PROJECT REPORT

ON

SIMULATION OF GENERAL-PURPOSE MICROPROCESSORS USING VHDL

A Project Report submitted in partial fulfilment of Bachelor of Technology (B.Tech), 2007-2011 Batch

 Guide:- Submitted by:-
 Mr. Satish Shinde Sharad Bhardwaj (1441152807)

 Ranjeet Singh Yadav (1421152807)

 Anisha Arora (1511152807)

 Ishan Chawla (1531152807)

[image: image1.png]
BHARATI VIDHYAPEETH’S COLLLEGE OF ENGINEERING

A-4, PASCHIM VIHAR, ROHTAK ROAD, NEW DELHI- 110063

AFFILIATED TO

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, DELHI
ACKNOWLEDGEMENT

We, Anisha Arora (1511152807), Ishan Chawla (1531152807), Ranjeet Singh Yadav (1421152807), Sharad Bhardwaj (1441152807) 4th year students of Electronics & Communications, Bharati Vidyapeeth’s College of Engineering, New Delhi are highly thankful to faculties for guiding us all through the completion of the report. Above all we would like to acknowledge our guide Mr.Satish Shinde for imparting his knowledge and valuable experience.
Anisha Arora Ishan Chawla Ranjeet Singh Yadav Sharad Bhardwaj

(1511152807)

(1531152807)

(1421152807)

 (1441152807)

CERTIFICATE

This is to certify that the project report entitled SIMULATION OF GENERAL PURPOSE MICROPROCESSORS USING VHDL which is submitted by AnishaArora (1511152807), Ishan Chawla (1531152807), Ranjeet Singh Yadav (1421152807), Sharad Bhardwaj (1441152807) 4th year students of Electronics & Communications, is an authentic work carried by them at Bharati Vidyapeeth’s College of Engineering (BVCOE) under my guidance.
Date:1 Dec, 2010

Mr.Satish Shinde

ABSTRACT
Teaching/learning microprocessors in the laboratory has been traditionally carried out using general purpose simulators and/or evaluation boards. In-circuit emulators are not widely used because of their high cost. This paper presents a software tool developed for teaching/learning the general microprocessor in the laboratory and/or the classroom. This software will include an assembler, a multimicro simulator, a logic analyzer, and an assistant. The tool allows to simulate systems consisting of microprocessor plus a set of external peripherals. Both the CPU core and the embedded peripherals of each microcontroller are simulated. Everything in this software will be designed with the educational perspective in mind. A set of windows depict the configuration and behaviour of every embedded peripheral. The tool would be suitable for learning nearly everything about the microproceesors, ranging from the CPU and instruction set basics to complex use of timers, interrupts and the serial port.

The main features of this software :

i. very realistic simulation of both CPU and embedded peripherals;

ii. easy-to-use interface;
iii. graphical windows that show the state and configuration of the embedded peripherals;
iv. ability to simulate the concurrent operation of several microcontrollers; and
v. ability to simulate the interaction of the microcontrollers with external peripherals.
[image: image2.png]
INDEX

1 .Introduction to ..1
1.1 basic design methodology...2

1.2 analysis of sequential circuits..4

2 Introduction to general purpose microprocessors...5

2.1 Instruction Set...6

2.2 Two operand instructions..7

2.3 One operand instructions.. 8

2.4 Instruction using a memory address... 8

2.5 Jump instructions...8
3 Datapath...12

3.1 input multiplexer...15

3.2 conditional flags...15

3.3 Accumulator..15

3.4 Register file...16

3.5 ALU..16

3.6 Shifter/rotator...17

3.7 Output buffer..18

3.8 Control word..18
4 Control unit...19

4.1 reset...19

4.2 fetch...20

4.3 decode...20

4.4 execute..20
5 CPU..22

6. Memory..23

7. Clock(timing issues) ..26

8. Simulation result...27.

9. Conclusion...28

 References..29

 Appendix...30

LIST OF FIGURES

	Figure name
	Page no.

	Basic design methodology
	3

	Finite state model
	4

	Architecture of general purpose microprocessor
	6

	Datapath
	14

	State diagram for control unit
	19

	CPU
	22

	RAM chip
	23

	4*4 RAM chip circuit
	25

	Simulation result of LDI A,07
	27

List of tables
	Table name
	Page no.

	Instruction set
	11

	ALU
	16

	Shifter/Rotator
	17

	Control word signals for datapath
	18

1. INTRODUCTION TO VHDL
VHDL stands for very high-speed integrated circuit hardware description language. Which is one of the programming language used to model a digital system by dataflow, behavioral and structural style of modeling. This language was first introduced in 1981 for the department of Defense (DoD) under the VHSIC programe. In 1983 IBM, Texas instruments and Intermetrics started to develop this language. In 1985 VHDL 7.2 version was released in 1987 IEEE standardized the language.

Describing a design:
 In VHDL an entity is used to describe a hardware module.

 An entity can be described using,

 1. Entity declaration

 2. Architecture.

 3. Configuration

 4. Package declaration.

 5. Package body.

1.1 Design
VHDL is commonly used to write text models that describe a logic circuit. Such a model is processed by a synthesis program, only if it is part of the logic design. A simulation program is used to test the logic design using simulation models to represent the logic circuits that interface to the design. This collection of simulation models is commonly called a testbench.

VHDL has file input and output capabilities, and can be used as a general-purpose language for text processing, but files are more commonly used by a simulation testbench for stimulus or verification data. There are some VHDL compilers which build executable binaries. In this case, it might be possible to use VHDL to write a testbench to verify the functionality of the design using files on the host computer to define stimuli, to interact with the user, and to compare results with those expected. However, most designers leave this job to the simulator.

It is relatively easy for an inexperienced developer to produce code that simulates successfully but that cannot be synthesized into a real device, or is too large to be practical. One particular pitfall is the accidental production of transparent latches rather than D-type flip-flops as storage elements.

VHDL is not a case sensitive language. One can design hardware in a VHDL IDE (for FPGA implementation such as Xilinx ISE, Altera Quartus, or Synopsys Synplify) to produce the RTL schematic of the desired circuit. After that, the generated schematic can be verified using simulation software which shows the waveforms of inputs and outputs of the circuit after generating the appropriate testbench. To generate an appropriate testbench for a particular circuit or VHDL code, the inputs have to be defined correctly. For example, for clock input, a loop process or an iterative statement is required.

The key advantage of VHDL when used for systems design is that it allows the behavior of the required system to be described (modeled) and verified (simulated) before synthesis tools translate the design into real hardware (gates and wires).

Another benefit is that VHDL allows the description of a concurrent system (many parts, each with its own sub-behavior, working together at the same time). VHDL is a Dataflow language, unlike procedural computing languages such as BASIC, C, and assembly code, which all run sequentially, one instruction at a time.

A final point is that when a VHDL model is translated into the "gates and wires" that are mapped onto a programmable logic device such as a CPLD or FPGA, then it is the actual hardware being configured, rather than the VHDL code being "executed" as if on some form of a processor chip.

[image: image3.png]
FIGURE 1: BASIC DESIGN METHODOLOGY

1.2 Analysis of Sequential Circuits

Very often we are given a sequential circuit and need to know its operation. The analysis of sequential circuits is the process in which we are given a sequential circuit and we want to obtain a precise description of the operation of the circuit. The description of a sequential circuit can be in the form of a next-state / output table, or a state
diagram. The steps for the analysis of sequential circuits are as follows:

1. Derive the excitation equations from the next-state logic circuit.

2. Derive the next-state equations by substituting the excitation equations into the flip-flop’s characteristic equations.

3. Derive the next-state table from the next-state equations.

4. Derive the output equations (if any) from the output logic circuit.

5. Derive the output table (if any) from the output equations.

6. Draw the state diagram from the next-state table and the output table.
[image: image4.png]
FIGURE 2: Finite-state machine models: (a) Moore FSM; (b) Mealy FSM.

2.Introduction to General-Purpose Microprocessors
A general-purpose microprocessor is often referred to as the central processing unit (CPU). The CPU is simply a dedicated microprocessor that only executes software instructions. In designing a CPU, we must first define its instruction set and how the instructions are encoded and executed. We need to answer questions such as how many instructions do we want? What are the instructions? What operation code (opcode) do we assign to each of the instructions? How many bits do we use to encode an instruction? Once we have decided on the instruction set, we can proceed to designing a datapath that can execute all the instructions in the instruction set. In this step we are creating a custom datapath, so we need to answer questions such as what functional units do we need? How many registers do we need? Do we use a single register file separate registers? How the different units are connected together? Finally, we can design the control unit. Just like the dedicated microprocessor, the control unit asserts the control signals to the datapath. This finite-state machine cycles through three main steps or states: 1) fetch an instruction; 2) decode the instruction; and 3) execute the instruction. The control unit performs these steps by sending the appropriate control signals to the datapath or to external devices.

Instructions in your program are usually stored in external memory, so in addition to the CPU, there is external memory that is connected to the CPU via an address bus and a data bus. Hence, step 1 (fetch an instruction) usually involves the control unit setting up a memory address on the address bus and telling the external memory to output the instruction from that memory location onto the data bus. The control unit then reads the instruction from the data

bus. To keep our design simple, instead of having external memory, we will put the memory directly inside the CPU and implemented simply as a 64-byte array. In fact, there are real CPUs with internal program memory.For step 2 (decode the instruction) the control unit extracts the opcode bits from the instruction and determines what the current instruction is by jumping to the state that has been assigned for executing that instruction. Once in

that particular state, the finite-state machine performs step 3 by simply asserting the appropriate control signals for controlling the datapath to execute that instruction.
 [image: image5.png]
FIGURE 3:Architecture of general purpose microprocessor
2.1 Instruction Set
The instructions that our general-purpose microprocessor can execute and the corresponding encoding are defined in Figure 1. The Instruction column shows the syntax and mnemonic to use for the instruction when writing a program in assembly language. The Encoding column shows the binary encoding for the instructions and the Operation column shows the actual operation of the instruction. The instructions are separated into four categories:

1) data movement instructions for transferring data between the accumulator, the general registers and the memory;

2) jump instructions for changing the instruction execution sequence;
 3) arithmetic and logical instructions for performing arithmetic and logics; and
4) input / output and miscellaneous instructions.
There are five data movement instructions, eight jump instructions, ten arithmetic and logic instructions, two input/output instructions, and two miscellaneous instructions.

The number of instructions implemented determines the number of bits required to encode all the instructions.

All instructions are encoded using one byte except for instructions that have a memory address as one of its operand, in which case a second byte for the address is needed. The encoding scheme uses the first four bits as the opcode. Depending on the opcode, the last four bits are interpreted differently as follows.

2.1.1 Two Operand Instructions

If the instruction requires two operands, it always uses the accumulator (A) for one operand. If the second operand is a register then the last three bits in the encoding specifies the register file number. An example of this is the LDA (load accumulator from register) instruction where it loads the accumulator with the content of the register file number specified in the last three bits of the encoding. Another example is the ADD (add) instruction where it adds the content of the accumulator with the content of the specified register file and put the result in the accumulator. The result of all arithmetic and logical operations is stored in the accumulator.

The LDI (load accumulator with immediate value) is also a two-operand instruction. However, the second operand is an immediate value that is obtained from the second byte of the instruction itself (iiiiiiii). These eight bits are interpreted as a signed number and is loaded into the accumulator.

2.1.2 One Operand Instructions

One-operand instructions always use the accumulator and the result is stored back in the accumulator. In this case, the last four bits in the encoding are used to further decode the instruction. An example of this is the INC (increment accumulator) instruction. The opcode (1110) is used by all the one-operand arithmetic and logical instructions. The last four bits (0001) specify the INC instruction.

2.1.3. Instructions Using a Memory Address

For instructions that have a memory address as one of its operand, an additional six bits are needed in order to access the 64 bytes of memory space. These six bits (aaaaaa) are specified in the six least significant bits of the second byte of the instruction. An example is the LDM (load accumulator from memory) instruction. The address of the memory location where the data is to be loaded from is specified in the second byte. In this case, the last four bits of the first byte and the first two bits in the second byte are not used and are always set to 0. All the absolute jump instructions follow this format.

2.1.4. Jump Instructions

For jump instructions, the last four bits of the encoding also serves to differentiate between absolute and relative jumps. If the last four bits are zeros, then it is an absolute jump, otherwise, they represent a sign and magnitude format relative displacement from the current location as specified in the program counter (PC). For example, the two-byte encoding 0110 0000 0000 0100 specifies an absolute unconditional jump to memory location 4. The first four bits (0110) specify the unconditional jump. The second four bits (0000) specify an absolute jump. The last six bits (000100) specify the memory address 4. On the other hand, the one-byte encoding 0110 0100 specifies a relative unconditional jump to PC + 4. Again, the first four bits (0110) specify the unconditional jump. The next four bits (0100) specify that it is a relative jump because it is not zero. The relative position to jump to is +4 because the first bit is a 0, which is for forward and the last three bits evaluate to 4. To jump backward by four locations, we would use 1100 instead. Two conditional flags (zero and positive) are used conditional jumps. These flags are set or reset depending on the value of the accumulator when the accumulator is written to. Instructions that modify the accumulator include LDA, LDM, LDI, all the arithmetic and logic instructions, and IN. For example, if the result of the ADD instruction is a positive number, then the zero flag will be reset and the positive flag will be set. A conditional jump then reads the value of these flags to see whether to jump or not. The JZ instruction will not jump after the previous ADD instruction, where as the JP instruction will perform the jump.
[image: image6.png]
[image: image7.png]
TABLE 1:INSTRUCTION SET

Notations:

A = accumulator.

R = general register.

M = memory.

PC = program counter.

rrr = three bits for specifying the general register number (0 – 7).

aaaaaa = six bits for specifying the memory address.

iiiiiiii = an eight bit signed number.

smmm = four bits for specifying the relative jump displacement in sign and magnitude format. The most significant bit (s) determines whether to jump forward or backward (0 = forward, 1 = backward). The last three bits (mmm) specify the number of locations to increment or decrement from the current PC location.
3.Datapath
 The datapath is responsible for the manipulation of data. It includes (1) functional units such as adders, shifters, multipliers, ALUs, and comparators, (2) registers and other memory elements for the temporary storage of data, and (3) buses and multiplexers for the transfer of data between the different components in the datapath. External data can be entered into the datapath through the data input lines. Results from the computation are provided through the data output lines.

In order for the datapath to function correctly, appropriate control signals must be asserted at the right time. Control signals are needed for all the select and control lines for all the components used in the datapath. This includes all the select lines for multiplexers, ALU and other functional units having multiple operations, all the read/write enable signals for registers and register files, address lines for register files, and enable signals for tri-state buffers. The operation of the datapath is determined by which control signals are asserted and at what time. In a microprocessor, these control signals are generated by the control unit. In return, the datapath needs to supply status signals back to the control unit in order for it to operate correctly. These status signals are usually from the output of comparators. The comparator tests for a given logical condition between two values. These values can be obtained either from memory elements, directly from the output of functional units, or hardwired as constants. These status signals provide input information for the control unit to determine what operation to perform next. For example, in a conditional loop situation, the status signal will tell the control unit whether to repeat or exit the loop.Since the datapath performs all the functional operations of a microprocessor, and the microprocessor is for solving problems, therefore the datapath must be able to perform all the operations required to solve the given problem. For example, if the problem requires the addition of two numbers, the datapath, therefore, must contain an adder. If the problem requires the storage of three temporary variables, the datapath must have three registers.

However, even with these requirements, there are still many options as to what is actually implemented in the datapath. For example, an adder can be implemented as just a single adder circuit, or as part of the ALU. Registers can be separate register units or combined in a register file. Furthermore, two temporary variables can share the same register if they are not needed at the same time. Datapath design is also referred to as the register-transfer level (RTL) design. In the register-transfer level design, we look at how data is transferred from one register to another or back to the same register. If the same data is written back to a register without any modifications, then nothing has been accomplished. So before writing the data to a register, the data passes through one or more functional units and gets modified. The time from the reading of the data to the modifying of the data by functional units and finally to the writing of the data back to a register must all happen within one clock cycle
The width of the datapath is eight bits, i.e. all the connections for data movement are eight bits wide. In the figure, they are the thicker lines. The remaining thinner control lines are all one bit wide unless the name for that control line has a number subscript such as rfaddr_dp2,1,0, in which case there are as many lines as the subscript numbers. For example, the control line label rfaddr_dp2,1,0 is actually composed of three separate lines.

. [image: image8.png]
FIGURE 4: Datapath
Components of datapath
3.1 Input multiplexer:
The 4-to-1 input mux at the top of the datapath drawing selects one of four different inputs to be written into the accumulator. These four inputs, starting from the left, are:

(1) imm_dp for getting the immediate value from the LDI instruction and storing it into the accumulator;

(2) input_dp for getting a user input value for the IN instruction;

(3) the next input selection allows the content of the register file to be written to the accumulator as used by the LDA instruction;

(4) allows the result of the ALU and the shifter to be written to the accumulator as used by all the arithmetic and logical instructions.

3.2 Conditional Flags:
The two conditional flags, zero and positive, are set by two comparators that check the value at the output of the mux which is the value that is to be written into the accumulator for these two conditions. To check for a value being zero, recall that just a NOR gate will do. In our case, we need an eight-input NOR gate because of the 8-bit wide databus. To check for a positive number, we simply need to look at the most significant sign bit. A 2’s complement positive number will have a zero sign bit, so a single inverter connected to the most significant bit of the databus is all that is needed to generate this positive flag signal.

3.3 Accumulator:
The accumulator is a standard 8-bit wide register with a write wr and clear clear control input signals. The write signal, connected to accwr_dp, is asserted whenever we want to write a value into the accumulator. The clear signal is connected to the main computer reset signal rst_dp, so that the accumulator is always cleared on reset. The content of the accumulator is always available at the accumulator output. The value from the accumulator is sent to three different places: (1) it is sent to the output buffer for the OUT instruction; (2) it is used as the first (A) operand for the ALU; and (3) it is sent to the input of the register file for the STA instruction.

3.4 Register File:
The register file has eight locations, each 8-bits wide. Three address lines, rfaddr_dp2, rfaddr_dp1, rfaddr_dp0, are used to address the eight locations for both reading and writing. There are one read port and one write port. The read port is always active which means that it always has the value from the currently selected address location. However, to write to the selected location, the write control line rfwr_dp must be asserted before a value is written to the currently selected address location.

Note that a separate read and write address lines is not required because all the instructions either perform just a read from the register file or a write to the register file. There is no one instruction that performs both a read and a write to the register file. Hence, only one set of address lines is needed for determining both the read and write locations.

 3.5 ALU

 The ALU has eight operations implemented as defined by the following table. The

 operations are selected by the three select lines alusel_dp2, alusel_dp1, and alusel_dp0.
[image: image9.png][image: image10.png]
TABLE 2

The select lines are asserted by the corresponding ALU instructions as shown under the Instruction column in the above table. The pass through operation is used by all non-ALU instructions.

3.6 Shifter / Rotator:
The Shifter has four operations implemented as defined by the following table. The operations are selected by the two select lines shiftsel_dp1, and shiftsel_dp0.
[image: image11.png]
TABLE 3
The select lines are asserted by the corresponding Shifter/Rotator instructions as shown under the Instruction column in the above table. The pass through operation is used by all non-Shifter/Rotator instructions.
3.7 Output Buffer:
The output buffer is a register with an enable control signal connected to outen_dp. Whenever the enable line is asserted, the output from the accumulator is stored into the buffer. The value stored in the output buffer is used as the output for the computer and is always available. The enable line is asserted either by the OUT A instruction or by the system reset signal.

3.8 Control Word:
From Figure 2, we see that the control word for this custom datapath has fourteen bits, which maps to the control signals for the different datapath components. These fourteen control signals are :
[image: image12.png]
TABLE 4: Control word signals for the datapath
4.Control Unit
The finite state machine for the control unit basically cycles through four main states: reset, fetch, decode, and execute, as shown in Figure. There is one execute state for each instruction in the instruction set.

[image: image13.png]
FIGURE 5:State diagram for Control Unit

4.1 Reset:
The finite state machine starts executing from the reset state when the reset signal is asserted. On reset, the finite state machine initializes all its working variables and control signals. The variables include:

PC – program counter

IR – instruction register

state – the state variable

In addition, the content of the memory, i.e., the program for the computer to execute is also loaded at this time.
4.2 Fetch:
In the fetch state, the memory content of the location pointed to by the PC is loaded into the instruction register. The PC is then incremented by one to prepare it for fetching the next instruction. If the fetched instruction is a jump instruction, then the PC will be changed accordingly during the execution phase.

4.3 Decode:
The content that is stored in the instruction register is decoded according to the encoding that is assigned to the instructions as listed in Figure 1. This is accomplished in VHDL using a CASE statement with the switch condition being the opcode. From the different cases, the state that is responsible for executing the corresponding instruction is assigned to the next state variable. As a result, the instruction will be executed starting at the beginning of the next

clock cycle when the FSM enters this new state.

4.4 Execute:
The execution state simply sets up the control word, which asserts the appropriate control signals for the datapath to carry out the necessary operations for executing a particular instruction. Each instruction, therefore, has its own execute state. For example, the execute state for the add instruction ADD A,011 will set up the following control word.

[image: image14.png]
For all the jump instructions, no actions need to be taken by the datapath. It simply determines whether to perform the jump or not depending on the particular jump instruction and by checking on the zero and positive flags. If a jump is needed then the target address is calculated and then assigned to the PC.
At the end of the execute state, the FSM goes back to the fetch state and the cycle repeats for the next instruction.
5.CPU
Now that we have defined both the datapath and the control unit, we are ready to connect the two together to create our very own custom general microprocessor. The necessary signals that need to be connected between the two units are just the control word signals, that the control unit has to generate for controlling the datapath. In addition to the control signals, there are also two conditional flag signals (zero and positive) that the datapath generates as status signals for the control unit to use. The interface between the datapath and the control

unit is shown in figure. The primary inputs to the CPU module are clock, reset, and data input. The primary output from the CPU module is the data output, address???.

[image: image15.png]
FIGURE 6: CPU
6. Memory
Another main component in a computer system is memory. This can refer to as either random access memory (RAM) or read-only memory (ROM). We can make memory the same way we make the register file but with more storage locations. However, there are several reasons why we don’t want to. One reason is that we usually want a lot of memory and we want it very cheap, so we need to make each memory cell as small as possible. Another reason is

that we want to use a common data bus for both reading data from, and writing data to the memory. This implies that the memory circuit should have just one data port and not two or three like the register file. The logic symbol, showing all the connections for a typical RAM chip is shown in figure.There is a set of data lines Di, and a set of address lines Ai. The data lines serve for both input and output of the data to the location that is specified by the address lines. The number of data lines is dependent on how many bits are used for storing data in each memory location. The number of address lines is dependent on how many locations are in the memory chip. For example, a 512-byte memory chip will have eight data lines (8 bits = 1 byte) and nine address lines (2^9 = 512).

In addition to the data and address lines, there are usually two control lines: chip enable (CE), and write enable (WR). In order for a microprocessor to access memory, either with the read operation or the write operation, the active high CE line must first be asserted. Asserting the CE line enables the entire memory chip. The active high WR line selects which of the two memory operations is to be performed. Setting WR to a 0 selects the read operation, and

data from the memory is retrieved. Setting WR to a 1 selects the write operation, and data from the microprocessor is written into the memory. Instead of having just the WR line for selecting the two operations read and write, some memory chips have both a read enable and a write enable line. In this case, only one line can be asserted at any one time. The memory location in which the read and write operation is to take place, of course, is selected by the value of the address lines. The operation of the memory chip is shown in Figure.

[image: image16.png]
FIGURE 7: A 2^n m RAM chip: (a) logic symbol; (b) operation table.
To create a 4 4 static RAM chip, we need sixteen memory cells forming a 4 4 grid as shown in Figure .Each row forms a single storage location, and the number of memory cells in a row determines the bit width of each location. So all the memory cells in a row are enabled with the same address. Again, a decoder is used to decode the address lines A0 and A1. In this example a 2-to-4 decoder is used to decode the four address locations. The CE signal is for enabling the chip, specifically to enable the read and write functions through the two AND gates. The internal WE signal, asserted when both the CE and WR signals are asserted, is used to assert the Write enables for all the memory cells. The data comes in from the external data bus through the input buffer and to the Input line of each memory cell. The purpose of using an input buffer for each data line is so that the external signal coming in only needs to drive just one device (the buffer) rather than having to drive several devices (i.e. all the memory cells in the same column). Which row of memory cells actually gets written to will depend on the given address. The read operation requires CE to be asserted, and WR to be de-asserted. This will assert the internal RE signal, which in turn will enable the four output tri-state buffers at the bottom of the circuit diagram. Again, the location that is read from is selected by the address lines.
[image: image17.png]
FIGURE 8: A 4*4 RAM CHIP CIRCUIT
7.Clock
For our system clock, we use the built-in 25MHz clock that is available on the development board. In order to see some intermediate actions by the CPU, we have used a clock divider to slow down the clock. One control word is executed in one clock cycle. In one clock cycle, data from a register is first read, then it passes through functional units and gets modified, and finally it is written back to a register. Performing both a read and a write from/to the same register in the same control word, i.e. same clock cycle, do not create any signal conflict because the reading occurs immediately in the current clock cycle and is getting the original value that is in the register. The writing occurs at the beginning of the next clock cycle after the reading
8. SIMULATION RESULT
[image: image18.png]
FIGURE 9: LDI A,07
9. CONCLUSION
The project was an attempt to simulate a basic microprocessor design using VHDL. We have used mixed style of modelling in the coding of the processor. In this we have made our own instruction set and simulated the instructions. The instructions are successfully simulated.

In future, we can add more instructions to the instruction set according to our need. The program can be synthesized and then can be burned into FPGA.

REFERENCES
1. Enoch O. Hwang. ’MICROPROCESSOR DESIGN - principle and practice with VHDL’. Brooks/Cole 2004
2. http://www.codeproject.com/KB/architecture/DFOM-MCU.aspx
3. http://cegt201.bradley.edu/projects/proj2006/
4. J.BHASKAR . ‘VHDL PRIMER’. Pearson Publications 2000. ISBN- 81-7808-016-8

5.Osborne,Adam (1980). An Introduction to microcompumputers. Volume 1: Basic Concepts(2nd ed.). Berkely,California:Osborne-Mcgraw Hill

6. ‘IEEE Standard VHDL Language Reference Manual’. 1076-1993

7.’Using VHDL for board level simulation’. Design & Test of Computers , IEEE
APPENDIX
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity acc is

port(clk_acc: in std_logic;

rst_acc: in std_logic;

wr_acc: in std_logic;

input_acc: in std_logic_vector (7 downto 0);

output_acc: OUT std_logic_vector (7 downto 0));

end acc;

architecture acc of acc is

signal d:std_logic_vector(7 downto 0);

begin

process(rst_acc,wr_acc,clk_acc)

begin

if rst_acc='1' then

d<="00000000";

output_acc<="00000000";

elsif (clk_acc'event and clk_acc = '1') then

if wr_acc='1' then

d<=input_acc;

output_acc<=input_acc;

end if;

end if;

end process;

end acc;

entity alu is

port(sel_alu: in std_logic_vector(2 downto 0);

ina_alu: in std_logic_vector(7 downto 0);

inb_alu: in std_logic_vector(7 downto 0);

out_alu: out std_logic_vector (7 downto 0));

end alu;

architecture alu of alu is

begin

process(sel_alu,ina_alu,inb_alu)

begin

if sel_alu="000" then

out_alu<=ina_alu;

elsif sel_alu="001" then

out_alu<=(ina_alu and inb_alu);

elsif sel_alu="010" then

out_alu<=(ina_alu or inb_alu);

elsif sel_alu="011" then

out_alu<=not(ina_alu);

elsif sel_alu="100" then

out_alu<= ina_alu + inb_alu;

elsif sel_alu="101" then

out_alu<= ina_alu - inb_alu;

elsif sel_alu="110" then

out_alu<= ina_alu + 1;

elsif sel_alu="111" then

out_alu<= ina_alu - 1;

end if;

end process;

end alu;

entity ctrl is

port (clk_ctrl: in std_logic;

rst_ctrl: in std_logic;

muxsel_ctrl: out std_logic_vector(1 downto 0);

imm_ctrl: out std_logic_vector(7 downto 0);

accwr_ctrl: out std_logic;

rfaddr_ctrl: out std_logic_vector(2 downto 0);

rfwr_ctrl: out std_logic;

alusel_ctrl: out std_logic_vector(2 downto 0);

shiftsel_ctrl: out std_logic_vector(1 downto 0);

outen_ctrl: out std_logic;

zero_ctrl: in std_logic;

positive_ctrl: in std_logic);

end ctrl;

architecture fsm of ctrl is

type state_type is

(S1,S2,S8,S9,S10,S11,S12,S13,S14,S210,S220,S230,S240,S30,S31,S32,S33,S41,S42,S43

,S44,S45,S46,S51,S52,S99);

signal state: state_type;

-- Instructions

-- load instructions

constant LDA : std_logic_vector(3 downto 0) := "0001";

-- S10 -- OK

constant STA : std_logic_vector(3 downto 0) := "0010";

-- S11 -- OK

constant LDM : std_logic_vector(3 downto 0) := "0011";

-- S12

constant STM : std_logic_vector(3 downto 0) := "0100";

-- S13

constant LDI : std_logic_vector(3 downto 0) := "0101";

-- S14 -- OK

-- jump instructions

constant JMP : std_logic_vector(3 downto 0) := "0110";

-- S210 -- OK

--CONSTANT JMPR : std_logic_vector(3 DOWNTO 0) := "0110"; --the relative jumps are determined by the 4 LSBs

constant JZ : std_logic_vector(3 downto 0) := "0111";

-- S220

--CONSTANT JZR : std_logic_vector(3 DOWNTO 0) := "0111";

constant JNZ : std_logic_vector(3 downto 0) := "1000";

-- S230

--CONSTANT JNZR : std_logic_vector(3 DOWNTO 0) := "1000";

constant JP : std_logic_vector(3 downto 0) := "1001";

-- S240 changed

--CONSTANT JPR : std_logic_vector(3 DOWNTO 0) := "1001";

-- arithmetic and logical instructions

constant ANDA : std_logic_vector(3 downto 0) := "1010";

-- S30 -- OK

constant ORA : std_logic_vector(3 downto 0) := "1011";

-- S31 -- OK

constant ADD : std_logic_vector(3 downto 0) := "1100";

-- S32 -- OK

constant SUB : std_logic_vector(3 downto 0) := "1101";

-- S33 -- OK

-- single operand instructions

constant SOI : std_logic_vector(3 downto 0) := "1110";

--

constant NOTA : std_logic_vector(2 downto 0) := "000";

-- S41 -- OK

constant INC : std_logic_vector(2 downto 0) := "001";

-- S42 -- OK

constant DEC : std_logic_vector(2 downto 0) := "010";

-- S43 -- OK

constant SHFL : std_logic_vector(2 downto 0) := "011";

-- S44 -- OK

constant SHFR : std_logic_vector(2 downto 0) := "100";

-- S45 -- OK

constant ROTR : std_logic_vector(2 downto 0) := "101";

-- S46

-- Input / Output and Miscellaneous instructions

constant MISC : std_logic_vector(3 downto 0) := "1111";

--

constant INA : std_logic_vector(1 downto 0) := "00";

-- S51

constant OUTA : std_logic_vector(1 downto 0) := "01";

-- S52

constant HALT : std_logic_vector(1 downto 0) := "10";

-- S99

constant NOP : std_logic_vector(3 downto 0) := "0000";

-- S1

type PM_BLOCK is array(0 TO 31) of std_logic_vector(7 downto 0);

begin

process (rst_ctrl,clk_ctrl)

variable PM : PM_BLOCK;

variable IR : std_logic_vector(7 downto 0);

variable OPCODE : std_logic_vector(3 downto 0);

variable PC : integer range 0 to 31;

variable zero_flag, positive_flag: std_logic;

begin

if (rst_ctrl='1') then

PC := 0;

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

-- load program memory with statements

PM(0) := "01010000"; -- LDI A,0

PM(1) := "00000111"; -- constant 0

PM(2) := "11110001"; -- OUT A

PM(3) := "11110010"; -- HALT

elsif (clk_ctrl'event and clk_ctrl = '1') then

case state is

when S1 => -- fetch instruction

IR := PM(PC);

OPCODE := IR(7 downto 4);

PC := PC + 1;

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S2;

when S2 => -- decode instruction

case OPCODE is

when NOP => state <= S1;

when LDA => state <= S10;

when STA => state <= S11;

when LDM => state <= S12;

when STM => state <= S13;

when LDI => state <= S14;

when JMP => state <= S210;

when JZ => state <= S220;

when JNZ => state <= S230;

when JP => state <= S240;

when ANDA => state <= S30;

when ORA => state <= S31;

when ADD => state <= S32;

when SUB => state <= S33;

when SOI => -- single operand instructions

case IR(2 downto 0) is

when NOTA => state <= S41;

when INC => state <= S42;

when DEC => state <= S43;

when SHFL => state <= S44;

when SHFR => state <= S45;

when ROTR => state <= S46;

when others => state <= S99;

end case;

when MISC => -- I/O and miscellaneous instructions

case IR(1 downto 0) is

when INA => state <= S51;

when OUTA => state <= S52;

when HALT => state <= S99;

when others => state <= S99;

end case;

when others => state <= S99;

end case;

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

when S8 => -- set zero and positive flags and then goto next instruction

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

zero_flag := zero_ctrl;

positive_flag := positive_ctrl;

when S9 => -- next instruction

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

when S10 =>-- LDA -- OK

muxsel_ctrl <= "01";

imm_ctrl <= (others => '0');

accwr_ctrl <= '1';

rfaddr_ctrl <= IR(2 downto 0);

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S8;

when S11 => -- STA -- OK

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= IR(2 downto 0);

rfwr_ctrl <= '1';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

when S12 => -- LDM

muxsel_ctrl <= "10";

imm_ctrl <= (others => '0');

accwr_ctrl <= '1';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '1';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S9;

when S13 => -- STM

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S9;

when S14 => -- LDI -- OK

muxsel_ctrl <= "11";

imm_ctrl <= PM(PC);

PC := PC + 1;

accwr_ctrl <= '1';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S8;

when S210 => -- JMP OK

if (IR(3 downto 0) = "0000") then

-- absolute

IR := PM(PC); -- get next byte for absolute address

PC := CONV_INTEGER(IR(4 downto 0));

elsif (IR(3) = '0') then -- relative positive

-- minus 1 because PC has already incremented

PC := PC + CONV_INTEGER("00" & IR(2 downto 0)) - 1;

else -- relative negative

PC := PC - CONV_INTEGER("00" & IR(2 downto 0)) - 1;

end if;

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

when S220 => -- JZ

if (zero_flag='1') then -- may need TO USE zero_flag instead

if (IR(3 downto 0) = "0000") then

-- absolute

IR := PM(PC); -- get next byte for absolute address

PC := CONV_INTEGER(IR(4 downto 0));

elsif (IR(3) = '0') then -- relative positive

-- minus 1 because PC has already incremented

PC := PC + CONV_INTEGER("00" & IR(2 downto 0)) - 1;

else -- relative negative

PC := PC - CONV_INTEGER("00" & IR(2 downto 0)) - 1;

end if;

end if;

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

when S230 => -- JNZ

if (zero_flag='0') then -- may need TO USE zero_flag instead

if (IR(3 downto 0) = "0000") then

-- absolute

IR := PM(PC); -- get next byte for absolute address

PC := CONV_INTEGER(IR(4 downto 0));

elsif (IR(3) = '0') then -- relative positive

-- minus 1 because PC has already incremented

PC := PC + CONV_INTEGER("00" & IR(2 downto 0)) - 1;

else -- relative negative

PC := PC - CONV_INTEGER("00" & IR(2 downto 0)) - 1;

end if;

end if;

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

when S240 => -- JP

if (positive_flag='1') then -- may need TO USE positive_flag instead

if (IR(3 downto 0) = "0000") then

-- absolute

IR := PM(PC); -- get next byte for absolute address

PC := CONV_INTEGER(IR(4 downto 0));

elsif (IR(3) = '0') then -- relative positive

-- minus 1 because PC has already incremented

PC := PC + CONV_INTEGER("00" & IR(2 downto 0)) - 1;

else -- relative negative

PC := PC - CONV_INTEGER("00" & IR(2 downto 0)) - 1;

end if;

end if;

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S1;

when S30 => -- ANDA -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= IR(2 downto 0);

rfwr_ctrl <= '0';

alusel_ctrl <="001";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result ??

when S31 => -- ORA -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= IR(2 downto 0);

rfwr_ctrl <= '0';

alusel_ctrl <="010";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S32 => -- ADD -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= IR(2 downto 0);

rfwr_ctrl <= '0';

alusel_ctrl <="100";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S33 => -- SUB -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= IR(2 downto 0);

rfwr_ctrl <= '0';

alusel_ctrl <="101";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S41 => -- NOTA -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <="011";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S42 => -- INC -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <="110";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S43 => -- DEC -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <="111";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S44 => -- SHFL

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000"; -- pass

shiftsel_ctrl <= "01";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S45 => -- SHFR -- OK

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000"; -- pass

shiftsel_ctrl <= "10";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S46 => -- ROTR -- ??

muxsel_ctrl <="00";

imm_ctrl <= (others => '0');

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000"; -- pass

shiftsel_ctrl <= "11";

outen_ctrl <= '0';

accwr_ctrl <='1'; -- write occurs IN the next cycle

state <= S8;

-- state <= S9; -- need one extra cycle TO write back result

when S51 => -- INA

muxsel_ctrl <= "10";

imm_ctrl <= (others => '0');

accwr_ctrl <= '1';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S8;

-- state <= S9;

when S52 => -- OUTA

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '1';

state <= S1;

-- state <= S9;

when S99 => -- HALT

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S99;

when others =>

muxsel_ctrl <= "00";

imm_ctrl <= (others => '0');

accwr_ctrl <= '0';

rfaddr_ctrl <= "000";

rfwr_ctrl <= '0';

alusel_ctrl <= "000";

shiftsel_ctrl <= "00";

outen_ctrl <= '0';

state <= S99;

end case;

end if;

end process;

end fsm;

entity dp is

port (clk_dp: in std_logic;

rst_dp: in std_logic;

muxsel_dp: in std_logic_vector(1 downto 0);

imm_dp: in std_logic_vector(7 downto 0);

input_dp: in std_logic_vector(7 downto 0);

accwr_dp: in std_logic;

rfaddr_dp: in std_logic_vector(2 downto 0);

rfwr_dp: in std_logic;

alusel_dp: in std_logic_vector(2 downto 0);

shiftsel_dp: in std_logic_vector(1 downto 0);

outen_dp: in std_logic;

zero_dp: out std_logic;

positive_dp: out std_logic;

output_dp: out std_logic_vector(7 downto 0));

end dp;

architecture struct of dp is

component mux4 is

port (sel_mux: in std_logic_vector(1 downto 0);

in3_mux,in2_mux,in1_mux,in0_mux: in std_logic_vector(7 downto 0);

out_mux: out std_logic_vector(7 downto 0));

end component;

component acc is

port (clk_acc: in std_logic;

rst_acc: in std_logic;

wr_acc: in std_logic;

input_acc: in std_logic_vector (7 downto 0);

output_acc: out std_logic_vector (7 downto 0));

end component;

component reg_file is

port (clk_rf: in std_logic;

wr_rf: in std_logic;

addr_rf: in std_logic_vector(2 downto 0);

input_rf: in std_logic_vector(7 downto 0);

output_rf: out std_logic_vector(7 downto 0));

end component;

component alu is

port (sel_alu: in std_logic_vector(2 downto 0);

inA_alu: in std_logic_vector(7 downto 0);

inB_alu: in std_logic_vector(7 downto 0);

OUT_alu: out std_logic_vector (7 downto 0));

end component;

component shifter is

port (sel_shift: in std_logic_vector(1 downto 0);

input_shift: in std_logic_vector(7 downto 0);

output_shift: out std_logic_vector(7 downto 0));

end component;

component tristatebuffer is

port (E: in std_logic;

D: in std_logic_vector(7 downto 0);

Y: out std_logic_vector(7 downto 0));

end component;

signal C_aluout,C_accout,C_rfout,C_muxout,C_shiftout: std_logic_vector(7 downto 0);

signal C_outen: std_logic;

begin

U0: mux4 port map(muxsel_dp,imm_dp,input_dp,C_rfout,C_shiftout,C_muxout);

U1: acc port map(clk_dp,rst_dp,accwr_dp,C_muxout,C_accout);

U2: reg_file port map(clk_dp,rfwr_dp,rfaddr_dp,C_accout,C_rfout);

U3: alu port map(alusel_dp,C_accout,C_rfout,C_aluout);

U4: shifter port map(shiftsel_dp,C_aluout,C_shiftout);

C_outen <= outen_dp or rst_dp;

U5: tristatebuffer port map(C_outen,C_accout,output_dp); --output_dp <= C_accout;

zero_dp <= '1' when (C_muxout = "00000000") else '0';

positive_dp <= not C_muxout(7); --positive_dp <= '1' WHEN (C_muxout(7) = '0') ELSE '0';

end struct;

entity mux4 is

port (sel_mux: in std_logic_vector(1 downto 0);

in3_mux,in2_mux,in1_mux,in0_mux: in std_logic_vector(7 downto 0);

out_mux: out std_logic_vector(7 downto 0));

end mux4;

architecture mux4 of mux4 is

begin

process(sel_mux)

begin

case sel_mux is

when "00" => out_mux<=in0_mux;

when "01" => out_mux<=in1_mux;

when "10" => out_mux<=in2_mux;

when others => out_mux<=in3_mux;

end case;

end process;

end mux4;

entity reg_file is

port(clk_reg: in std_logic;

wr_reg: in std_logic;

addr_reg: in std_logic_vector(2 downto 0);

input_reg: in std_logic_vector(7 downto 0);

output_reg: out std_logic_vector(7 downto 0));

end reg_file;

architecture reg_file of reg_file is

type mem is array (0 to 7) of std_logic_vector(7 downto 0);

signal d:mem;

begin

process(clk_reg,wr_reg,addr_reg)

begin

if(clk_reg'event and clk_reg = '1') then

if(wr_reg='1') then

if(addr_reg="000") then

d(0)<=input_reg;

output_reg<=input_reg;

elsif(addr_reg="001") then

d(1)<=input_reg;

output_reg<=input_reg;

elsif(addr_reg="010") then

d(2)<=input_reg;

output_reg<=input_reg;

elsif(addr_reg="011") then

d(3)<=input_reg;

output_reg<=input_reg;

elsif(addr_reg="100") then

d(4)<=input_reg;

output_reg<=input_reg;

elsif(addr_reg="101") then

d(5)<=input_reg;

output_reg<=input_reg;

elsif(addr_reg="110") then

d(6)<=input_reg;

output_reg<=input_reg;

elsif(addr_reg="111") then

d(7)<=input_reg;

output_reg<=input_reg;

end if;

else

if(addr_reg="000") then

output_reg<=d(0);

elsif(addr_reg="001") then

output_reg<=d(1);

elsif(addr_reg="010") then

output_reg<=d(2);

elsif(addr_reg="011") then

 output_reg<=d(3);

elsif(addr_reg="100") then

output_reg<=d(4);

elsif(addr_reg="101") then

output_reg<=d(5);

elsif(addr_reg="110") then

output_reg<=d(6);

elsif(addr_reg="111") then

output_reg<=d(7);

end if;

end if;

end if;

end process;

end reg_file;

entity shifter is

port (sel_shift: in std_logic_vector(1 downto 0);

input_shift: in std_logic_vector(7 downto 0);

output_shift: out std_logic_vector(7 downto 0));

end shifter;

architecture shifter of shifter is

begin

process(sel_shift,input_shift)

begin

if (sel_shift="00") then

output_shift<=input_shift;

elsif (sel_shift="01") then

output_shift<=shl(input_shift,"0001");

elsif (sel_shift="10") then

output_shift<=shr(input_shift,"0001");

elsif (sel_shift<="11") then

output_shift<= to_stdlogicvector(To_bitvector(input_shift) ror 1);

end if;

end process;

end shifter;

entity tristatebuffer is

port (e: in std_logic;

d: in std_logic_vector(7 downto 0);

y: out std_logic_vector(7 downto 0));

end tristatebuffer;

architecture tri of tristatebuffer is

begin

process(e,d)

begin

if (e='1') then

 y<=d;

else

y<=(others=>'Z');

end if;

end process;

end tri;

entity cpu is

port (clk_cpu: std_logic;

rst_cpu: in std_logic;

input_cpu: in std_logic_vector(7 downto 0);

output_cpu: out std_logic_vector(7 downto 0));

end cpu;

architecture structure of cpu is

component ctrl

port (clk_ctrl: in std_logic;

rst_ctrl: in std_logic;

muxsel_ctrl: out std_logic_vector(1 downto 0);

imm_ctrl: out std_logic_vector(7 downto 0);

accwr_ctrl: out std_logic;

rfaddr_ctrl: out std_logic_vector(2 downto 0);

rfwr_ctrl: out std_logic;

alusel_ctrl: out std_logic_vector(2 downto 0);

shiftsel_ctrl: out std_logic_vector(1 downto 0);

outen_ctrl: out std_logic;

zero_ctrl: in std_logic;

positive_ctrl: in std_logic);

end component;

component dp

port(clk_dp: in std_logic;

rst_dp: in std_logic;

muxsel_dp: in std_logic_vector(1 downto 0);

imm_dp: in std_logic_vector(7 downto 0);

input_dp: in std_logic_vector(7 downto 0);

accwr_dp: in std_logic;

rfaddr_dp: in std_logic_vector(2 downto 0);

rfwr_dp: in std_logic;

alusel_dp: in std_logic_vector(2 downto 0);

shiftsel_dp: in std_logic_vector(1 downto 0);

outen_dp: in std_logic;

zero_dp: out std_logic;

positive_dp: out std_logic;

output_dp: out std_logic_vector(7 downto 0));

end component;

signal C_immediate: std_logic_vector(7 downto 0); --SIGNAL D_immediate: std_logic_vector(7 DOWNTO 0);

signal C_accwr,C_rfwr,C_outen,C_zero,C_positive: std_logic;

signal C_muxsel,C_shiftsel: std_logic_vector(1 downto 0);

signal C_rfaddr,C_alusel: std_logic_vector(2 downto 0);

begin

U0: ctrl port map(clk_cpu,rst_cpu,C_muxsel,C_immediate,C_accwr,C_rfaddr,C_rfwr,C_alusel

,C_shiftsel,C_outen,C_zero,C_positive);

U1: dp port map(clk_cpu,rst_cpu,C_muxsel,C_immediate,input_cpu,C_accwr,C_rfaddr,C_rfwr

,C_alusel,C_shiftsel,C_outen,C_zero,C_positive,output_cpu);

end structure;

10

