is the object that connects to the database to fill the DataSet. Then, it connects back to the database to update the data there, based on operations performed while the DataSet held the data. In the past, data processing has been primarily connection-based. Now, in an effort to make multi-tiered apps more efficient, data processing is turning to a message-based approach that revolves around chunks of information. At the center of this approach is the DataAdapter, which provides a bridge to retrieve and save data between a DataSet and its source data store. It accomplishes this by means of requests to the appropriate SQL commands made against the data store. 

The XML-based DataSet object provides a consistent programming model that works with all models of data storage: flat, relational, and hierarchical. It does this by having no 'knowledge' of the source of its data, and by representing the data that it holds as collections and data types. No matter what the source of the data within the DataSet is, it is manipulated through the same set of standard APIs exposed through the DataSet and its subordinate objects. 

While the DataSet has no knowledge of the source of its data, the managed provider has detailed and specific information. The role of the managed provider is to connect, fill, and persist the DataSet to and from data stores. The OLE DB and SQL Server .NET Data Providers (System.Data.OleDb and System.Data.SqlClient) that are part of the .Net Framework provide four basic objects: the Command, Connection, DataReader and DataAdapter. In the remaining sections of this document, we'll walk through each part of the DataSet and the OLE DB/SQL Server .NET Data Providers explaining what they are, and how to program against them. 

The following sections will introduce you to some objects that have evolved, and some that are new. These objects are: 

· Connections. For connection to and managing transactions against a database. 

· Commands. For issuing SQL commands against a database. 

· DataReaders. For reading a forward-only stream of data records from a SQL Server data source. 

· DataSets. For storing, remoting and programming against flat data, XML data and relational data. 

· DataAdapters. For pushing data into a DataSet, and reconciling data against a database. 

 When dealing with connections to a database, there are two different options: SQL Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data Provider (System.Data.OleDb). In these samples we will use the SQL Server .NET Data Provider. These are written to talk directly to Microsoft SQL Server. The OLE DB .NET Data Provider is used to talk to any OLE DB provider (as it uses OLE DB underneath). 

Connections 

Connections are used to 'talk to' databases, and are respresented by provider-specific classes such as SQLConnection. Commands travel over connections and resultsets are returned in the form of streams, which can be read by a DataReader object, or pushed into a DataSet object. 

Commands 

Commands contain the information that is submitted to a database, and are represented by provider-specific classes such as SQLCommand. A command can be a stored procedure call, an UPDATE statement, or a statement that returns results. You can also use input and output parameters, and return values as part of your command syntax. The example below shows how to issue an INSERT statement against the Northwind database. 

DataReaders 

The DataReader object is somewhat synonymous with a read-only/forward-only cursor over data. The DataReader API supports flat as well as hierarchical data. A DataReader object is returned after executing a command against a database. The format of the returned DataReader object is different from a recordset. For example, you might use the DataReader to show the results of a search list in a web page. 

DataSets and DataAdapters 

DataSets
The DataSet object is similar to the ADO Recordset object, but more powerful, and with one other important distinction: the DataSet is always disconnected. The DataSet object represents a cache of data, with database-like structures such as tables, columns, relationships, and constraints. However, though a DataSet can and does behave much like a database, it is important to remember that DataSet objects do not interact directly with databases, or other source data. This allows the developer to work with a programming model that is always consistent, regardless of where the source data resides. Data coming from a database, an XML file, from code, or user input can all be placed into DataSet objects. Then, as changes are made to the DataSet they can be tracked and verified before updating the source data. The GetChanges method of the DataSet object actually creates a second DatSet that contains only the changes to the data. This DataSet is then used by a DataAdapter (or other objects) to update the original data source. 

SELECTED SOFTWARE

Microsoft.NET Framework

The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET Framework is designed to fulfill the following objectives: 

· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely. 

· To provide a code-execution environment that minimizes software deployment and versioning conflicts. 

· To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party. 

· To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments. 

· To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications. 

· To build all communication on industry standards to ensure that code based on the .NET Framework can integrate with any other code. 

The .NET Framework has two main components: the common language runtime and the .NET Framework class library. The common language runtime is the foundation of the .NET Framework. You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code. The class library, the other main component of the .NET Framework, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET Framework not only provides several runtime hosts, but also supports the development of third-party runtime hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side environment for managed code. ASP.NET works directly with the runtime to enable Web Forms applications and XML Web services, both of which are discussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime enables you to embed managed components or Windows Forms controls in HTML documents. Hosting the runtime in this way makes managed mobile code (similar to Microsoft® ActiveX® controls) possible, but with significant improvements that only managed code can offer, such as semi-trusted execution and secure isolated file storage.

The following illustration shows the relationship of the common language runtime and the class library to your applications and to the overall system. The illustration also shows how managed code operates within a larger architecture.

Features of the Common Language Runtime

The common language runtime manages memory, thread execution, code execution, code safety verification, compilation, and other system services. These features are intrinsic to the managed code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of trust, depending on a number of factors that include their origin (such as the Internet, enterprise network, or local computer). This means that a managed component might or might not be able to perform file-access operations, registry-access operations, or other sensitive functions, even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable embedded in a Web page can play an animation on screen or sing a song, but cannot access their personal data, file system, or network. The security features of the runtime thus enable legitimate Internet-deployed software to be exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type- and code-verification infrastructure called the common type system (CTS). The CTS ensures that all managed code is self-describing. The various Microsoft and third-party language compilers generate managed code that conforms to the CTS. This means that managed code can consume other managed types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common software issues. For example, the runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. This automatic memory management resolves the two most common application errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers can write applications in their development language of choice, yet take full advantage of the runtime, the class library, and components written in other languages by other developers. Any compiler vendor who chooses to target the runtime can do so. Language compilers that target the .NET Framework make the features of the .NET Framework available to existing code written in that language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today and yesterday. Interoperability between managed and unmanaged code enables developers to continue to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it is executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications, such as Microsoft® SQL Server™ and Internet Information Services (IIS). This infrastructure enables you to use managed code to write your business logic, while still enjoying the superior performance of the industry's best enterprise servers that support runtime hosting.

. NET Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with the common language runtime. The class library is object oriented, providing types from which your own managed code can derive functionality. This not only makes the .NET Framework types easy to use, but also reduces the time associated with learning new features of the .NET Framework. In addition, third-party components can integrate seamlessly with classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you can use to develop your own collection classes. Your collection classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework types enable you to accomplish a range of common programming tasks, including tasks such as string management, data collection, database connectivity, and file access. In addition to these common tasks, the class library includes types that support a variety of specialized development scenarios. For example, you can use the .NET Framework to develop the following types of applications and services: 

· Console applications. 

· Scripted or hosted applications. 

· Windows GUI applications (Windows Forms). 

· ASP.NET applications. 

· XML Web services. 

· Windows services. 

For example, the Windows Forms classes are a comprehensive set of reusable types that vastly simplify Windows GUI development. If you write an ASP.NET Web Form application, you can use the Web Forms classes.

Client Application Development

Client applications are the closest to a traditional style of application in Windows-based programming. These are the types of applications that display windows or forms on the desktop, enabling a user to perform a task. Client applications include applications such as word processors and spreadsheets, as well as custom business applications such as data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus, buttons, and other GUI elements, and they likely access local resources such as the file system and peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now replaced by the managed Windows Forms control) deployed over the Internet as a Web page. This application is much like other client applications: it is executed natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C/C++ in conjunction with the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment such as Microsoft® Visual Basic®. The .NET Framework incorporates aspects of these existing products into a single, consistent development environment that drastically simplifies the development of client applications.

The Windows Forms classes contained in the .NET Framework are designed to be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and other screen elements with the flexibility necessary to accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual attributes associated with forms. In some cases the underlying operating system does not support changing these attributes directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many ways in which the .NET Framework integrates the developer interface, making coding simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's computer. This means that binary or natively executing code can access some of the resources on the user's system (such as GUI elements and limited file access) without being able to access or compromise other resources. Because of code access security, many applications that once needed to be installed on a user's system can now be safely deployed through the Web. Your applications can implement the features of a local application while being deployed like a Web page.

Server Application Development

Server-side applications in the managed world are implemented through runtime hosts. Unmanaged applications host the common language runtime, which allows your custom managed code to control the behavior of the server. This model provides you with all the features of the common language runtime and class library while gaining the performance and scalability of the host server.

The following illustration shows a basic network schema with managed code running in different server environments. Servers such as IIS and SQL Server can perform standard operations while your application logic executes through the managed code.

Server-side managed code
ASP.NET is the hosting environment that enables developers to use the .NET Framework to target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete architecture for developing Web sites and Internet-distributed objects using managed code. Both Web Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for applications, and both have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are distributed, server-side application components similar to common Web sites. However, unlike Web-based applications, XML Web services components have no UI and are not targeted for browsers such as Internet Explorer and Netscape Navigator. Instead, XML Web services consist of reusable software components designed to be consumed by other applications, such as traditional client applications, Web-based applications, or even other XML Web services. As a result, XML Web services technology is rapidly moving application development and deployment into the highly distributed environment of the Internet.

If you have used earlier versions of ASP technology, you will immediately notice the improvements that ASP.NET and Web Forms offers. For example, you can develop Web Forms pages in any language that supports the .NET Framework. In addition, your code no longer needs to share the same file with your HTTP text (although it can continue to do so if you prefer). Web Forms pages execute in native machine language because, like any other managed application, they take full advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and interpreted. ASP.NET pages are faster, more functional, and easier to develop than unmanaged ASP pages because they interact with the runtime like any managed application.

The .NET Framework also provides a collection of classes and tools to aid in development and consumption of XML Web services applications. XML Web services are built on standards such as SOAP (a remote procedure-call protocol), XML (an extensible data format), and WSDL ( the Web Services Description Language). The .NET Framework is built on these standards to promote interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the .NET Framework SDK can query an XML Web service published on the Web, parse its WSDL description, and produce C# or Visual Basic source code that your application can use to become a client of the XML Web service. The source code can create classes derived from classes in the class library that handle all the underlying communication using SOAP and XML parsing. Although you can use the class library to consume XML Web services directly, the Web Services Description Language tool and the other tools contained in the SDK facilitate your development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework provides a set of classes that conform to all the underlying communication standards, such as SOAP, WSDL, and XML. Using those classes enables you to focus on the logic of your service, without concerning yourself with the communications infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web service will run with the speed of native machine language using the scalable communication of IIS.

Active Server Pages.NET

ASP.NET is a programming framework built on the common language runtime that can be used on a server to build powerful Web applications. ASP.NET offers several important advantages over previous Web development models:

· Enhanced Performance. ASP.NET is compiled common language runtime code running on the server. Unlike its interpreted predecessors, ASP.NET can take advantage of early binding, just-in-time compilation, native optimization, and caching services right out of the box. This amounts to dramatically better performance before you ever write a line of code.

· World-Class Tool Support. A rich toolbox and designer in the Visual Studio integrated development environment complement the ASP.NET framework. WYSIWYG editing, drag-and-drop server controls, and automatic deployment are just a few of the features this powerful tool provides.

· Power and Flexibility. Because ASP.NET is based on the common language runtime, the power and flexibility of that entire platform is available to Web application developers. The .NET Framework class library, Messaging, and Data Access solutions are all seamlessly accessible from the Web. ASP.NET is also language-independent, so you can choose the language that best applies to your application or partition your application across many languages. Further, common language runtime interoperability guarantees that your existing investment in COM-based development is preserved when migrating to ASP.NET.

· Simplicity. ASP.NET makes it easy to perform common tasks, from simple form submission and client authentication to deployment and site configuration. For example, the ASP.NET page framework allows you to build user interfaces that cleanly separate application logic from presentation code and to handle events in a simple, Visual Basic - like forms processing model. Additionally, the common language runtime simplifies development, with managed code services such as automatic reference counting and garbage collection.

· Manageability. ASP.NET employs a text-based, hierarchical configuration system, which simplifies applying settings to your server environment and Web applications. Because configuration information is stored as plain text, new settings may be applied without the aid of local administration tools. This "zero local administration" philosophy extends to deploying ASP.NET Framework applications as well. An ASP.NET Framework application is deployed to a server simply by copying the necessary files to the server. No server restart is required, even to deploy or replace running compiled code.

· Scalability and Availability. ASP.NET has been designed with scalability in mind, with features specifically tailored to improve performance in clustered and multiprocessor environments. Further, processes are closely monitored and managed by the ASP.NET runtime, so that if one misbehaves (leaks, deadlocks), a new process can be created in its place, which helps keep your application constantly available to handle requests.

· Customizability and Extensibility. ASP.NET delivers a well-factored architecture that allows developers to "plug-in" their code at the appropriate level. In fact, it is possible to extend or replace any subcomponent of the ASP.NET runtime with your own custom-written component. Implementing custom authentication or state services has never been easier.

· Security. With built in Windows authentication and per-application configuration, you can be assured that your applications are secure. 

Language Support

The Microsoft .NET Platform currently offers built-in support for three languages: C#, Visual Basic, and JScript.

What is ASP.NET Web Forms? 

The ASP.NET Web Forms page framework is a scalable common language runtime-programming model that can be used on the server to dynamically generate Web pages. 

Intended as a logical evolution of ASP (ASP.NET provides syntax compatibility with existing pages), the ASP.NET Web Forms framework has been specifically designed to address a number of key deficiencies in the previous model. In particular, it provides: 

· The ability to create and use reusable UI controls that can encapsulate common functionality and thus reduce the amount of code that a page developer has to write. 

· The ability for developers to cleanly structure their page logic in an orderly fashion (not "spaghetti code"). 

· The ability for development tools to provide strong WYSIWYG design support for pages (existing ASP code is opaque to tools). 

ASP.NET Web Forms pages are text files with an. aspx file name extension. They can be deployed throughout an IIS virtual root directory tree. When a browser client requests. aspx resources, the ASP.NET runtime parses and compiles the target file into a .NET Framework class. This class can then be used to dynamically process incoming requests. (Note that the .aspx file is compiled only the first time it is accessed; the compiled type instance is then reused across multiple requests). 

An ASP.NET page can be created simply by taking an existing HTML file and changing its file name extension to .aspx (no modification of code is required). For example, the following sample demonstrates a simple HTML page that collects a user's name and category preference and then performs a form postback to the originating page when a button is clicked: 

ASP.NET provides syntax compatibility with existing ASP pages. This includes support for <% %> code render blocks that can be intermixed with HTML content within an .aspx file. These code blocks execute in a top-down manner at page render time.

Code-Behind Web Forms 

ASP.NET supports two methods of authoring dynamic pages. The first is the method shown in the preceding samples, where the page code is physically declared within the originating .aspx file. An alternative approach--known as the code-behind method--enables the page code to be more cleanly separated from the HTML content into an entirely separate file. 

Introduction to ASP.NET Server Controls 

In addition to (or instead of) using <% %> code blocks to program dynamic content, ASP.NET page developers can use ASP.NET server controls to program Web pages. Server controls are declared within an .aspx file using custom tags or intrinsic HTML tags that contain a runat="server" attribute value. Intrinsic HTML tags are handled by one of the controls in the System.Web.UI.HtmlControls namespace. Any tag that doesn't explicitly map to one of the controls is assigned the type of System.Web.UI.HtmlControls.HtmlGenericControl. 

Server controls automatically maintain any client-entered values between round trips to the server. This control state is not stored on the server (it is instead stored within an <input type="hidden"> form field that is round-tripped between requests). Note also that no client-side script is required. 

In addition to supporting standard HTML input controls, ASP.NET enables developers to utilize richer custom controls on their pages. For example, the following sample demonstrates how the <asp:adrotator> control can be used to dynamically display rotating ads on a page.

9. ASP.NET Web Forms provide an easy and powerful way to build dynamic Web UI. 

10. ASP.NET Web Forms pages can target any browser client (there are no script library or cookie requirements). 

11. ASP.NET Web Forms pages provide syntax compatibility with existing ASP pages. 

12. ASP.NET server controls provide an easy way to encapsulate common functionality. 

13. ASP.NET ships with 45 built-in server controls. Developers can also use controls built by third parties. 

14. ASP.NET server controls can automatically project both uplevel and downlevel HTML. 

15. ASP.NET templates provide an easy way to customize the look and feel of list server controls. 

16. ASP.NET validation controls provide an easy way to do declarative client or server data validation. 

Crystal Reports 

Crystal Reports for Visual Basic .NET is the standard reporting tool for Visual Basic.NET; it brings the ability to create interactive, presentation-quality content — which has been the strength of Crystal Reports for years — to the .NET platform. 

With Crystal Reports for Visual Basic.NET, you can host reports on Web and Windows platforms and publish Crystal reports as Report Web Services on a Web server. 

To present data to users, you could write code to loop through recordsets and print them inside your Windows or Web application. However, any work beyond basic formatting can be complicated: consolidations, multiple level totals, charting, and conditional formatting are difficult to program. 

With Crystal Reports for Visual Studio .NET, you can quickly create complex and professional-looking reports. Instead of coding, you use the Crystal Report Designer interface to create and format the report you need. The powerful Report Engine processes the formatting, grouping, and charting criteria you specify.

Report Experts
Using the Crystal Report Experts, you can quickly create reports based on your development needs: 

· Choose from report layout options ranging from standard reports to form letters, or build your own report from scratch. 

· Display charts that users can drill down on to view detailed report data. 

· Calculate summaries, subtotals, and percentages on grouped data. 

· Show TopN or BottomN results of data. 

· Conditionally format text and rotate text objects. 

ACTIVE X DATA OBJECTS.NET

ADO.NET Overview

ADO.NET is an evolution of the ADO data access model that directly addresses user requirements for developing scalable applications. It was designed specifically for the web with scalability, statelessness, and XML in mind. 

ADO.NET uses some ADO objects, such as the Connection and Command objects, and also introduces new objects. Key new ADO.NET objects include the DataSet, DataReader, and DataAdapter. 

The important distinction between this evolved stage of ADO.NET and previous data architectures is that there exists an object -- the DataSet -- that is separate and distinct from any data stores. Because of that, the DataSet functions as a standalone entity. You can think of the DataSet as an always disconnected recordset that knows nothing about the source or destination of the data it contains. Inside a DataSet, much like in a database, there are tables, columns, relationships, constraints, views, and so forth. 

A DataAdapter is the object that connects to the database to fill the DataSet. Then, it connects back to the database to update the data there, based on operations performed while the DataSet held the data. In the past, data processing has been primarily connection-based. Now, in an effort to make multi-tiered apps more efficient, data processing is turning to a message-based approach that revolves around chunks of information. At the center of this approach is the DataAdapter, which provides a bridge to retrieve and save data between a DataSet and its source data store. It accomplishes this by means of requests to the appropriate SQL commands made against the data store. 

The XML-based DataSet object provides a consistent programming model that works with all models of data storage: flat, relational, and hierarchical. It does this by having no 'knowledge' of the source of its data, and by representing the data that it holds as collections and data types. No matter what the source of the data within the DataSet is, it is manipulated through the same set of standard APIs exposed through the DataSet and its subordinate objects. 

While the DataSet has no knowledge of the source of its data, the managed provider has detailed and specific information. The role of the managed provider is to connect, fill, and persist the DataSet to and from data stores. The OLE DB and SQL Server .NET Data Providers (System.Data.OleDb and System.Data.SqlClient) that are part of the .Net Framework provide four basic objects: the Command, Connection, DataReader and DataAdapter. In the remaining sections of this document, we'll walk through each part of the DataSet and the OLE DB/SQL Server .NET Data Providers explaining what they are, and how to program against them. 

The following sections will introduce you to some objects that have evolved, and some that are new. These objects are: 

· Connections. For connection to and managing transactions against a database. 

· Commands. For issuing SQL commands against a database. 

· DataReaders. For reading a forward-only stream of data records from a SQL Server data source. 

· DataSets. For storing, remoting and programming against flat data, XML data and relational data. 

· DataAdapters. For pushing data into a DataSet, and reconciling data against a database. 

 When dealing with connections to a database, there are two different options: SQL Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data Provider (System.Data.OleDb). In these samples we will use the SQL Server .NET Data Provider. These are written to talk directly to Microsoft SQL Server. The OLE DB .NET Data Provider is used to talk to any OLE DB provider (as it uses OLE DB underneath). 

Connections 

Connections are used to 'talk to' databases, and are respresented by provider-specific classes such as SQLConnection. Commands travel over connections and resultsets are returned in the form of streams, which can be read by a DataReader object, or pushed into a DataSet object. 

Commands 

Commands contain the information that is submitted to a database, and are represented by provider-specific classes such as SQLCommand. A command can be a stored procedure call, an UPDATE statement, or a statement that returns results. You can also use input and output parameters, and return values as part of your command syntax. The example below shows how to issue an INSERT statement against the Northwind database. 

DataReaders 

The DataReader object is somewhat synonymous with a read-only/forward-only cursor over data. The DataReader API supports flat as well as hierarchical data. A DataReader object is returned after executing a command against a database. The format of the returned DataReader object is different from a recordset. For example, you might use the DataReader to show the results of a search list in a web page. 

DataSets and DataAdapters 

DataSets
The DataSet object is similar to the ADO Recordset object, but more powerful, and with one other important distinction: the DataSet is always disconnected. The DataSet object represents a cache of data, with database-like structures such as tables, columns, relationships, and constraints. However, though a DataSet can and does behave much like a database, it is important to remember that DataSet objects do not interact directly with databases, or other source data. This allows the developer to work with a programming model that is always consistent, regardless of where the source data resides. Data coming from a database, an XML file, from code, or user input can all be placed into DataSet objects. Then, as changes are made to the DataSet they can be tracked and verified before updating the source data. The GetChanges method of the DataSet object actually creates a second DatSet that contains only the changes to the data. This DataSet is then used by a DataAdapter (or other objects) to update the original data source. 

The DataSet has many XML characteristics, including the ability to produce and consume XML data and XML schemas. XML schemas can be used to describe schemas interchanged via WebServices. In fact, a DataSet with a schema can actually be compiled for type safety and statement completion. 

DataAdapters (OLEDB/SQL)

The DataAdapter object works as a bridge between the DataSet and the source data. Using the provider-specific SqlDataAdapter (along with its associated SqlCommand and SqlConnection) can increase overall performance when working with a Microsoft SQL Server databases. For other OLE DB-supported databases, you would use the OleDbDataAdapter object and its associated OleDbCommand and OleDbConnection objects. 

The DataAdapter object uses commands to update the data source after changes have been made to the DataSet. Using the Fill method of the DataAdapter calls the SELECT command; using the Update method calls the INSERT, UPDATE or DELETE command for each changed row. You can explicitly set these commands in order to control the statements used at runtime to resolve changes, including the use of stored procedures. For ad-hoc scenarios, a CommandBuilder object can generate these at run-time based upon a select statement. However, this run-time generation requires an extra round-trip to the server in order to gather required metadata, so explicitly providing the INSERT, UPDATE, and DELETE commands at design time will result in better run-time performance.

1. ADO.NET is the next evolution of ADO for the .Net Framework. 

2. ADO.NET was created with n-Tier, statelessness and XML in the forefront. Two new objects, the DataSet and DataAdapter, are provided for these scenarios. 

3. ADO.NET can be used to get data from a stream, or to store data in a cache for updates. 

4. There is a lot more information about ADO.NET in the documentation. 

5. Remember, you can execute a command directly against the database in order to do inserts, updates, and deletes. You don't need to first put data into a DataSet in order to insert, update, or delete it. 

6. Also, you can use a DataSet to bind to the data, move through the data, and navigate data relationships

4.3 SQL SERVER 2000

Microsoft® SQL Server™ 2000 is a set of components that work together to meet the data storage and analysis needs of the largest Web sites and enterprise data processing systems. The topics in SQL Server Architecture describe how the various components work together to manage data effectively.

2.4.1. Features of SQL Server 2000

Microsoft® SQL Server™ 2000 features include:

· Internet Integration.

The SQL Server 2000 database engine includes integrated XML support. It also has the scalability, availability, and security features required to operate as the data storage component of the largest Web sites. The SQL Server 2000 programming model is integrated with the Windows DNA architecture for developing Web applications, and SQL Server 2000 supports features such as English Query and the Microsoft Search Service to incorporate user-friendly queries and powerful search capabilities in Web applications.

· Scalability and Availability.

The same database engine can be used across platforms ranging from laptop computers running Microsoft Windows® 98 through large, multiprocessor servers running Microsoft Windows 2000 Data Center Edition. SQL Server 2000 Enterprise Edition supports features such as federated servers, indexed views, and large memory support that allow it to scale to the performance levels required by the largest Web sites.

· Enterprise-Level Database Features.

The SQL Server 2000 relational database engine supports the features required to support demanding data processing environments. The database engine protects data integrity while minimizing the overhead of managing thousands of users concurrently modifying the database. SQL Server 2000 distributed queries allow you to reference data from multiple sources as if it were a part of a SQL Server 2000 database, while at the same time, the distributed transaction support protects the integrity of any updates of the distributed data. Replication allows you to also maintain multiple copies of data, while ensuring that the separate copies remain synchronized. You can replicate a set of data to multiple, mobile, disconnected users, have them work autonomously, and then merge their modifications back to the publisher.

· Ease of installation, deployment, and use.

SQL Server 2000 includes a set of administrative and development tools that improve upon the process of installing, deploying, managing, and using SQL Server across several sites. SQL Server 2000 also supports a standards-based programming model integrated with the Windows DNA, making the use of SQL Server databases and data warehouses a seamless part of building powerful and scalable systems. These features allow you to rapidly deliver SQL Server applications that customers can implement with a minimum of installation and administrative overhead.

· Data warehousing.

SQL Server 2000 includes tools for extracting and analyzing summary data for online analytical processing. SQL Server also includes tools for visually designing databases and analyzing data using English-based questions.

2.4.2 Relational Database Components

The database component of Microsoft® SQL Server™ 2000 is a Structured Query Language (SQL)–based, scalable, relational database with integrated Extensible Markup Language (XML) support for Internet applications. Each of the following terms describes a fundamental part of the architecture of the SQL Server 2000 database component:

Database
A database is similar to a data file in that it is a storage place for data. Like a data file, a database does not present information directly to a user; the user runs an application that accesses data from the database and presents it to the user in an understandable format.

Database systems are more powerful than data files in that data is more highly organized. In a well-designed database, there are no duplicate pieces of data that the user or application must update at the same time. Related pieces of data are grouped together in a single structure or record, and relationships can be defined between these structures and records.

When working with data files, an application must be coded to work with the specific structure of each data file. In contrast, a database contains a catalog that applications use to determine how data is organized. Generic database applications can use the catalog to present users with data from different databases dynamically, without being tied to a specific data format.

A database typically has two main parts: first, the files holding the physical database and second, the database management system (DBMS) software that applications use to access data. The DBMS is responsible for enforcing the database structure, including:

· Maintaining relationships between data in the database.

· Ensuring that data is stored correctly, and that the rules defining data relationships are not violated.

· Recovering all data to a point of known consistency in case of system failures.

2.4.3 Relational Database
Although there are different ways to organize data in a database, relational databases are one of the most effective. Relational database systems are an application of mathematical set theory to the problem of effectively organizing data. In a relational database, data is collected into tables (called relations in relational theory).

A table represents some class of objects that are important to an organization. For example, a company may have a database with a table for employees, another table for customers, and another for stores. Each table is built of columns and rows (called attributes and topples in relational theory). Each column represents some attribute of the object represented by the table. For example, an Employee table would typically have columns for attributes such as first name, last name, employee ID, department, pay grade, and job title. Each row represents an instance of the object represented by the table. For example, one row in the Employee table represents the employee who has employee ID 12345.

When organizing data into tables, you can usually find many different ways to define tables. Relational database theory defines a process called normalization, which ensures that the set of tables you define will organize your data effectively.

Scalable
SQL Server 2000 supports having a wide range of users access it at the same time. An instance of SQL Server 2000 includes the files that make up a set of databases and a copy of the DBMS software. Applications running on separate computers use a SQL Server 2000 communications component to transmit commands over a network to the SQL Server 2000 instance. When an application connects to an instance of SQL Server 2000, it can reference any of the databases in that instance that the user is authorized to access. The communication component also allows communication between an instance of SQL Server 2000 and an application running on the same computer. You can run multiple instances of SQL Server 2000 on a single computer.

SQL Server 2000 is designed to support the traffic of the largest Web sites or enterprise data processing systems. Instances of SQL Server 2000 running on large, multiprocessor servers are capable of supporting connections to thousands of users at the same time. The data in SQL Server tables can be partitioned across multiple servers, so that several multiprocessor computers can cooperate to support the database processing requirements of extremely large systems. These groups of database servers are called federations.

Although SQL Server 2000 is designed to work as the data storage engine for thousands of concurrent users who connect over a network, it is also capable of working as a stand-alone database directly on the same computer as an application. The scalability and ease-of-use features of SQL Server 2000 allow it to work efficiently on a single computer without consuming too many resources or requiring administrative work by the stand-alone user. The same features allow SQL Server 2000 to dynamically acquire the resources required to support thousands of users, while minimizing database administration and tuning. The SQL Server 2000 relational database engine dynamically tunes itself to acquire or free the appropriate computer resources required to support a varying load of users accessing an instance of SQL Server 2000 at any specific time. The SQL Server 2000 relational database engine has features to prevent the logical problems that occur if a user tries to read or modify data currently used by others.

Structured Query Language
To work with data in a database, you have to use a set of commands and statements (language) defined by the DBMS software. Several different languages can be used with relational databases; the most common is SQL. The American National Standards Institute (ANSI) and the International Standards Organization (ISO) define software standards, including standards for the SQL language. SQL Server 2000 supports the Entry Level of SQL-92, the SQL standard published by ANSI and ISO in 1992. The dialect of SQL supported by Microsoft SQL Server is called Transact-SQL (T-SQL). T-SQL is the primary language used by Microsoft SQL Server applications.

Extensible Markup Language
XML is the emerging Internet standard for data. XML is a set of tags that can be used to define the structure of a hypertext document. The Hypertext Markup Language can easily process XML documents, which is the most important language for displaying Web pages.

Although most SQL statements return their results in a relational, or tabular, result set, the SQL Server 2000 database component supports a FOR XML clause that returns results as an XML document. SQL Server 2000 also supports XPath queries from Internet and intranet applications. XML documents can be added to SQL Server databases, and the OPENXML clause can be used to expose data from an XML document as a relational result set.

2.4.4 Database Architecture

Microsoft® SQL Server™ 2000 data is stored in databases. The data in a database is organized into the logical components visible to users. A database is also physically implemented as two or more files on disk.

When using a database, you work primarily with the logical components such as tables, views, procedures, and users. The physical implementation of files is largely transparent. Typically, only the database administrator needs to work with the physical implementation.

Each instance of SQL Server has four system databases (master, model, tempdb, and msdb) and one or more user databases. Some organizations have only one user database, containing all the data for their organization. Some organizations have different databases for each group in their organization, and sometimes a database used by a single application. For example, an organization could have one database for sales, one for payroll, one for a document management application, and so on. Sometimes an application uses only one database; other applications may access several databases.

It is not necessary to run multiple copies of the SQL Server database engine to allow multiple users to access the databases on a server. An instance of the SQL Server Standard or Enterprise Edition is capable of handling thousands of users working in multiple databases at the same time. Each instance of SQL Server makes all databases in the instance available to all users that connect to the instance, subject to the defined security permissions.

When connecting to an instance of SQL Server, your connection is associated with a particular database on the server. This database is called the current database. You are usually connected to a database defined as your default database by the system administrator, although you can use connection options in the database APIs to specify another database. You can switch from one database to another using either the Transact-SQL USE database name statement, or an API function that changes your current database context.

SQL Server 2000 allows you to detach databases from an instance of SQL Server, then reattach them to another instance, or even attach the database back to the same instance. If you have a SQL Server database file, you can tell SQL Server when you connect to attach that database file with a specific database name.

Implementation Details

The topics in this section provide information about the editions of Microsoft® SQL Server™ 2000 and the environments that support these editions. Information about the maximum capacities and memory usage of SQL Server 2000 objects is also provided.

2.4.5 Managing Permissions

When users connect to an instance of Microsoft® SQL Server™, the activities they can perform are determined by the permissions granted to:

· Their security accounts.

· The Microsoft Windows NT® 4.0 or Windows® 2000 groups or role hierarchies to which their security accounts belong.

The user must have the appropriate permissions to perform any activity that involves changing the database definition or accessing data.

Managing permissions includes granting or revoking user rights to:

· Work with data and execute procedures (object permissions).

· Create a database or an item in the database (statement permissions).

· Utilize permissions granted to predefined roles (implied permissions).

Object Permissions

Working with data or executing a procedure requires a class of permissions known as object permissions:
· SELECT, INSERT, UPDATE, and DELETE statement permissions, which can be applied to the entire table and view.

· SELECT and UPDATE statement permissions, which can be selectively applied to individual columns of a table or view.

· SELECT permissions, which may be applied to user-defined functions.

· INSERT and DELETE statement permissions, which affect the entire row, and therefore can be applied only to the table and view and not to individual columns.

· EXECUTE statement permissions, which affect stored procedures and functions.

Statement Permissions

Activities involved in creating a database or an item in a database, such as a table or stored procedure, require a different class of permissions called statement permissions. For example, if a user must be able to create a table within a database, then grant the CREATE TABLE statement permission to the user. Statement permissions, such as CREATE DATABASE, are applied to the statement itself, rather than to a specific object defined in the database.

Statement permissions are:

· BACKUP DATABASE

· BACKUP LOG

· CREATE DATABASE

· CREATE DEFAULT

· CREATE FUNCTION

· CREATE PROCEDURE

· CREATE RULE

· CREATE TABLE

· CREATE VIEW

Implied Permissions

Implied permissions control those activities that can be performed only by members of predefined system roles or owners of database objects. For example, a member of the sysadmin fixed server role inherits automatically full permission to do or see anything in a SQL Server installation.

Database object owners also have implied permissions that allow them to perform all activities with the object they own. For example, a user who owns a table can view, add, or delete data, alter the table definition, or control permissions that allow other users to work with the table.

Granting Permissions

Grant statement and object permissions that allow a user account to:

· Perform activities or work with data in the current database.

· Restrict them from activities or information not part of their intended function.

For example, you may be inclined to grant SELECT object permission on the payroll table to all members of the personnel role, allowing all members of personnel to view payroll. Months later, you may overhear members of personnel discussing management salaries, information not meant to be seen by all personnel members. In this situation, grant SELECT access to personnel for all columns in payroll except the salary column.

Note: It is possible to grant permissions only to user accounts in the current database, for objects in the current database. If a user needs permissions to objects in another database, create the user account in the other database, or grant the user account access to the other database, as well as the current database. System stored procedures are the exception because EXECUTE permissions are already granted to the public role, which allows everyone to execute them. However, after EXECUTE has been issued, the system stored procedures check the user's role membership. If the user is not a member of the appropriate fixed server or database role necessary to run the stored procedure, the stored procedure will not continue.

Revoking Permissions

You can revoke a permission that has been granted or denied previously. Revoking is similar to denying in that both remove a granted permission at the same level. However, although revoking permission removes a granted permission, it does not prevent the user, group, or role from inheriting a granted permission from a higher level. Therefore, if you revoke permission for a user to view a table, you do not necessarily prevent the user from viewing the table because permission to view the table was granted to a role to which he belongs.

For example, removing SELECT access on the Employees table from the HumanResources role revokes permission so that HumanResources can no longer use the table. If HumanResources is a member of the Administration role. If you later grant SELECT permission on Employees to Administration, members of HumanResources can see the table through their membership in Administration. However, if you deny permission to HumanResources, the permission is not inherited if later granted to Administration because the deny permission cannot be undone by a permission at a different level.

Similarly, it is also possible to remove a previously denied permission by revoking the deny for the permission. However, if a user has other denied permissions at the group or role level, then the user still is denied access.


Note:  You can revoke permissions to user accounts only in the current database, for objects in the current database.

2.4.6. Permissions for User-Defined Functions

Functions are subroutines made up of one or more Transact-SQL statements that can be used to encapsulate code for reuse. Microsoft® SQL Server™ 2000 allows users to create their own user-defined functions.

User-defined functions are managed through the following statements:

· CREATE FUNCTION, which creates a user-defined function.

· ALTER FUNCTION, which modifies user-defined functions.

· DROP FUNCTION, which drops user-defined functions.

Each fully qualified user-defined function name (database_name.owner_name.function_name) must be unique.

You must have been granted CREATE FUNCTION permissions to create, alter, or drop user-defined functions. Users other than the owner must be granted EXECUTE permission on a function (if the function is scalar-valued) before they can use it in a Transact-SQL statement. If the function is table-valued, the user must have SELECT permissions on the function before referencing it. If a CREATE TABLE or ALTER TABLE statement references a user-defined function in a CHECK constraint, a DEFAULT clause, or a computed column, the table owner must also own the function. If the function is being schema-bound, you must have REFERENCE permission on tables, views, and functions referenced by the function.
