AUTOMATIC STREET LIGHT CONTROL USING LDR

Abstract:
 This project aims at designing and executing the advanced development in embedded systems for energy saving of street lights with light depending resistor. Nowadays, human has become too busy and he is unable to find time even to switch the lights wherever not necessary. This can be seen more effectively in the case of street lights. The present system is like, the street lights will be switched on in the evening before the sun sets and they are switched off the next day morning after there is sufficient light on the roads. But the actual timings for these street lights to be switched on are when there is absolute darkness. With this, the power will be wasted up to some extent. This project gives the best solution for electrical power wastage. Also the manual operation of the lighting system is completely eliminated.

In our project we are using LDR, which varies according to the amount of light falling on its surface, this give an indication for us whether it is a day/night time. We have placed IR sensors in both sides of the road, which can be controlled by Micro controller (AT89C51).The IR‘s will be activated only on the night time. If any obstacle crosses the IR, automatically particular light will be ON, for few seconds.
In our project we use regulated 5V, 500mA power supply. 7805 three terminal voltage regulator is used for voltage regulation. Bridge type full wave rectifier is used to rectify the ac out put of secondary of 230/12V step down transformer.
The programming language used for developing the software to the microcontroller is Embedded/Assembly. The KEIL cross compiler is used to edit, compile and debug this program. Here in our application we are using AT89C51 microcontroller which is Flash Programmable IC.AT represents the Atmel Corporation ‘C’ represents CMOS technology is used for designing the IC. We believe that our idea provides better than the existing system.

 In the present project street lights are taken into consideration where the above discussed factors are rectified in them. This is achieved with the help of an embedded system. By using this as the basic principle we can design centralized intelligent system for the perfect usage of streetlights in any place (Viz Village, Town) can be developed.

INDEX

1. INTRODUCTION…………………………………………………

· Embedded Systems

· Objective Of The Project

· Block Diagram

· Block Diagram Description

2. DESCRIPTION OF THE PROJECT…………………………..

· Circuit Diagram

· Circuit Description
3. HARDWARE DESCRIPTION………………………………….

· Micro controller

· LDR

· IR
· Power Supply

4. SOFTWARE DESCRIPTION

· Flow Chart

· Program
5. CONCLUSION

6. FUTURE ENHANCEMENT

7. BIBLIOGRAPHY

EMBEDDED SYSTEMS:

Embedded systems are designed to do some specific task, rather than be a general-purpose computer for multiple tasks. Some also have real time performance constraints that must be met, for reason such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs.

 An embedded system is not always a separate block - very often it is physically built-in to the device it is controlling. The software written for embedded systems is often called firmware, and is stored in read-only memory or flash convector chips rather than a disk drive. It often runs with limited computer hardware resources: small or no keyboard, screen, and little memory.

 Wireless communication has become an important feature for commercial products and a popular research topic within the last ten years. There are now more mobile phone subscriptions than wired-line subscriptions. Lately, one area of commercial interest has been low-cost, low-power, and short-distance wireless communication used for \personal wireless networks." Technology advancements are providing smaller and more cost effective devices for integrating computational processing, wireless communication, and a host of other functionalities. These embedded communications devices will be integrated into applications ranging from homeland security to industry automation and monitoring. They will also enable custom tailored engineering solutions, creating a revolutionary way of disseminating and processing information. With new technologies and devices come new business activities, and the need for employees in these technological areas. Engineers who have knowledge of embedded systems and wireless communications will be in high demand. Unfortunately, there are few adorable environments available for development and classroom use, so students often do not learn about these technologies during hands-on lab exercises. The communication mediums were twisted pair, optical fiber, infrared, and generally wireless radio.

Objective of the project:-

 The main consideration in the present field technologies are Automation, Power consumption and cost effectiveness. Automation is intended to reduce man power with the help of intelligent systems. Power saving is the main consideration forever as the source of the power(Thermal, Hydro etc.,)are getting diminished due to various reasons.

The main aim of the project is Automatic street power saving system with LDR, this is to save the power. We want to save power automatically instead of doing manual. So its easy to make cost effectiveness. This saved power can be used in some other cases. So in villages, towns etc we can design intelligent systems for the usage of street lights.

 Block Diagram:

[image: image1.png]PLO
PLL

L2

L3

L4

PLs

LS

L7
RSTIN
(RXD) P30
(TXD) P31
(INTOy P3.2
(T P33
(T0)P34
(THF35
(WR)P3.6
FD)P37
XTAL2

XTALL
Vs

AN NN0NO0N0NNNOn0nNnonnnn

1
2
13
14
15
1
"
1
1
B

— L QO H P

2
2

OO0 00000 0000000000000

5V
PO (AD0)
POL(ADT)
P02(ADY)
P03 (AD3)
P04 (AD4)
P05 (ADS)
PO (AD6)
P07 (ADT)
E& (Vip)
ALE FROG)
PSEN

P17 (A15)
P16 (A14)
P15 A13)
P14 (A12)
P13 (Al1)
PLI(AID)
P11(A9)
P10(A3)

[image: image34.png]Protection
Diode

+12v

Coil

§—ono

I miitvy
NC

Input

Relay Contacts

Transistor
ov

Block Diagram Explanation: .

 In this project, we are going to switch off the street lights automatically as the day starts. The duration of the day differs from season to season, accordingly our module works based upon the light intensity so as to when to start or stop. For this we are using Light Dependent Resistor (LDR) as the light sensor, which communicates with the required information to the micro controller.

 Here we are using micro controller, LDR, and relay. By using the LDR we can operate the lights, i.e when the light is available then it will be in the OFF state and when it is dark then the light will be in ON state, it means LDR is inversely proportional to light. When the light falls on the LDR it sends the commands to the micro controller that it should be in the OFF state then it switch off’s the light, all these commands are sent to the controller then according to that the devices operate. We use a relay to act as an ON OFF switch, the load is connected to these relays.
 HARDWARE DESCRIPTION

The block diagram of the system is as shown in the fig. The system basically consists of a

1. Micro controller,

2. LDR

3. IR
4. Power supply,

MICROCONTROLLER ARCHITECHTURE
Microprocessor has following instructions to perform:

1. Reading instructions or data from program memory ROM.

2. Interpreting the instruction and executing it.

3. Microprocessor Program is a collection of instructions stored in a

 Nonvolatile memory.

4. Read Data from I/O device

5. Process the input read, as per the instructions read in program memory.

6. Read or write data to Data memory.

7. Write data to I/O device and output the result of processing to O/P device.

NECESSITY OF MICROCONTROLLERS:

 Microprocessors brought the concept of programmable devices and made many applications of intelligent equipment. Most applications, which do not need large amount of data and program memory, tended to be:

Costly:

 The microprocessor system had to satisfy the data and program requirements so, sufficient RAM and ROM are used to satisfy most applications .The peripheral control equipment also had to be satisfied. Therefore, almost all-peripheral chips were used in the design. Because of these additional peripherals cost will be comparatively high.

An example:

 8085 chip needs:

 An Address latch for separating address from multiplex address and data.32-KB RAM and 32-KB ROM to be able to satisfy most applications. As also Timer / Counter, Parallel programmable port, Serial port, Interrupt controller are needed for its efficient applications.

In comparison a typical Micro controller 8051 chip has all that the 8051 board has except a reduced memory as follows.

4K bytes of ROM as compared to 32-KB, 128 Bytes of RAM as compared to 32-KB. Bulky:

On comparing a board full of chips (Microprocessors) with one chip with all components in it (Micro controller).

Debugging:

Lots of Microprocessor circuitry and program to debug. In Micro controller there is no Microprocessor circuitry to debug.

Slower Development time: As we have observed Microprocessors need a lot of debugging at board level and at program level, where as, Micro controller do not have the excessive circuitry and the built-in peripheral chips are easier to program for operation.

So peripheral devices like Timer/Counter, Parallel programmable port, Serial Communication Port, Interrupt controller and so on, which were most often used were integrated with the Microprocessor to present the Micro controller .RAM and ROM also were integrated in the same chip. The ROM size was anything from 256 bytes to 32Kb or more. RAM was optimized to minimum of 64 bytes to 256 bytes or more.

Typical Micro controller have all the following features:

8/16/32 CPU

Instruction set rich in I/O & bit operations.

One or more I/O ports.

One or more timer/counters.

One or more interrupt inputs and an interrupt controller

One or more serial communication ports.

Analog to Digital /Digital to Analog converter

One or more PWM output

Network controlled interface

Why AT 89C51? :

The system requirements and control specifications clearly rule out the use of 16, 32 or 64 bit micro controllers or microprocessors. Systems using these may be earlier to implement due to large number of internal features. They are also faster and more reliable but, the above application is satisfactorily served by 8-bit micro controller. Using an inexpensive 8-bit Micro controller will doom the 32-bit product failure in any competitive market place.

Coming to the question of why to use AT89C51 of all the 8-bit Micro controller available in the market the main answer would be because it has 4 Kb on chip flash memory which is just sufficient for our application. The on-chip Flash ROM allows the program memory to be reprogrammed in system or by conventional non-volatile memory Programmer. Moreover ATMEL is the leader in

Flash technology in today’s market place and hence using AT 89C51 is the optimal solution.

8051 micro controller architecture:
The 8051 architecture consists of these specific features:

· Eight –bit CPU with registers A (the accumulator) and B

· Sixteen-bit program counter (PC) and data pointer (DPTR)

· Eight- bit stack pointer (PSW)

· Eight-bit stack pointer (Sp)

· Internal ROM or EPROM (8751) of 0(8031) to 4K (8051)

· Internal RAM of 128 bytes:

1. Four register banks, each containing eight registers

2. Sixteen bytes, which maybe addressed at the bit level

3. Eighty bytes of general- purpose data memory

· Thirty –two input/output pins arranged as four 8-bit ports:p0-p3

· Two 16-bit timer/counters: T0 and T1

· Full duplex serial data receiver/transmitter: SBUF

· Control registers: TCON, TMOD, SCON, PCON, IP, and IE

· Two external and three internal interrupts sources.

Oscillator and clock circuits.

[image: image35.png]—
i

NO
COM
NC

Fig -
PIN OUT DIAGRAM OF 89C51 IC
FUNCTIONAL BLOCK DIAGRAM OF MICROCONTROLLER

[image: image2.wmf]

 -
Functional block diagram of micro controller

 The 8051 oscillator and clock:

The heart of the 8051 circuitry that generates the clock pulses by which all the internal all internal operations are synchronized. Pins XTAL1 And XTAL2 is provided for connecting a resonant network to form an oscillator. Typically a quartz crystal and capacitors are employed. The crystal frequency is the basic internal clock frequency of the micro controller. The manufacturers make 8051 designs that run at specific minimum and maximum frequencies typically 1 to 16 MHz.

[image: image3.png]c2
i
Lr 18XTAL2
T oc2 = 8051 DIP
330PF T 7
T 19XTAL 1
CRYSTAL
OR.
CERAMIC RESONATOR
P2 ’_E ’ﬂ ’ﬂ P2 P1 P2 P1 P2 Pl P2 P1 P2
State 1 | State2 | Stae3 | Staed | SwaeS| Stae6
One Machine Cye

Fig: -
Oscillator and timing circuit
Types of memory:

The 8051 have three general types of memory. They are on-chip memory, external Code memory and external Ram. On-Chip memory refers to physically existing memory on the micro controller itself. External code memory is the code memory that resides off chip. This is often in the form of an external EPROM. External RAM is the Ram that resides off chip. This often is in the form of standard static RAM or flash RAM.

a) Code memory

Code memory is the memory that holds the actual 8051 programs that is to be run. This memory is limited to 64K. Code memory may be found on-chip or off-chip. It is possible to have 4K of code memory on-chip and 60K off chip memory simultaneously. If only off-chip memory is available then there can be 64K of off chip ROM. This is controlled by pin provided as EA

b) Internal RAM

The 8051 have a bank of 128 bytes of internal RAM. The internal RAM is found on-chip. So it is the fastest Ram available. And also it is most flexible in terms of reading and writing. Internal Ram is volatile, so when 8051 is reset, this memory is cleared. 128 bytes of internal memory are subdivided. The first 32 bytes are divided into 4 register banks. Each bank contains 8 registers. Internal RAM also contains 128 bits, which are addressed from 20h to 2Fh. These bits are bit addressed i.e. each individual bit of a byte can be addressed by the user. They are numbered 00h to 7Fh. The user may make use of these variables with commands such as SETB and CLR.

Special Function registered memory:

Special function registers are the areas of memory that control specific functionality of the 8051 micro controller.

a) Accumulator (0E0h)

As its name suggests, it is used to accumulate the results of large no of instructions. It can hold 8 bit values.

B) B register (0F0h)

The B register is very similar to accumulator. It may hold 8-bit value. The b register is only used by MUL AB and DIV AB instructions. In MUL AB the higher byte of the product gets stored in B register. In div AB the quotient gets stored in B with the remainder in A.

c) Stack pointer (81h)

 The stack pointer holds 8-bit value. This is used to indicate where the next value to be removed from the stack should be taken from. When a value is to be pushed onto the stack, the 8051 first store the value of SP and then store the value at the resulting memory location. When a value is to be popped from the stack, the 8051 returns the value from the memory location indicated by SP and then decrements the value of SP.

d) Data pointer

The SFRs DPL and DPH work together work together to represent a 16-bit value called the data pointer. The data pointer is used in operations regarding external RAM and some instructions code memory. It is a 16-bit SFR and also an addressable SFR.

e) Program counter

The program counter is a 16 bit register, which contains the 2 byte address, which tells the 8051 where the next instruction to execute to be found in memory. When the 8051 is initialized PC starts at 0000h. And is incremented each time an instruction is executes. It is not addressable SFR.

f) PCON (power control, 87h)

The power control SFR is used to control the 8051’s power control modes. Certain operation modes of the 8051 allow the 8051 to go into a type of “sleep mode ” which consume much lee power.

[image: image4.png]sMop | ~ | ~ |~ [oF | GFo | PD | 1DL

g) TCON (timer control, 88h)

The timer control SFR is used to configure and modify the way in which the 8051’s two timers operate. This SFR controls whether each of the two timers is running or stopped and contains a flag to indicate that each timer has overflowed. Additionally, some non-timer related bits are located in TCON SFR. These bits are used to configure the way in which the external interrupt flags are activated, which are set when an external interrupt occurs.

[image: image5.png]TFL [TR | TFO [TR [1E1 | 1T1 | IED | ITO

h) TMOD (Timer Mode, 89h)

The timer mode SFR is used to configure the mode of operation of each of the two timers. Using this SFR your program may configure each timer to be a 16-bit timer, or 13 bit timer, 8-bit auto reload timer, or two separate timers. Additionally you may configure the timers to only count when an external pin is activated or to count “events ” that are indicated on an external pin.

[image: image6.png]Gate

M0

Gate

M0

TIMER 1

TIMER 0

i) TO (Timer 0 low/high, address 8A/8C h)

These two SFRs taken together represent timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.

j) T1 (Timer 1 Low/High, address 8B/ 8D h)

These two SFRs, taken together, represent timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is

Configurable is how and when they increment in value.

k) P0 (Port 0, address 90h, bit addressable)

This is port 0 latch. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P0.0, bit 7 is pin p0.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level.

l) P1 (port 1, address 90h, bit addressable)

 This is port latch1. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level

m) P2 (port 2, address 0A0h, bit addressable) :

 This is a port latch2. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level.

n) P3(port 3,address B0h, bit addressable) :

 This is a port latch3. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level

o) IE (interrupt enable, 0A8h):

 The Interrupt Enable SFR is used to enable and disable specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where the MSB bit is used to enable or disable all the interrupts. Thus, if the high bit of IE is 0 all interrupts are disabled regardless of whether an individual interrupt is enabled by setting a lower bit.

 [image: image7.png]ETz | ES | ET1 | EX1 [ETO | EX0

p) IP (Interrupt Priority, 0B8h)

 The interrupt priority SFR is used to specify the relative priority of each interrupt. On 8051, an interrupt maybe either low or high priority. An interrupt may interrupt interrupts. For e.g., if we configure all interrupts as low priority other than serial interrupt. The serial interrupt always interrupts the system, even if another interrupt is currently executing. However, if a serial interrupt is executing no other interrupt will be able to interrupt the serial interrupt routine since the serial interrupt routine has the highest priority.

 [image: image8.png]PT2 | Ps | PT1 | Px1 [PTO [PXO

q) PSW (Program Status Word, 0D0h)

 The program Status Word is used to store a number of important bits that are set and cleared by 8051 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the parity flag and the overflow flag. Additionally, it also contains the register bank select flags, which are used to select, which of the “R” register banks currently in use.

[image: image9.png]Rs1 | RSO

r) SBUF (Serial Buffer, 99h)

 SBUF is used to hold data in serial communication. It is physically two registers. One is writing only and is used to hold data to be transmitted out of 8051 via TXD. The other is read only and holds received data from external sources via RXD. Both mutually exclusive registers use address 99h.

I/O ports:

 One major feature of a microcontroller is the versatility built into the input/output (I/O) circuits that connect the 8051 to the outside world. The main constraint that limits numerous functions is the number of pins available in the 8051 circuit. The DIP had 40 pins and the success of the design depends on the flexibility incorporated into use of these pins. For this reason, 24 of the pins may each used for one of the two entirely different functions which depend, first, on what is physically connected to it and, then, on what software programs are used to “program” the pins.

PORT 0

 Port 0 pins may serve as inputs, outputs, or, when used together, as a bi directional low-order address and data bus for external memory. To configure a pin as input, 1 must be written into the corresponding port 0 latch by the program. When used for interfacing with the external memory, the lower byte of address is first sent via PORT0, latched using Address latch enable (ALE) pulse and then the bus is turned around to become the data bus for external memory.

PORT 1

 Port 1 is exclusively used for input/output operations. PORT 1 pins have no dual function. When a pin is to be configured as input, 1 is to be written into the corresponding Port 1 latch.

PORT 2

 Port 2 maybe used as an input/output port. It may also be used to supply a high –order address byte in conjunction with Port 0 low-order byte to address external memory. Port 2 pins are momentarily changed by the address control signals when supplying the high byte a 16-bit address. Port 2 latches remain stable when external memory is addressed, as they do not have to be turned around (set to 1) for data input as in the case for Port 0.

PORT 3

 Port 3 may be used to input /output port. The input and output functions can be programmed under the control of the P3 latches or under the control of various special function registers. Unlike Port 0 and Port 2, which can have external addressing functions and change all eight-port b se, each pin of port 3 maybe individually programmed to be used as I/O or as one of the alternate functions. The Port 3 alternate uses are:

Pin Alternate Use

 SFR

P3.0 - RXD Serial data input

 SBUF

P3.1 - TXD Serial data output

 SBUF

P3.2 - INTO 0 External interrupt 0

 TCON.1

P3.3 - INTO 1 External interrupt 1

 TCON.3

P3.4 - T0 External Timer 0 input

 TMOD

P3.5 – T1 External timer 1 input

 TMOD

P3.6 - WR External memory write pulse

-

P3.7 - RD External memory read pulse

-

INTERRUPTS:

 Interrupts are hardware signals that are used to determine conditions that exist in external and internal circuits. Any interrupt can cause the 8051 to perform a hardware call to an interrupt –handling subroutine that is located at a predetermined absolute address in the program memory.

 Five interrupts are provided in the 8051. Three of these are generated automatically by the internal operations: Timer flag 0, Timer Flag 1, and the serial port interrupt (RI or TI) Two interrupts are triggered by external signals provided by the circuitry that is connected to the pins INTO 0 and INTO1. The interrupts maybe enable or disabled, given priority or otherwise controlled by altering the bits in the Interrupt Enabled (IE) register, Interrupt Priority (IP) register, and the Timer Control (TCON) register. . These interrupts are mask able i.e. they can be disabled. Reset is a non maskable interrupt which has the highest priority. It is generated when a high is applied to the reset pin. Upon reset, the registers are loaded with the default values.

 Each interrupt source causes the program to do store the address in PC onto the stack and causes a hardware call to one of the dedicated addresses in the program memory. The appropriate memory locations for each for each interrupt are as follows:

Interrupt
Address

RESET
0000

IE0 (External interrupt 0)
0003

TF0 (Timer 0 interrupt)
000B

IE1 (External interrupt 1)
0013

TF1 (Timer 1 interrupt)
001B

SERIAL
0023

 Functions of micro controller in main unit are

1. Sends appropriate commands to ADC to start conversion,

2. Collects the output of ADC for every 10 sec and stores in buffer,

3. Sends command to the modem for dialing the base every 80 sec,

4. Sends data in a serial manner to MODEM,

5. After data gets transmitted sends command for disconnection.

6. Sends appropriate information to the display unit as per status of the communication medium.

LDR

 LDRs or Light Dependent Resistors are very useful especially in light/dark sensor circuits. Normally the resistance of an LDR is very high, sometimes as high as 1000 000 ohms, but when they are illuminated with light resistance drops dramatically.

[image: image10.png]

The animation opposite shows that when the torch is turned on, the resistance of the LDR falls, allowing current to pass through

[image: image11.png]o

LDR
Light Dependent Resistor

This is an example of a light sensor circuit :

When the light level is low the resistance of the LDR is high. This prevents current from flowing to the base of the transistors. Consequently the LED does not light.

However, when light shines onto the LDR its resistance falls and current flows into the base of the first transistor and then the second transistor. The LED lights.

The preset resistor can be turned up or down to increase or decrease resistance, in this way it can make the circuit more or less sensitive.

[image: image12.png]=,

LOR

PRESET
RESISTOR l’*

LED

¥\

o

SHOLSISNA |

By V.Rvan

 REGULATED POWER SUPPLY

DESCRIPTION

 A variable regulated power supply, also called a variable bench power supply, is one where you can continuously adjust the output voltage to your requirements. Varying the output of the power supply is the recommended way to test a project after having double checked parts placement against circuit drawings and the parts placement guide. This type of regulation is ideal for having a simple variable bench power supply. Actually this is quite important because one of the first projects a hobbyist should undertake is the construction of a variable regulated power supply. While a dedicated supply is quite handy e.g. 5V or 12V, it's much handier to have a variable supply on hand, especially for testing. Most digital logic circuits and processors need a 5 volt power supply. To use these parts we need to build a regulated 5 volt source. Usually you start with an unregulated power supply ranging from 9 volts to 24 volts DC (A 12 volt power supply is included with the Beginner Kit and the Microcontroller Beginner Kit.). To make a 5 volt power supply, we use a LM7805 voltage regulator IC . [image: image13.jpg]

The LM7805 is simple to use. You simply connect the positive lead of your unregulated DC power supply (anything from 9VDC to 24VDC) to the Input pin, connect the negative lead to the Common pin and then when you turn on the power, you get a 5 volt supply from the Output pin.

CIRCUIT FEATURES

Brief description of operation: Gives out well regulated +5V output, output current capability of 100 mA

· Circuit protection: Built-in overheating protection shuts down output when regulator IC gets too hot

· Circuit complexity: Very simple and easy to build

· Circuit performance: Very stable +5V output voltage, reliable operation

· Availability of components: Easy to get, uses only very common basic components

· Design testing: Based on datasheet example circuit, I have used this circuit successfully as part of many electronics projects

· Applications: Part of electronics devices, small laboratory power supply

· Power supply voltage: Unregulated DC 8-18V power supply

· Power supply current: Needed output current + 5 mA

· Component costs: Few dollars for the electronics components + the input transformer cost
BLOCK DIAGRAM

[image: image14.png]Tout
—
o
- T +
To AC line for:;; Rectifier Filter Regulator Vour | Load
o
A 2 N
Vaul
t—

Components of a typical linear power supply

CIRCUIT DIAGRAM
[image: image15.png]51

AT

45YDC
Sourcs

BASIC POWER SUPPLY CIRCUIT

 Above is the circuit of a basic unregulated dc power supply. A bridge rectifier D1 to D4 rectifies the ac from the transformer secondary, which may also be a block rectifier such as WO4 or even four individual diodes such as 1N4004 types. (See later re rectifier ratings).

 The principal advantage of a bridge rectifier is you do not need a centre tap on the secondary of the transformer. A further but significant advantage is that the ripple frequency at the output is twice the line frequency (i.e. 50 Hz or 60 Hz) and makes filtering somewhat easier.

 As a design example consider we wanted a small unregulated bench supply for our projects. Here we will go for a voltage of about 12 - 13V at a maximum output current (IL) of 500ma (0.5A). Maximum ripple will be 2.5% and load regulation is 5%.

 Now the RMS secondary voltage (primary is whatever is consistent with your area) for our power transformer T1 must be our desired output Vo PLUS the voltage drops across D2 and D4 (2 * 0.7V) divided by 1.414.

This means that Vsec = [13V + 1.4V] / 1.414 which equals about 10.2V. Depending on the VA rating of your transformer, the secondary voltage will vary considerably in accordance with the applied load. The secondary voltage on a transformer advertised as say 20VA will be much greater if the secondary is only lightly loaded.

 If we accept the 2.5% ripple as adequate for our purposes then at 13V this becomes 13 * 0.025 = 0.325 Vrms. The peak to peak value is 2.828 times this value. Vrip = 0.325V X 2.828 = 0.92 V and this value is required to calculate the value of C1. Also required for this calculation is the time interval for charging pulses. If you are on a 60Hz system it it 1/ (2 * 60) = 0.008333 which is 8.33 milliseconds. For a 50Hz system it is 0.01 sec or 10 milliseconds.

 Remember the tolerance of the type of capacitor used here is very loose. The important thing to be aware of is the voltage rating should be at least 13V X 1.414 or 18.33. Here you would use at least the standard 25V or higher (absolutely not 16V).With our rectifier diodes or bridge they should have a PIV rating of 2.828 times the Vsec or at least 29V. Don't search for this rating because it doesn't exist. Use the next highest standard or even higher. The current rating should be at least twice the load current maximum i.e. 2 X 0.5A or 1A. A good type to use would be 1N4004, 1N4006 or 1N4008 types.

 These are rated 1 Amp at 400PIV, 600PIV and 1000PIV respectively. Always be on the lookout for the higher voltage ones when they are on special.

TRANSFORMER RATING –

 In our example above we were taking 0.5A out of the Vsec of 10V. The VA required is 10 X 0.5A = 5VA. This is a small PCB mount transformer available in Australia and probably elsewhere.

 This would be an absolute minimum and if you anticipated drawing the maximum current all the time then go to a higher VA rating.

 The two capacitors in the primary side are small value types and if you don't know precisely and I mean precisely what you are doing then OMIT them. Their loss won't cause you heartache or terrible problems.

THEY MUST BE HIGH VOLTAGE TYPES RATED FOR A.C USE

 The fuse F1 must be able to carry the primary current but blow under excessive current, in this case we use the formula from the diagram. Here N = 240V / 10V or perhaps 120V / 10V. The fuse calculates in the first instance to [2 X 0.5A] / [240 / 10] or .04A or 40 ma. In the second case .08A or 80 ma. The difficulty here is to find suitable fuses of that low a current and voltage rating. In practice you use the closest you can get (often 100 ma). Don't take that too literal and use 1A or 5A fuses.

CONSTRUCTION

 The whole project MUST be enclosed in a suitable box. The main switch (preferably double pole) must be rated at 240V or 120V at the current rating. All exposed parts within the box MUST be fully insulated, preferably with heat shrink tubing.

 RELAY

Description

A relay is an electrical switch that opens and closes under the control of another electrical circuit. In the original form, the switch is operated by an electromagnet to open or close one or many sets of contacts. It was invented by Joseph Henry in 1835. Because a relay is able to control an output circuit of higher power than the input circuit, it can be considered to be, in a broad sense, a form of an electrical amplifier.

[image: image16.png]

Operation
When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current to the coil is switched off, the armature is returned by a force approximately half as strong as the magnetic force to its relaxed position. Usually this is a spring, but gravity is also used commonly in industrial motor starters. Most relays are manufactured to operate quickly. In a low voltage application, this is to reduce noise. In a high voltage or high current application, this is to reduce arcing.

If the coil is energized with DC, a diode is frequently installed across the coil, to dissipate the energy from the collapsing magnetic field at deactivation, which would otherwise generate a spike of voltage and might cause damage to circuit components. Some automotive relays already include that diode inside the relay case. Alternatively a contact protection network, consisting of a capacitor and resistor in series, may absorb the surge. If the coil is designed to be energized with AC, a small copper ring can be crimped to the end of the solenoid. This "shading ring" creates a small out-of-phase current, which increases the minimum pull on the armature during the AC cycle.

By analogy with the functions of the original electromagnetic device, a solid-state relay is made with a thyristor or other solid-state switching device. To achieve electrical isolation an opto coupler can be used which is a light-emitting diode (LED) coupled with a photo transistor.

Since relays are switches, the terminology applied to switches is also applied to relays. A relay will switch one or more poles, each of whose contacts can be thrown by energizing the coil in one of three ways:

· Normally-open (NO) contacts connect the circuit when the relay is activated; the circuit is disconnected when the relay is inactive. It is also called a Form A contact or "make" contact.

· Normally-closed (NC) contacts disconnect the circuit when the relay is activated; the circuit is connected when the relay is inactive. It is also called a Form B contact or "break" contact.

· Change-over, or double-throw, contacts control two circuits: one normally-open contact and one normally-closed contact with a common terminal. It is also called a Form C contact or "transfer" contact. If this type of contact utilizes a "make before break" functionality, then it is called a Form D contact.

The animated picture shows a working relay with its coil and switch contacts. You can see a lever on the left being attracted by magnetism when the coil is switched on. This lever moves the switch contacts.

The relay's switch connections are usually labelled COM, NC and NO:

· COM = Common, always connect to this, it is the moving part of the switch.

· NC = Normally Closed, COM is connected to this when the relay coil is off.

· NO = Normally Open, COM is connected to this when the relay coil is on.

· Connect to COM and NO if you want the switched circuit to be on when the relay coil is on.

· Connect to COM and NC if you want the switched circuit to be on when the relay coil is off.

.

SOFTWARE :
ABOUT SOFTWARE

Software’s used are:

*Keil software for c programming

*Express PCB for lay out design

*Express SCH for schematic design

What's New in µVision3?
µVision3 adds many new features to the Editor like Text Templates, Quick Function Navigation, and Syntax Coloring with brace high lighting Configuration Wizard for dialog based startup and debugger setup. µVision3 is fully compatible to µVision2 and can be used in parallel with µVision2.
What is µVision3?

µVision3 is an IDE (Integrated Development Environment) that helps you write, compile, and debug embedded programs. It encapsulates the following components:

· A project manager.

· A make facility.

· Tool configuration.

· Editor.

· A powerful debugger.

To help you get started, several example programs (located in the \C51\Examples, \C251\Examples, \C166\Examples, and \ARM\...\Examples) are provided.

· HELLO is a simple program that prints the string "Hello World" using the Serial Interface.

· MEASURE is a data acquisition system for analog and digital systems.

· TRAFFIC is a traffic light controller with the RTX Tiny operating system.

· SIEVE is the SIEVE Benchmark.

· DHRY is the Dhrystone Benchmark.

· WHETS is the Single-Precision Whetstone Benchmark.

Additional example programs not listed here are provided for each device architecture.

Building an Application in µVision2

To build (compile, assemble, and link) an application in µVision2, you must:

1. Select Project -(forexample,166\EXAMPLES\HELLO\HELLO.UV2).

2. Select Project - Rebuild all target files or Build target.

 µVision2 compiles, assembles, and links the files in your project.

Creating Your Own Application in µVision2

 To create a new project in µVision2, you must:

1. Select Project - New Project.

2. Select a directory and enter the name of the project file.

3. Select Project - Select Device and select an 8051, 251, or C16x/ST10 device from the Device Database™.

4. Create source files to add to the project.

5. Select Project - Targets, Groups, Files. Add/Files, select Source Group1, and add the source files to the project.

6. Select Project - Options and set the tool options. Note when you select the target device from the Device Database™ all special options are set automatically. You typically only need to configure the memory map of your target hardware. Default memory model settings are optimal for most applications.

7. Select Project - Rebuild all target files or Build target.

Debugging an Application in µVision2

To debug an application created using µVision2, you must:

1. Select Debug - Start/Stop Debug Session.

2. Use the Step toolbar buttons to single-step through your program. You may enter G, main in the Output Window to execute to the main C function.

3. Open the Serial Window using the Serial #1 button on the toolbar.

Debug your program using standard options like Step, Go, Break, and so on.
Starting µVision2 and Creating a Project

µVision2 is a standard Windows application and started by clicking on the program icon. To create a new project file select from the µVision2 menu

Project – New Project…. This opens a standard Windows dialog that asks you

for the new project file name.

We suggest that you use a separate folder for each project. You can simply use

the icon Create New Folder in this dialog to get a new empty folder. Then

select this folder and enter the file name for the new project, i.e. Project1.

µVision2 creates a new project file with the name PROJECT1.UV2 which contains

a default target and file group name. You can see these names in the Project

Window – Files.

Now use from the menu Project – Select Device for Target and select a CPU

for your project. The Select Device dialog box shows the µVision2 device

database. Just select the microcontroller you use. We are using for our examples the Philips 80C51RD+ CPU. This selection sets necessary tool

options for the 80C51RD+ device and simplifies in this way the tool Configuration

Building Projects and Creating a HEX Files

Typical, the tool settings under Options – Target are all you need to start a new

application. You may translate all source files and line the application with a

click on the Build Target toolbar icon. When you build an application with

syntax errors, µVision2 will display errors and warning messages in the Output

Window – Build page. A double click on a message line opens the source file

on the correct location in a µVision2 editor window.

Once you have successfully generated your application you can start debugging.

After you have tested your application, it is required to create an Intel HEX file to download the software into an EPROM programmer or simulator. µVision2 creates HEX files with each build process when Create HEX files under Options for Target – Output is enabled. You may start your PROM programming utility after the make process when you specify the program under the option Run User Program #1.

CPU Simulation

µVision2 simulates up to 16 Mbytes of memory from which areas can be

mapped for read, write, or code execution access. The µVision2 simulator traps

and reports illegal memory accesses.

In addition to memory mapping, the simulator also provides support for the

integrated peripherals of the various 8051 derivatives. The on-chip peripherals

of the CPU you have selected are configured from the Device

Database selection
you have made when you create your project target. Refer to page 58 for more

Information about selecting a device. You may select and display the on-chip peripheral components using the Debug menu. You can also change the aspects of each peripheral using the controls in the dialog boxes.

Start Debugging

You start the debug mode of µVision2 with the Debug – Start/Stop Debug

Session command. Depending on the Options for Target – Debug

Configuration, µVision2 will load the application program and run the startup

code µVision2 saves the editor screen layout and restores the screen layout of the last debug session. If the program execution stops, µVision2 opens an

editor window with the source text or shows CPU instructions in the disassembly window. The next executable statement is marked with a yellow arrow. During debugging, most editor features are still available.

For example, you can use the find command or correct program errors. Program source text of your application is shown in the same windows. The µVision2 debug mode differs from the edit mode in the following aspects:

_ The “Debug Menu and Debug Commands” described on page 28 are

Available. The additional debug windows are discussed in the following.

_ The project structure or tool parameters cannot be modified. All build

Commands are disabled.

Disassembly Window

The Disassembly window shows your target program as mixed source and assembly program or just assembly code. A trace history of previously executed instructions may be displayed with Debug – View Trace Records. To enable the trace history, set Debug – Enable/Disable Trace Recording.

If you select the Disassembly Window as the active window all program step commands work on CPU instruction level rather than program source lines. You can select a text line and set or modify code breakpoints using toolbar buttons or the context menu commands.

 You may use the dialog Debug – Inline Assembly… to modify the CPU instructions. That allows you to correct mistakes or to make temporary changes to the target program you are debugging.

SOURCE CODE

1. Click on the Keil uVision Icon on Desktop

2. The following fig will appear

[image: image18.png]¥ Vision2.

ExpresssCH-DAPCB... | i Documentt - Mirosof... {1 ision2

3. Click on the Project menu from the title bar

4. Then Click on New Project

[image: image19.png]pVision2

[Ele 9 ow Pt Dobug Pl Porphersls Toob SHCS indow 1l

asud
1 [& (@] proe:

© [{8 doseProject

Prod Worsores Conponents, Erirorment ok,

Select Device for Target

Import pisiont Project

Remove Item

oo aksr
(%] Build target F7
£ mebuid et s

© Trandae e
% stop buld

L0ssncetisspr.uvz
2 Ciimashavillinking.uv2

3CHKeNCS\ExamplesiHeloitello.Uvz
4 CHKeiCS1\Examplesieasure|Measure. vz

Create a new project o | O Rjw

e : ‘s

5. Save the Project by typing suitable project name with no extension in u r own folder sited in either C:\ or D:\

[image: image20.png]EEC- I EE %% % Ve B s
#|& QR er e
copL|Es o

Sovein [D empadn =]
[wj7emp

‘

File name:

Temp.Opt

Save s ype: | Temp.h2
Temp_Lv2.Bak

Bl Fites

oW R fw

6. Then Click on Save button above.

7. Select the component for u r project. i.e. Atmel……

8. Click on the + Symbol beside of Atmel

[image: image21.png]© hol
< herfler UTHE

 hndog Devices

@ drchaChips

e

S melWieless

@ Cast e

@ Chipeon

 OML Microciis
 Cybemetic Mito Systems
@ GbaTech

S Cyonalitegraed Prodicly

<)

EER-=N scicct Device for Target ‘Target 1"

88| o |

S i

Froject Workapae| /1900 Almel
' o I~ Use Extended Linker (X51) nstead of BL51
aroe

Faniy ™ Use Extended Assemblr (AX5T) nstead of AT
Database Desciptin:
@ hcerLabs ~

o | O Rjw

)

9. Select AT89C51 as shown below

[image: image22.png]EER-=N scicct Device for Target ‘Target 1"
5|8 m |
S i
Vendor Atmel
Profec workspad
Tt Do ATes ™ Use Extended Liker (LX51) rstead o BLS1
aroe
Famiy MCSST T Use Evteded Assemblr (851 nstead of 5T
Database Desciptin:
ATBIBIC512 A | [B051-based Fully Static 20MHz CMOS contiller with 32 1/0 Lines,
TRa/BeER2 2 Timers/Couniers, 6 Inenupts2 Prrty Levels, LART.
Thee-Level Pogram biemory Lock, 4k Epts Fash Menary,
128 Bytes Onchip ARM

ATBTFSIRC
ATBIFE2

ATBICTOS
ATBICTOS1U

aTeSCHICO

o | O Rjw

)

10. Then Click on “OK”

11. The Following fig will appear

[image: image23.png]i Temp - pVision2

and Acd

ExpressSCH -DHPCD.. | i Documentd - Micosoh, | B Temp - iviion 125240

12. Then Click either YES or NO………mostly “NO”

13. Now your project is ready to USE

14. Now double click on the Target1, you would get another option “Source group 1” as shown in next page.

[image: image24.wmf]
15. Click on the file option from menu bar and select “new”

[image: image25.png]i Temp - pVision2

crlvo

4j start Expross5CH - DIPCB, 4 PROGRAMMING STEP, 5 Temp - visionz) 12:57 A0

16. The next screen will be as shown in next page, and just maximize it by double clicking on its blue boarder.

[image: image26.png]mp. - pVision2 1

et 5 e Erowc: oy P Pehra Tods S it |
PedEd s B0 o m .

e anE ere

cEE s A K

=33 Target 1
(23 Source Group 1

Fies
For o, press L.

e

17. Now start writing program in either in “C” or “ASM”

18. For a program written in Assembly, then save it with extension “. asm” and for “C” based program save it with extension “ .C”

[image: image27.png][BYeie et yew Bojct Dobuo Fash Pespherss Loos 51CS indon e

== x|

BEEF R0
W& @ mmE| oeme

| me s s e o]

Projact Workspace x|
=33 Target 1

(23 Source Group 1

[Brene. iz

File name:

Save as pe:

[EXAMPLE ASM]

[AlFies)

Lscist

cap fuum |

19. Now right click on Source group 1 and click on “Add files to Group Source”

[image: image28.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek ETR
2N A r-R S L I |}

e anE ere

| me s s e o]

o Watspars =5 R o SSTART AT 0 RODRESS
e SO WAIN NP OVER TO KATN LADLE
ma: coL B compLENENT THE. STATUS

NP BACK TO THE LABLE "HAIN"
D THE PROGRAIN HERE

Select Device for Target Target 1"

Options for Graup ‘Source Group I

openrie

i rebuidtarger

(%] Build target F7
T e

% sop st

Manage Companerts

Remave Group Saurce Group 1'and s Flles:

[okt Depereterces

Ak Fles to curent Project Group [Lscs [

20. Now you will get another window, on which by default “C” files will appear.

[image: image29.png]Temp - pVision2

tempsadan\EXAMPL

[BYeie et yew Bojct Dobuo Fash Pespherss Loos 51CS indon e

== x|

BEEF R0
W& @ mmE| oeme

o %%t

| me s s e o]

[Source Group 1

[e T —
= Tt Add Files o Group 'Source Group 1°

Lookin: | 3 tempsadan

File name:

Files of type:

C Source fie (-c)

Lirary e ()
Text il [t
Al fes]

21. Now select as per your file extension given while saving the file

22. Click only one time on option “ADD”

23. Now Press function key F7 to compile. Any error will appear if so happen.

[image: image30.png]Mempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek _|=

X

BEEF (Do
W& @ mE e

A T T Yo T ~la

[Swme s KTaen o]

Projet iorkapace —=] ORG 08 JETART AT 0 ADDRESS
SR et | sour AT J3UMP OVER TO WATH LABLE
5 Sowes Group | : CPL P10 JCONPLEMENT THE STATUS
SIMP MATH (TP BACK TO THE LABLE "NATH"
= 23 JEND THE PROGRAN HERE
fies [§ [We
*[Build target 'Target 1'
' |assembling EXAMPLE.ASM. ..
linking...
§|Program Size: data-8.0 xdata-D code=6
['Temp" - 0 Error(s), 0 Warning(s).
3T\ puild { Command , FrdinFies ILe o

24. If the file contains no error, then press Control+F5 simultaneously.

25. The new window is as follows

[image: image31.png]Temp - pVision2 - [D:\empsadan\EXAMPLE. ASM]

|Edle et yow eroect Dobug Flash perperls Tods SHCs window ek ETR
2N A r-R S L I |}

@ & anE e
[lsonren 2o AREYSOE »

Projec Workspace —=] O0RG 0H JETART AT 0 ADDRESS
Feger o) SIMp MATN 7TMMP OVER TO MATH LABLE
e mn: CPL P10 JCONPLEMENT THE STATUS

SIMP MATH (TP BACK TO THE LABLE "NATH"
o 000 £ JEND THE PROGRAN HERE
i 000
2 000 Wision2
a 000
" 000 ‘ EVALUATION VERSION
5 000 Runring with Code Size Lini: 26
® 000
7 000 o
o [1]
a 00
b 000
» 000
smar 007
e 000,
FC Cox
sales 0
sec 000
pw 000

e & [@s

26. Then Click “OK”

27. Now Click on the Peripherals from menu bar, and check your required port as shown in fig below

[image: image32.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Bree ot yew projct Debug Fiash [pedpherls Took SICS window Hep _ = x|
L D i
(%] ‘é ”@”ﬁﬂ) gy [Interrupt.
[gslmom®o ol
ot Worapace = T , T
Fegser v 1=l| [P OVER TO MATN LABLE
- s FLEET THE STATUS
Regs STMP MATN ;JUMP BACK TO THE LABLE "MAIN"
0 v e (am e PRocRAn FERE
2 o
B o
u o
B o
B o
K o
= Sys
. o
s b
B & [@e
*|Running with Code Size Limit: 2K -
"|Load "D:\\tempsadan\\Temp"
E
‘g@ >
3 ASM ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess -
3T 0T Buid), Command £ FndinFies /. Il 3

T Lsca [l [Rw

28. Drag the port a side and click in the program file.

[image: image33.png]Temp. - p¥ision2 - [D:\tempsadan\EXAMPLE. ASM]

|Edle et yow eroject Dobug Flash pererls Tods SHCs window ek _|= x|
PP B[R0 %R =l
@ 8 qmE oere
[gslnompo o 28 AREYSOE »
o Workipcs == e o ST AT 0 RonREs
Fegser v 1=l| [s wATH SIUNP OVER TO MATN LABLE
- s oot 7110 LcomrEmET T STATUS
Regs STMP MATN ;JUMP BACK TO THE LABLE "MAIN"
0 v = [e prosea raRe
2 o
I o Parallel Port 1
u o
5 o — Bits 1]
B o o WO
K o =
o Tl
. o
s b
B & [Wo
*|Running with Code Size Limit: 2K -
"|Load "D:\\tempsadan\\Temp"
E
‘g@ >
3 ASM ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess -
3T 0T Buid), Command £ FndinFies /. < 3
T L5 C:33 cp [Riw

Ready

29. Now keep Pressing function key “F11” slowly and observe.

30. You are running your program successfully

FUTURE ENHANCEMENT

 Wireless is the buzz of communication industry today. The field of wireless communication is growing leaps and bounds day by day. There have been many advancements taking place in the semiconductor industry leading to more and more advancements in wireless technology.

The main aim of the project is to save the power, by using effectively we can save more power, as we know that there is shortage of power nowadays in every where mostly in villages etc. So to overcome that we can provide street lights automatically with the centralized intelligent systems. So in future we can design many more advanced technologies to save power.

CONCLUSION

 The project “AUTOMATIC STREET LIGHT CONTROL SYSTEM WITH LDR” has been successfully designed and tested.

Here we are saving lot of power without any wastage, by these advanced technologies we can design many more systems which can be done by solar lights and through these solar lights we have a vast usage at the same time we can do automatic systems instead of doing it manually like with ldr’s.

Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.

 BIBLIOGRAPHY

The 8051 Micro controller and Embedded Systems

 -Muhammad Ali Mazidi

 Janice Gillispie Mazidi

The 8051 Micro controller Architecture, Programming & Applications

 -Kenneth J.Ayala

Fundamentals Of Micro processors and Micro computers

 -B.Ram

Micro processor Architecture, Programming & Applications

 -Ramesh S.Gaonkar

Electronic Components

 -D.V.Prasad

Wireless Communications

 - Theodore S. Rappaport

Mobile Tele Communications

 - William C.Y. Lee

References on the Web:

www.national.com
www.atmel.com
www.microsoftsearch.com
www.geocities.com

89C51 MICROCONTROLLER

 LDR

IR

POWER

SUPPLY

_1170343044.doc
[image: image1.png]ARTHMETIC SPECIAL
AND PSW FUNCTION
LOGIC UNIT REGISTERS
RAM
8-Bit Data
& Address Bus
Al [B ‘
L 1
DPTH ROM
DPH
DEL

TE—
ALE —|
PSEN—|
XTAL1 —|
XTAL2 —|
RESET —|

Vee —|
GND —{

System
Timing

System
Tnterrupts
Timers

Data Buffer
Memory Control

Intemal RAM Structure

16-Bit Address Bus SPECIAL
FONCTION
REGISTERS|
BytefBit E
Addresses i
Register PCON
Bank 3 SBUF
Register SCON
Bank2 TCON
Register TMOD
Bank 1 IO
Register THO
Bank 0 TLL
TH1

[LaTcH3| [LaTcH2| [LATCH1] [LATCHO]

70
A0-A7
D0-D7

70

70
AB-A15

70

Interrupt
Counter
Serial Data

TD-WR

_1196710073.doc
[image: image1.png]i Temp - pVision2 FEX

7 start ExpressSCH -DHPCD... | T PROGRANNING STER... {1 Temp - iviion)@ tzsoan

