 Remote Notice Board Using Gsm With Sms

CHAPTER 1

INTRODUCTION

INTRODUCTION
1.1 General Introduction:

In today’s world it is said that, world is shrinking day by day. It is due to the fact that people from different parts of the world are able to communicate with each other within fractions of seconds. All these advantages are possible due to the advantages in digital communication techniques. With the advent of cellular technology the use of mobile telephones are increased drastically over the years. In today’s world of technological advancements communications and control is necessary in any part of the world.

The novel idea of this project is to receive message through mobile phones and send it to Notice Board for display. This project is basically a micro controller- based design used to control remote notice board. P89C52RD2BN is heart of this project. Here, we use mobile phones as a message sender, sending messages to notice board by sending appropriate SMS and receiving SMS whenever there is no problem. The mobile used is GSM technology.

The key strength of GSM is its international roaming capability giving consumers a seamless service, superior speech quality, universal and in-expensive mobile phones, Digital convenience, New services(Call waiting , Call forwarding, SMS). SMS is a GSM service by which we can send and receive data, to and from another GSM handset. The message can be comprised of words or numbers or an alpha numerical combination.

The main advantage of SMS service are it’s an available communication tool those with speech or hearing difficulties. And if you get an SMS and you are outside of the GSM coverage area SMS will be stored and you will be received it as soon as you entered the network coverage area. This will always keep you aware of the security situation of your home/office.

Using “attention commands” (AT Commands) GSM modem operations can be controlled.

1.2 Objective of the study:

The main objective of selecting this project is to gain knowledge and experience in developing a real time application. Apart from this, to gain the Knowledge of P89C52RD2BN Micro Controller, GSM modem and the way in which these can be used to receive messages and display on notice board.

8052 is a popular micro controller. There are number of 8052 applications. Micro controller can be programmed to run only one specific application.. It can be programmed to accomplish the specific job faster.

GSM modems are widely used in mobile phones. The working of the modem can be controlled by “AT” commands. There are many “AT” commands like “AT+CMGR” to read a message etc.

1.3 Scope of literature:

System using GSM includes only three applications. Notice Board are connected to the system just to show that, it is possible to control various notice board using micro controller.

In this project the software has been written to send and receive messages. When a message has to be sent a command is sent to the GSM modem. But, this project would not guarantee, that the message sent would reach the destination, if GSM service does not exist. This is not in the scope of this project.

1.4 Review of the Project:

Many books have provided valuable information that was very useful for this project.

One such book authored by MD. ALI MAZIDI and JANICE GILLIPSE MAZIDI titled “THE 8052 MICRO CONTROLLER AND EMBEDED SYSTEMS”.

1.5 Introduction to EMBEDED SYSTEMS:

Embedded systems are designed to do some specific task, rather than be a general-purpose computer for multiple tasks. Some also have real time performance constraints that must be met, for reason such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs.

 An embedded system is not always a separate block - very often it is physically built-in to the device it is controlling. The software written for embedded systems is often called firmware, and is stored in read-only memory or flash convector chips rather than a disk drive. It often runs with limited computer hardware resources: small or no keyboard, screen, and little memory.

 Wireless communication has become an important feature for commercial products and a popular research topic within the last ten years. There are now more mobile phone subscriptions than wired-line subscriptions. Lately, one area of commercial interest has been low-cost, low-power, and short-distance wireless communication used for \personal wireless networks." Technology advancements are providing smaller and more cost effective devices for integrating computational processing, wireless communication, and a host of other functionalities. These embedded communications devices will be integrated into applications ranging from homeland security to industry automation and monitoring. They will also enable custom tailored engineering solutions, creating a revolutionary way of disseminating and processing information. With new technologies and devices come new business activities, and the need for employees in these technological areas. Engineers who have knowledge of embedded systems and wireless communications will be in high demand. Unfortunately, there are few adorable environments available for development and classroom use, so students often do not learn about these technologies during hands-on lab exercises. The communication mediums were twisted pair, optical fiber, infrared, and generally wireless radio.

CHAPTER 2

DESIGN

DESIGN

The systems design process partitions the requirements to either hardware or software systems. It establishes the overall system architecture. Software design involves the representing the software system functions in a form that may be transformed into one or more executable programs. The design involves the design of hardware as well as software part required for the project.

2.1 Block Diagram:
Receiver:
[image: image64.png]

[image: image65.emf][image: image66.png]PT2 | Ps | PT1 | Px1 [PTO [PXO

[image: image67.jpg]OO00NO0000ON00NAN000AA000

D@ ;b=

10

12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34

33
32

31

30
29
28
27
26
25
24
23
22
21

0000000000000 ooooon

Voo
0.0 (ADO)
PO.1 (AD1)
0.2 (AD2)
0.3 (ADS)
PO.4 (AD4)
PO.5 (ADS)
P0.6 (AD6)
P0.7 (AD7)
EANVPP
ALE/FROG
FSEN
P2.7 (A15)
P2.6 (A14)
P25 (A13)
P2.4 (A12)
P23 (A11)
P22 (AiO)
P21 (A

P2.0 (AB

Transmitter:

Fig2.1: Block Diagram of Project
2.2 Design Process:

	Design Process

	Hardware Design

	Software Design

Fig2.2: Design Process
2.3 Hardware Design:
2.3.1 Microcontroller Introduction:
 Features:

· Compatible with MCS-51™ Products

· 8K Bytes of In-System Reprogrammable Flash Memory

· Endurance: 1,000 Write/Erase Cycles

· Fully Static Operation: 0 Hz to 24 MHz

· Three-level Program Memory Lock

· 256 x 8-bit Internal RAM

· 32 Programmable I/O Lines

· Three 16-bit Timer/Counters

· Eight Interrupt Sources

· Programmable Serial Channel

· Low-power Idle and Power-down Modes

Block Diagram:
[image: image1.emf]

Fig2.3: Block Diagram of Microcontroller

Description:

The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 and 80C52 instruction set and pinout.The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.
The AT89C52 provides the following standard features: 8K bytes of Flash, 256 bytes of RAM, 32 I/O lines, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full-duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89C52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next hardware reset.
Pin Configuration:

Fig2.4: Pin Configuration
Pin Description:
VCC: Supply voltage.

GND: Ground.

Port 0:
 Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs.

Port 0 can also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode, P0 has internal

Pull-ups.

Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during program verification.

Port 1:
Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table.

Port 1 also receives the low-order address bytes during Flash programming and verification.

[image: image2.png]Port Pin

Alternate Functions

P10

T2 (external count input to Timer/Counter 2),
clock-out

P11

T2EX (Timer/Counter 2 capturelreload trigger and
direction control)

Fig 2.5: Pin Description
Port 2:
 Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that uses 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that uses 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3:
Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pull-ups. Port 3 also serves the functions of various special features of the AT89C51, as shown in the following table. Port 3 also receives some control signals for Flash programming and verification.
[image: image3.png]Alternate Functions

Pao RXD (serial input port)

Pat TXD (serial output port)

P32 TNTG (external interrupt 0)

P33 TNTT (external interrupt 1)

Pas O (timer 0 external input)

P35 T1 (timer 1 external input)

P36 WR (external data memory write strobe)
Pa7 D (external data memory read strobe)

Fig 2.6: Pin Description of Port3
RST:
 Reset input. A high on this pin for two machine cycles while the oscillator is running resets the Device.

ALE/PROG:
 Address Latch Enable is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

PSEN:

 Program Store Enable is the read strobe to external program memory. When the AT89C52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

EA/VPP:

External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming when 12-volt programming is selected.

XTAL1:
Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2:
Output from the inverting oscillator amplifier
Oscillator Characteristics:
XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an External clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 2.

[image: image4.png]c2

I XTAL2
=

i ALl

D

Nels: C1,C2 =30 pF 10 pF for Crystals

40 pF +10 pF for Ceramic Resonators

Fig2.7: Oscillator Connections
 Special Function registers:

Special function registers are the areas of memory that control specific functionality of the 8052 micro controller.

a) Accumulator (0E0h):
As its name suggests, it is used to accumulate the results of large no of instructions. It can hold 8 bit values.

b) B registers (0F0h):
The B register is very similar to accumulator. It may hold 8-bit value. The b register is only used by MUL AB and DIV AB instructions. In MUL AB the higher byte of the product gets stored in B register. In div AB the quotient gets stored in B with the remainder in A.

c) Stack pointer (81h):
 The stack pointer holds 8-bit value. This is used to indicate where the next value to be removed from the stack should be taken from. When a value is to be pushed onto the
stack, the 8052 first store the value of SP and then store the value at the resulting memory location. When a value is to be popped from the stack, the 8052 returns the value from the memory location indicated by SP and then decrements the value of SP.

d) Data pointer:
The SFRs DPL and DPH work together work together to represent a 16-bit value called the data pointer. The data pointer is used in operations regarding external RAM and some instructions code memory. It is a 16-bit SFR and also an addressable SFR.
e) Program counter:
The program counter is a 16 bit register, which contains the 2 byte address, which tells the 8052 where the next instruction to execute to be found in memory. When the 8052 is initialized PC starts at 0000h. And is incremented each time an instruction is executes. It is not addressable SFR.

f) PCON (power control, 87h):

The power control SFR is used to control the 8052’s power control modes. Certain operation modes of the 8052 allow the 8052 to go into a type of “sleep mode ” which consume much lee power.

[image: image5.png]sMop | ~ | ~ |~ [oF | GFo | PD | 1DL

g) TCON (timer control, 88h):
The timer control SFR is used to configure and modify the way in which the 8052’s two timers operate. This SFR controls whether each of the two timers is running or stopped and contains a flag to indicate that each timer has overflowed. Additionally, some non-timer related bits are located in TCON SFR. These bits are used to configure the way in which the external interrupt flags are activated, which are set when an external interrupt occurs.

[image: image6.png]TFL [TR | TFO [TR [1E1 | 1T1 | IED | ITO

h) TMOD (Timer Mode, 89h):
The timer mode SFR is used to configure the mode of operation of each of the two timers. Using this SFR your program may configure each timer to be a 16-bit timer, or 13 bit timer, 8-bit auto reload timer, or two separate timers. Additionally you may configure the timers to only count when an external pin is activated or to count “events” that are indicated on an external pin.

[image: image7.png]Gate

M0

Gate

M0

TIMER 1

TIMER 0

i) TO (Timer 0 low/high, address 8A/8C h):

These two SFRs taken together represent timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.

j) T1 (Timer 1 Low/High, address 8B/ 8D h):
These two SFRs, taken together, represent timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR. However, these timers always count up.

k) P0 (Port 0, address 90h, bit addressable):
This is port 0 latch. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P0.0, bit 7 is pin p0.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level.

l) P1 (port 1, address 90h, bit addressable):
 This is port latch1. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level.
m) P2 (port 2, address 0A0h, bit addressable):

This is a port latch2. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level.
n) P3 (port 3, address B0h, bit addressable):

 This is a port latch3. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level

o) IE (Interrupt Enable, 0A8h):
 The Interrupt Enable SFR is used to enable and disable specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where the MSB bit is used to enable or disable all the interrupts. Thus, if the high bit of IE is 0 all interrupts are disabled regardless of whether an individual interrupt is enabled by setting a lower bit.

[image: image8.png]ETz | ES | ET1 | EX1 [ETO | EX0

p) IP (Interrupt Priority, 0B8h):
 The interrupt priority SFR is used to specify the relative priority of each interrupt. On 8052, an interrupt maybe either low or high priority. An interrupt may interrupt interrupts. For e.g., if we configure all interrupts as low priority other than serial interrupt. The serial interrupt always interrupts the system, even if another interrupt is currently executing. However, if a serial interrupt is executing no other interrupt will be able to interrupt the serial interrupt routine since the serial interrupt routine has the highest priority.

q) PSW (Program Status Word, 0D0h):
 The program Status Word is used to store a number of important bits that are set and cleared by 8052 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the parity flag and the overflow flag. Additionally, it also contains the register bank select flags, which are used to select, which of the “R” register banks currently in use.

[image: image9.png]Rs1 | RSO

r) SBUF (Serial Buffer, 99h):
 SBUF is used to hold data in serial communication. It is physically two registers. One is writing only and is used to hold data to be transmitted out of 8052 via TXD. The other is read only and holds received data from external sources via RXD. Both mutually exclusive registers use address 99h.
Fig 2.8: AT89C52 SFR Map and Reset Values

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in above Table 1. Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect. User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Timer 2 Registers Control and status bits are contained in registers T2CON (shown in Table 2) and T2MOD (shown in Table 4) for Timer 2. The register pair (RCAP2H, RCAP2L) is the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.

Interrupt Registers The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.

[image: image10.png]T2CON Address = 0C8H
Bt Addressable

Bt

T2

TOLK

EXEN2

[image: image11.emf]
Fig 2.9: TCON

Data Memory:

The AT89C52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. That means the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space. When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions that use direct addressing access SFR space. For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2). MOV 0A0H, #data Instructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H). MOV @R0, #data

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

Timers:

In order to understand--and better make use of--the 8052, it is necessary to understand some underlying information concerning timing. The 8052 operates based on an external crystal. This is an electrical device which, when energy is applied, emits pulses at a fixed frequency. One can find crystals of virtually any frequency depending on the application requirements. When using an 8052, the most common crystal frequencies are 12 megahertz and 11.059 megahertz--with 11.059 being much more common. Why would anyone pick such an odd- ball frequency? There’s a real reason for it--it has to do with generating baud rates and we’ll talk more about it in the Serial Communication chapter. For the remainder of this discussion we’ll assume that we’re using an 11.059 MHz crystal. Microcontrollers (and many other electrical systems) use crystals to synchronize operations. The 8052 uses the crystal for precisely that: to synchronize its operation.

Effectively, the 8052 operates using what are called "machine cycles." A single machine cycle is the minimum amount of time in which a single 8052 instruction can be executed. Although many instructions take multiple cycles. A cycle is, in reality, 12 pulses of the crystal. That is to say, if an instruction takes one machine cycle to execute, it will take 12 pulses of the crystal to execute. Since we know the crystal is pulsing 11,059,000 times per second and that one machine cycle is 12 pulses, we can calculate how many instruction cycles the 8052 can execute per second:

11,059,000 / 12 = 921,583

This means that the 8052 can execute 921,583 single-cycle instructions per second. Since a large number of 8052 instructions are single-cycle instructions it is often considered that the 8052 can execute roughly 1 million instructions per second, although in reality it is less--and, depending on the instructions being used, an estimate of about 600,000 instructions per second is more realistic.

The 8052 comes equipped with two timers, both of which may be controlled, set, read, and configured individually. The 8052 timers have three general functions:
1) Keeping time and/or calculating the amount of time between events,

2) Counting the events themselves, or

3) Generating baud rates for the serial port.

The three timer uses are distinct so we will talk about each of them separately. The first two uses will be discussed in this chapter while the use of timers for baud rate generation will be discussed in the chapter relating to serial ports.

How does a timer count? A timer always counts up. It doesn’t matter whether the timer is being used as a timer, a counter, or a baud rate generator: A timer is always incremented by the microcontroller.

Timer SFRs:

As mentioned before, the 8052 has two timers which each function essentially the same way. One timer is TIMER0 and the other is TIMER1. The two timers share two SFRs (TMOD and TCON) which control the timers, and each timer also has two SFRs dedicated solely to itself (TH0/TL0 and TH1/TL1). We’ve given SFRs names to make it easier to refer to them, but in reality an SFR has a numeric address. It is often useful to know the numeric address that corresponds to an SFR name.
 The SFRs relating to timers are:

[image: image12.emf]
Fig 2.10: SFR

When you enter the name of an SFR into an assembler, it internally converts it to a number. For example, the command:

MOV TH0, #25h

Moves the value 25h into the TH0 SFR. However, since TH0 is the same as SFR address 8Ch this command is equivalent to:

MOV 8Ch, #25h

Now, back to the timers. Timer 0 has two SFRs dedicated exclusively to itself: TH0 and TL0. Without making things too complicated to start off with, you may just think of this as the high and low byte of the timer. That is to say, when Timer 0 has a value of 0, both TH0 and TL0 will contain 0. When Timer 0 has the value 1000, TH0 will hold the high byte of the value (3 decimal) and TL0 will contain the low byte of the value (232 decimal). Reviewing low/high byte notation, recall that you must multiply the high byte by 256 and add the low byte to calculate the final value. That is to say: TH0 * 256 + TL0 = 1000 3 * 256 + 232 = 1000

Timer 1 works the exact same way, but its SFRs are TH1 and TL1. Since there are only two bytes devoted to the value of each timer it is apparent that the maximum value a timer may have is 65,535. If a timer contains the value 65,535 and is subsequently incremented, it will reset—or overflow--back to 0.

The TMOD SFR:
Let’s first talk about our first control SFR: TMOD (Timer Mode). The TMOD SFR is used to control the mode of operation of both timers. Each bit of the SFR gives the microcontroller specific information concerning how to run a timer. The high four bits (bits
4 through 7) relate to Timer 1 whereas the low four bits (bits 0 through 3) perform the exact same functions, but for timer 0.

The individual bits of TMOD have the following functions:

[image: image13.png]Bit | Name Explanation of Function Timer
7 | ater | When TS B S sl Thetmer il only un when INTT (PO3) s Figh. When TS i |
clear th tmer wil rn regardess of th state of INTS.
& | om | Wnen ts it set e tmer il count everts on T (P3.5], Wien s bi i clear] ¢
ih tmer will be incremente every machine cyce.
5 | i | Tmermods it (see boow) T
o | T | Tmer mode B (e beion])
3 | GaTeo | When s s set e mer villonly run when INTO (°3.2) s high. When this B s|
| lar the time wil run regardess of th state o INTO
2 | oo |When s bt set T timer il count everts on T0 (P3.4). When s bl cear]
th tmer il bo incremente every machine cyce.
T | towr | Tmermode bt (sse below) o
0 | Towo | Tmermode it see betow) o

Fig 2.11: TMOD
As you can see in the above chart, four bits (two for each timer) are used to specify a mode of operation. The modes of operation are:

[image: image14.png][TxM1 [TxMO| Timer Mode | Description of Mode
0 0 0 13-bit Timer.
0 1 1 16-bit Timer
1 0 2 8-bit auto-reload
1 1 3 Split timer mode

Fig 2.12: Mode Operation

Timer mode "0" is a 13-bit timer. This is a relic that was kept around in the 8052 to maintain compatibility with its predecessor,8048. Generally the 13-bit timer mode is not used in new development. When the timer is in 13-bit mode, TLx will count from 0 to 31. When TLx is incremented from 31, it will "reset" to 0 and increment THx. Thus, effectively, only 13 bits of the two timer bytes are being used: bits 0-4 of TLx and bits 0-7 of THx. This also means, in essence, the timer can only contain 8192 values. If you set a 13-bit timer to 0, It will overflow back to zero 8192 machine cycles later.

16-bit Time Mode (mode 1):
Timer mode "1" is a 16-bit timer. This is a very commonly used mode. It functions just like 13-bit mode except that all 16 bits are used. TLx is incremented from 0 to 255. When TLx is incremented from 255, it resets to 0 and causes THx to be incremented by 1. Since this is a full 16- bit timer, the timer may contain up to 65536 distinct values. If you set a 16-bit timer to 0, it will overflow back to 0 after 65,536 machine cycles.

8-bit Time Mode (mode 2):
Timer mode "2" is an 8-bit auto-reload mode. What is that, you may ask? Simple. When a timer is in mode 2, THx holds the "reload value" and TLx is the timer itself. Thus, TLx starts counting up. When TLx reaches 255 and is subsequently incremented, instead of resetting to 0 (as in the case of modes 0 and 1), it will be reset to the value stored in THx. For example, let’s say TH0 holds the value FDh and TL0 holds the value FEh. If we were to watch the values of TH0 and TL0 for a few machine cycles this is what we’d see:

[image: image15.png]Machine Cycle | THO Value | TLO Value
1 FDh FEh
2 FDh FFh
3 FDh FDh
4 FDh FEh
5 FDh FFh
6 FDh FDh
7 FDh FEh

Fig 2.13: Time Mode

As you can see, the value of TH0 never changed. In fact, when you use mode 2 you almost always set THx to a known value and TLx is the SFR that is constantly incremented. What’s the benefit of auto-reload mode? Perhaps you want the timer to always have a value from 200 to 255. If you use mode 0 or 1, you’d have to check in code to see if the timer had overflowed and, if so, reset the timer to 200. This takes precious instructions of execution time to check the value and/or to reload it. When you use mode 2 the microcontroller takes care of this for you. Once you’ve configured a timer in mode 2 you don’t have to worry about checking to see if the timer has overflowed nor do you have to worry about resetting the value--the microcontroller hardware will do it all for you. The auto-reload mode is very
commonly used for establishing a baud rate which we will talk more about in the Serial Communications chapter.

Split Timer Mode (mode 3):
Timer mode "3" is a split-timer mode. When Timer 0 is placed in mode 3, it essentially becomes two separate 8-bit timers. That is to say, Timer 0 is TL0 and Timer 1 is TH0. Both timers count from 0 to 255 and overflow back to 0. All the bits that are related to Timer 1 will now be tied to TH0. While Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be put into modes 0, 1 or 2 normally--however, you may not start or stop the real timer 1 since the bits that do that are now linked to TH0. The real timer 1, in this case, will be incremented every machine cycle no matter what. The only real use I can see of using split timer mode is if you need to have two separate timers and, additionally, a baud rate generator. In such case you can use the real Timer 1 as a baud rate generator and use TH0/TL0 as two separate timers.

The TCON SFR:
Finally, there’s one more SFR that controls the two timers and provides valuable

information about them. The TCON SFR has the following structure shown below.

From structure you may notice, we’ve only defined 4 of the 8 bits. That’s because the other 4 bits of the SFR don’t have anything to do with timers—they have to do with Interrupts and they will be discussed in the chapter that addresses interrupts.
[image: image16.png]Bit| Name Bit Addres Explanaticn of Function Timer
R & Timer 1 Overflow. This bit is se! by the microcontroller when Timer 1| 1
prerflows.
Timer 1 Run. When this bi is set Timer 1 is turned on. When this bif
O TR learTinertisof. !
5| 1R h Timer 0 Overflow. This bil is set by the microcontroller when Timer 0
4| TRo | son |imer 0 Run Whenthis bR i sel Tier 0 s tumed on. When s bty

loar Timer 01is of.

Fig2.14: TCON SFR
A new piece of information in this chart is the column "bit address." This is because this SFR is "bit-addressable." What does this mean? It means if you want to set the bit TF1--which is the highest bit of TCON--you could execute the command: MOV TCON, #80h or,
 since the SFR is bit-addressable, you could just execute the command: SETB TF1 This has the benefit of setting the high bit of TCON without changing the value of any of the other bits of the SFR. Usually when you start or stop a timer you don’t want to modify the other values in TCON, so you take advantage of the fact that the SFR is bit-addressable.
Timer 2:
Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit C/T2 in the SFR T2CON (shown in Table 2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON, as shown in Table 3. Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.
[image: image17.png]RCLK +TCLK | CP/RL2 'MODE
0 0 16-bit Auto-reload
0 1 16-bit Capture
1 Baud Rate Generator
x (of

Fig 2.15: Timer 2 Operating Modes
In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.
Initializing a Timer:
Now that we’ve discussed the timer related SFRs we are ready to write code that will initialize the timer and start it running. As you’ll recall, we first must decide what mode we ant the timer to be in. In this case we want a 16-bit timer that runs continuously; that is to say, it is not dependent on any external pins. We must first initialize the TMOD SFR. Since we are working with timer 0 we will be using the lowest 4 bits of TMOD. The first two bits, GATE0 and C/T0 are both 0 since we want the timer to be independent of the external pins. 16-bit mode is timer mode 1 so we must clear T0M1 and set T0M0. Effectively, the only bit we want to turn on is bit 0 of TMOD. Thus to initialize the timer we execute the instruction: MOV TMOD, #01h Timer 0 is now in 16-bit timer mode. However, the timer is not running. To start the timer running we must set the TR0 bit We can do that by executing the instruction: SETB TR0 Upon executing these two instructions timer 0 will immediately begin counting, being incremented once every machine cycle (every 12 crystal pulses).

Reading the Timer:
There are two common ways of reading the value of a 16-bit timer; which you use depends on your specific application. You may either read the actual value of the timer as a 16-bit number, or you may simply detect when the timer has overflowed.

Reading the value of a Timer:
If your timer is in an 8-bit mode--that is, either 8-bit Auto Reload mode or in split timer mode--then reading the value of the timer is simple. You simply read the 1-byte value of the timer and you’re done. However, if you’re dealing with a 13-bit or 16-bit timer the chore is a little more complicated. Consider what would happen if you read the low byte of the timer as 255, then read the high byte of the timer as 15. In this case, what actually happened was that the timer value was 14/255 (high byte 14, low byte 255) but you read 15/255. Why? Because you read the low byte as 255. But when you executed the next instruction a small amount of time passed--but enough for the timer to increment again at which time the value rolled over from 14/255 to 15/0. But in the process you’ve read the timer as being 15/255. Obviously there’s a problem there. The solution? It’s not too tricky, really.
You read the high byte of the timer, then read the low byte, then read the high byte again. If the high byte read the second time is not the same as the high byte read the first time you repeat the cycle.
In code, this would appear as:

REPEAT: MOV A, TH0

MOV R0, TL0

CJNE A, TH0, REPEAT

In this case, we load the accumulator with the high byte of Timer 0. We then load R0 with the low byte of Timer 0. Finally, we check to see if the high byte we read out of Timer 0--which is now stored in the Accumulator--is the same as the current Timer 0 high byte. If it isn’t it means we’ve just "rolled over" and must reread the timer’s value--which we do by going back to REPEAT. When the loop exits we will have the low byte of the timer in R0 and the high byte in the Accumulator. Another much simpler alternative is to simply turn off the timer run bit (i.e. CLR TR0), read the timer value, and then turn on the timer run bit (i.e. SETB TR0).
Detecting Timer Overflow:
Often it is necessary to just know that the timer has reset to 0. That is to say, you are not particularly interest in the value of the timer but rather you are interested in knowing when the timer has overflowed back to 0. Whenever a timer overflows from its highest value back to 0, the microcontroller automatically sets the TFx bit in the TCON register. This is useful since rather than checking the exact value of the timer you can just check if the TFx bit is set. If TF0 is set it means that timer 0 has overflowed; if TF1 is set it means that timer 1 has overflowed. We can use this approach to cause the program to execute a fixed delay. As you’ll recall, we calculated earlier that it takes the 8052 1/20th of a second to count from 0 to 46,079. However, the TFx flag is set when the timer overflows back to 0. Thus, if we want to use the TFx flag to indicate when 1/20th of a second has passed we must set the timer initially to 65536 less 46079, or 19,457. If we set the timer to 19,457, 1/20th of a second later the timer will overflow. Thus we come up with the following code to execute a pause of

1/20th of a second:

MOV TH0, #76; High byte of 19,457 (76 * 256 = 19,456)

MOV TL0, #01; Low byte of 19,457 (19,456 + 1 = 19,457)

MOV TMOD, #01; Put Timer 0 in 16-bit mode

SETB TR0; Make Timer 0 start counting

JNB TF0, $; If TF0 is not set, jump back to this same instruction

In the above code the first two lines initialize the Timer 0 starting value to 19,457. The next two instructions configure timer 0 and turn it on. Finally, the last instruction JNB TF0, $, reads "Jump, if TF0 is not set, back to this same instruction." The "$" operand means, in most assemblers, the address of the current instruction. Thus as long as the timer has not overflowed and the TF0 bit has not been set the program will keep executing this same instruction. After 1/20th of a second timer 0 will overflow, set the TF0 bit, and program execution will then break out of the loop.

Interrupts:

As stated earlier, program flow is always sequential, being altered only by those instructions which expressly cause program flow to deviate in some way. However, interrupts give us a mechanism to "put on hold" the normal program flow, execute a subroutine, and then resume normal program flow as if we had never left it. This subroutine, called an interrupt handler, is only executed when a certain event (interrupt) occurs. The event may be one of the timers "overflowing," receiving a character via the serial port, transmitting a character via the serial port, or one of two "external events." The 8052 may be configured so that when any of these events occur the main program is temporarily suspended and control passed to a special section of code which presumably would execute some function related to the event that occurred. Once complete, control would be returned to the original program. For example, let’s say we have a large 16k program executing many subroutines performing many tasks. Let’s also suppose that we want our program to automatically toggle the P3.0 port every time timer 0 overflows. The code to do this isn’t too difficult:

JNB TF0, SKIP_TOGGLE

CPL P3.0

CLR TF0

SKIP_TOGGLE: ...

Since the TF0 flag is set whenever timer 0 overflows, the above code will toggle P3.0 every time timer 0 overflows. This accomplishes what we want, but is inefficient. The JNB instruction consumes 2 instruction cycles to determine that the flag is not set and jump over the unnecessary code. In the event that timer 0 overflows, the CPL and CLR instruction require 2 instruction cycles to execute. To make the math easy, let’s say the rest of the code in the program requires 98 instruction cycles. Thus, in total, our code consumes 100 instruction cycles (98 instruction cycles plus the 2 that are executed every iteration to determine whether or not timer 0 has overflowed). If we’re in 16-bit timer mode, timer 0 will overflow every 65,536 machine cycles. In that time we would have performed 655 JNB tests for a total of 1310 instruction cycles, plus another 2 instruction cycles to perform the code. So to achieve our goal we’ve spent 1312 instruction cycles. So 2.002% of our time is being spent just checking when to toggle P3.0.
CPL P3.0

RETI

First, you’ll notice the CLR TF0 command has disappeared. That’s because when the 8052 executes our "timer 0 interrupt routine," it automatically clears the TF0 flag. You’ll also notice that instead of a normal RET instruction we have a RETI instruction. The RETI instruction does the same thing as a RET instruction, but tells the 8052 that an interrupt routine has finished. You must always end your interrupt handlers with RETI. Thus, every 65536 instruction cycles we execute the CPL instruction and the RETI instruction. Those two instructions together require 3 instruction cycles, and we’ve accomplished the same goal as he first example that required 1312 instruction cycles. As far as the toggling of P3.0 goes, our ode is 437 times more efficient!. With interrupts, the 8052 will put the main program "on hold" and call our special routine to handle the reception of a character.
What Events can trigger interrupts, and where do they go?
We can configure the 8052 so that any of the following events will cause an interrupt:

• Timer 0 Overflow.
• Timer 1 Overflow.

• Reception/Transmission of Serial Character.

• External Event 0.

• External Event 1.

In other words, we can configure the 8052 so that when Timer 0 overflows or when a character is sent/received, the appropriate interrupt handler routines are called. Obviously we need to be able to distinguish between various interrupts and executing different code depending on what interrupt was triggered. This is accomplished by jumping to a fixed address when a given interrupt occurs.
[image: image18.png]Tnterrupt Flag_| Interrupt Handler Address
External 0 IE0 0003n
Timer 0 TFO 000Bh
External 1 IE1 0013n
Timer 1 TF1 001Bh
‘Serial RITI 00230

Fig2.16: Interrupts
2.3.2 REGULATED POWER SUPPLY:
Description:
 A variable regulated power supply, also called a variable bench power supply, is one where you can continuously adjust the output voltage to your requirements. Varying the output of the power supply is the recommended way to test a project after having double checked parts placement against circuit drawings and the parts placement guide. This type of regulation is ideal for having a simple variable bench power supply. Actually this is quite important because one of the first projects a hobbyist should undertake is the construction of a variable regulated power supply. While a dedicated supply is quite handy e.g. 5V or 12V, it's much handier to have a variable supply on hand, especially for testing. Most digital logic circuits and processors need a 5 volt power supply. To use these parts we need to build a regulated 5 volt source. Usually you start with an unregulated power supply ranging from 9 volts to 24 volts DC (A 12 volt power supply is included with the Beginner Kit and the Microcontroller Beginner Kit.). To make a 5 volt power supply, we use a LM7805 voltage regulator IC.

[image: image19.jpg]

Fig 2.17: Pin Diagram of 7805
The LM7805 is simple to use. You simply connect the positive lead of your unregulated DC power supply (anything from 9VDC to 24VDC) to the Input pin, connect the negative lead to the Common pin and then when you turn on the power, you get a 5 volt supply from the Output pin.
CIRCUIT FEATURES:
· Brief description of operation: Gives out well regulated +5V output, output current capability of 100 mA

· Circuit protection: Built-in overheating protection shuts down output when regulator IC gets too hot

· Circuit complexity: Very simple and easy to build

· Circuit performance: Very stable +5V output voltage, reliable operation

· Availability of components: Easy to get, uses only very common basic components

· Design testing: Based on datasheet example circuit, I have used this circuit successfully as part of many electronics projects

· Applications: Part of electronics devices, small laboratory power supply

· Power supply voltage: Unregulated DC 8-18V power supply

· Power supply current: Needed output current + 5 mA
Block Diagram:
[image: image20.png]Fusinat

=

Trans.

ToACHne | fomer

Rectifer

Fiker Regulator | Vour [Load

Vous———

Fig 2.18: Block Diagram of RPS

Circuit Diagram:

[image: image21.png]$l

Ell

ASYDC
Source

Fig 2.19: Basic Power Supply Circuit
 Above is the circuit of a basic unregulated dc power supply. A bridge rectifier D1 to D4 rectifies the ac from the transformer secondary, which may also be a block rectifier such as WO4 or even four individual diodes such as 1N4004 types. (See later re rectifier ratings).

 The principal advantage of a bridge rectifier is you do not need a centre tap on the secondary of the transformer. A further but significant advantage is that the ripple frequency at the output is twice the line frequency (i.e. 50 Hz or 60 Hz) and makes filtering somewhat easier.
As a design example consider we wanted a small unregulated bench supply for our projects. Here we will go for a voltage of about 12 - 13V at a maximum output current (IL) of 500ma (0.5A). Maximum ripple will be 2.5% and load regulation is 5%.
Now the RMS secondary voltage (primary is whatever is consistent with your area) for our power transformer T1 must be our desired output Vo PLUS the voltage drops across D2 and D4 (2 * 0.7V) divided by 1.414.

This means that Vsec = [13V + 1.4V] / 1.414 which equals about 10.2V. Depending on the VA rating of your transformer, the secondary voltage will vary considerably in accordance with the applied load. The secondary voltage on a transformer advertised as say 20VA will be much greater if the secondary is only lightly loaded.

 If we accept the 2.5% ripple as adequate for our purposes then at 13V this becomes 13 * 0.025 = 0.325 Vrms. The peak to peak value is 2.828 times this value. Vrip = 0.325V X 2.828 = 0.92 V and this value is required to calculate the value of C1. Also required for this calculation is the time interval for charging pulses. If you are on a 60Hz system it 1/ (2 * 60) = 0.008333 which is 8.33 milliseconds. For a 50Hz system it is 0.01 sec or 10 milliseconds.

 Remember the tolerance of the type of capacitor used here is very loose. The important thing to be aware of is the voltage rating should be at least 13V X 1.414 or 18.33. Here you would use at least the standard 25V or higher (absolutely not 16V).With our rectifier diodes or bridge they should have a PIV rating of 2.828 times the Vsec or at least 29V. Don't search for this rating because it doesn't exist. Use the next highest standard or even higher. The current rating should be at least twice the load current maximum i.e. 2 X 0.5A or 1A. A good type to use would be 1N4004, 1N4006 or 1N4008 types.

 These are rated 1 Amp at 400PIV, 600PIV and 1000PIV respectively. Always be on the lookout for the higher voltage ones when they are on special.
Transformer Rating:

 In our example above we were taking 0.5A out of the Vsec of 10V. The VA required is 10 X 0.5A = 5VA. This is a small PCB mount transformer available in Australia and probably elsewhere.

 This would be an absolute minimum and if you anticipated drawing the maximum current all the time then go to a higher VA rating.
 The two capacitors in the primary side are small value types and if you don't know precisely and I mean precisely what you are doing then OMIT them. Their loss won't cause you heartache or terrible problems.

2.3.3 SERIAL COMMUNICATION

Introduction to RS-232:
 In telecommunicationsserial, RS-232 (Recommended Standard 232) is a standard for binary data signals connecting between a DTE (Data terminal equipment) and a DCE (Data Circuit-terminating Equipment). It is commonly used in computer serial ports.
Scope and History:
The Electronic Industries Alliance (EIA) standard RS-232-C as of 1969 defines:
Electrical signal characteristics such as voltage levels, signaling rate, timing and slew-rate of signals, voltage withstand level short-circuit behavior, and maximum load capacitance. Interface mechanical characteristics, pluggable connectors and pin identification. Functions of each circuit in the interface connector. Standard subsets of interface circuits for selected telecom applications. The standard does not define such elements as character encoding (for example, ASCII, Baudot or EBCDIC) the framing of characters in the data stream (bits per character, start/stop bits, parity) protocols for error detection or algorithms for data compression bit rates for transmission, although the standard says it is intended for bit rates lower than 20,000 bits per second. Many modern devices support speeds of 115,200 bps and above power supply to external devices.
Details of character format and transmission bit rate are controlled by the serial port hardware, often a single integrated circuit called a UART that converts data from parallel to serial form. A typical serial port includes specialized driver and receiver integrated circuits to convert between internal logic levels and RS-232 compatible signal levels.
 History:
The original DTEs were electromechanical teletypewriters and the original DCEs were (usually) modems. When electronic terminals (smart and dumb) began to be used, they were often designed to be interchangeable with teletypes, and so supported RS-232.

The C revision of the standard was issued in 1969 in part to accommodate the electrical characteristics of these devices. Since application to devices such as computers, printers, test instruments, and so on were not considered by the standard, designers implementing an RS-232 compatible interface on their equipment often interpreted the requirements idiosyncratically. Common problems were non-standard pin assignment of circuits on connectors, and incorrect or missing control signals. The lack of adherence to the standards produced a thriving industry of breakout boxes, patch boxes, test equipment, books, and other aids for the connection of disparate equipment. A common deviation from the standard was to drive the signals at a reduced voltage: the standard requires the transmitter to use +12V and -12V, but requires the receiver to distinguish voltages as low as +3V and -3V. Some manufacturers therefore built transmitters that supplied +5V and -5V and labeled them as "RS-232 compatible."

The standard has been renamed several times during its history as the sponsoring organization changed its name, and has been variously known as EIA RS 232, EIA 232, and most recently as TIA 232. The standard continues to be revised and updated by the EIA and since 1988 the Telecommunications Industry Association (TIA)CCITT. Revision C was issued in a document dated August 1969. Revision D was issued in 1986. The current revision is TIA-232-F Interface between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997.Since Revision C have been in timing and details intended to improve harmonization with the standard V.24, but equipment built to the current standard will interoperate with older versions.
Limitations:
· Because the application of RS-232 has extended far beyond the original purpose of interconnecting a terminal with a modem, successor standards have been developed to address the limitations. Issues with the RS-232 standard include:

· The large voltage swings and requirement for positive and negative supplies increases power consumption of the interface and complicates power supply design. The voltage swing requirement also limits the upper speed of a compatible interface.

· Single-ended signaling referred to a common signal ground limits the noise immunity and transmission distance.

· Multi-drop (meaning a connection between more than two devices) operation of an RS-232 compatible interface is not defined; while multi-drop "work-around" has been devised, they have limitations in speed and compatibility.

· Asymmetrical definitions of the two ends of the link make the assignment of the role of a newly developed device problematic; the designer must decide on either a DTE-like or DCE-like interface and which connector pin assignments to use.

· The handshaking and control lines of the interface are intended for the setup and takedown of a dial-up communication circuit; in particular, the use of handshake lines for flow control is not reliably implemented in many devices.

· No method for sending power to a device, while a small amount of current can be extracted from the DTR and RTS lines this can only be used for low power devices such as mice.

· While the standard recommends a 25-way connector and its pin out, the connector is large by current standards.
Voltage levels:

The RS-232 standard defines the voltage levels that correspond to logical one and logical zero levels. Valid signals are plus or minus 3 to 15 volts. The range near zero volts is not a valid RS-232 level; logic one is defined as a negative voltage, the signal condition is called marking, and has the functional significance of OFF. Logic zero is positive; the signal condition is spacing, and has the function ON. The standard specifies a maximum open-circuit voltage of 25 volts; signal levels of ±5 V, ±10 V, ±12 V, and ±15 V are all commonly
seen depending on the power supplies available within a device. RS-232 drivers and receivers must be able to withstand indefinite short circuit to ground or to any voltage level up to +/-25 volts. The slew rate, or how fast the signal changes between levels, is also controlled.

Because the voltage levels are higher than logic levels typically used by integrated circuits, special intervening driver circuits are required to translate logic levels. These also protect the device's internal circuitry from short circuits or transients that may appear on the RS-232 interface, and provide sufficient current to comply with the slew rate requirements for data transmission.

Because both ends of the RS-232 circuit depend on the ground pin being zero volts, problems will occur when connecting machinery and computers where the voltage between the ground pin on one end and the ground pin on the other is not zero. This may also cause a hazardous ground loop.
2.3.3.1 MAX 232:
 A standard serial interface for PC, RS232C, requires negative logic, i.e., logic 1 is -3V to -12V and logic 0 is +3V to +12V. To convert TTL logic, say, TxD and RxD pins of the microcontroller thus need a converter chip. A MAX232 chip has long been using in many microcontrollers boards. It is a dual RS232 receiver / transmitter that meets all RS232 specifications while using only +5V power supply. It has two onboard charge pump voltage converters which generate +10V to -10V power supplies from a single 5V supply. It has four level translators, two of which are RS232 transmitters that convert TTL/CMOS input levels into +9V RS232 outputs. The other two level translators are RS232 receivers that convert RS232 input to 5V. Typical MAX232 circuit is shown below.
Features:
· Meets or Exceeds TIA/EIA-232-F and ITU Recommendation V.28

· Operates From a Single 5-V Power Supply With 1.0-_F Charge-Pump Capacitors

· Operates Up To 120 Kbit/s

· Two Drivers and Two Receivers

· ±30-V Input Levels

· Low Supply Current of 8 mA Typical

· ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A)

· Upgrade With Improved ESD (15-kV HBM) and 0.1-_F Charge-Pump Capacitors is Available With the MAX202

Applications
· TIA/EIA-232-F, Battery-Powered Systems,

· Terminals, Modems, and Computers
[image: image23.png]

 [image: image24.png]

Fig 2.20: Pin Diagram of MAX232

 A standard serial interfacing for PC, RS232C, requires negative logic, i.e., logic '1' is -3V to -12V and logic '0' is +3V to +12V. To convert TTL logic, say, TxD and RxD pins of the uC chips thus need a converter chip. A MAX232 chip has long been using in many uC boards. It provides 2-channel RS232C port and requires external 10uF capacitors. Carefully check the polarity of capacitor when soldering the board. A DS275 however, no need external capacitor and smaller. Either circuit can be used without any problems.
[image: image25.png]JLUE.
nk

(TOP VIEW)

C
PC DB Female

[image: image26.png]5V

10F

10F

EIA-232 Output
From CMOS or TTL
EIA-232 Output

EIA-232 Input
To CMOS or TTL
EIA-232 Input

Fig 2.21: Circuit Connection of MAX- 232
2.3.4 LCD:

Liquid crystal displays offer several advantages over traditional Cathode Ray Tube displays that make them ideal for several applications. Of course, LCDs are flat and they use only a fraction of a power required by cathode ray tubes. They are easier to read and more pleasant to work with for long periods of time than most ordinary video monitors. There are several tradeoffs as well, such as limited view angle, brightness and contrast, not to mention high manufacturing cost.

16x2 Alphanumeric LCD is used in this project to display data to user. There are 2 rows and 16 columns. It is possible to display 16 characters on each of the 2 rows. It has two registers, command register and data register.
16 X 2 ALPHANUMERIC LCD:
 The LCD used on the transmitting side is a 16 character and 2 lines LCD, which is normally referred as 16 X 2 LCD. This LCD is an alphanumeric LCD that means it can be used to display the characters of both alphabets and numerals apart from special symbols. The value to be displayed on the LCD’s panel is sent in the form of ASCII code format. The data and the commands to be send to the LCD are sent on the data bus by using a port of the micro controller, which is connected to the data pins of the LCD. The same data bus is used to carry the control signals in both the directions and also the data to be displayed on the LCD. The LCD’s accept the standard commands and accept the ASCII codes. Internally the LCD controller decodes these codes and performs the control activity and also decodes the ASCII codes and sends the bit map format in order to display the character on the LCD.

The Rs (register select) pin is used for selecting the register into which the data is to be written. The LCD has internally two registers, one is for the command and the other is for the data which is to be displayed. When rs=0 the data from the data pins is written into the data register and when rs=1 the data from the data pins is written into the data register. The r/w (read/write) pin is for specifying whether to write data to the LCD or read data from the LCD. If r/w=0, we can write data and if r/w=1 we can read data. The enable pin is used by the LCD to latch information presented to its data pins. When data is supplied to data pins, a high to low pulse must be applied to this pin in order for the LCD to latch in the data present at the data pins. This pulse must be a minimum of 450ns wide.
16 x 2 Alphanumeric LCD Module Features:

· Intelligent, with built-in Hitachi HD44780 compatible LCD controller and RAM providing simple interfacing
· 61 x 15.8 mm viewing area
· 5 x 7 dot matrix format for 2.96 x 5.56 mm characters, plus cursor line
· Can display 224 different symbols
· Low power consumption (1 mA typical)
· Powerful command set and user-produced characters
· TTL and CMOS compatible.
Specifications:
[image: image27.png]j—— 4055 5%

14-6100 (50,0391
3810 11,5000 — (FAD PLED (PLITLD
PES4 (0100113

6250 [o00581 reesls
L @ Pl

TWSTEUEEeTTE R i
1%
@ Hs)

3100 neaor T

200 (03151

36.00£0.50

dal7:0520
MO BT e o

| COOOOO OO [

1150 s
kil | i
1770 o7 Seat leaisn o100 00393
b cooo esom v —— @ sy
wso togsey | | 710 mam
@ PLs) | 73.00 [B353]

b en002050 [3.15020020) —— e 10 (005

Fig 2.22: LCD Panel

	Pin
	Symbol
	Level
	Function

	1
	VSS
	-
	Power, GND

	2
	VDD
	-
	Power ,5V

	3
	V0
	-
	Power, for LCD Drive

	4
	RS
	H/L
	Register Select Signal

H:Data Input L:Instruction Input

	5
	R/W
	H/L
	H:Data Read (MPU->LCD)
L: Data Write (MPU->LCD)

	6
	E
	H,H->L
	Enable

	7-14
	DB0-DB7
	H/L
	Data Bus; Software selectable 4- or 8-bit mode

	15
	NC
	-
	Not Connected

	6
	NC
	-
	Not Connected

Fig 2.23: Pin Description of LCD Panel

[image: image28.png]\gp—Vos LUD DRIVING VOLTAGE BLOCK DIGRANN, 16 ¢ 2, 11 DUIY, 1/5 BES

VR 10Ke) -20Kr2

87
Voo o7 L
oo s

08 0
w® % L) [SEGE
R 3 /in “TlconrroLLEr
vis €D s i
T s [wo e
Yo

A

[E—

LED BADKLIGHT

Fig 2.24: LCD Pin Connection
Interfacing of LCD To The Microcontroller:
[image: image29.emf]

Fig 2.25: Interfacing of LCD to the Microcontroller
The 8 data pins of the LCD are connected to the 8 pins of port 1. The Rs (register select), r/w (read/write), and en (enable) pins of the LCD are connected to P2.0, P2.1 and P2.2 respectively. The connections are as shown in the fig below.

[image: image30.png]FEETT RS

ey

r22

16*2 LCD

=1 AR
I3 o

weo

[

Fig 2.26: 16x2 LCD Interface to AT89C52
2.3.5 Global System for Mobile Communications (GSM):
2.3.5.1 Introduction:

In 1982, the European Conference of Postal and Telecommunications Administrations (CEPT) created the Group Special Mobile (GSM) to develop a standard for a mobile telephone system that could be used across Europe. In 1987, a memorandum of understanding was signed by 13 countries to develop a common cellular telephone system across Europe. The first GSM network was launched in 1991 by Radiolinja in Finland with joint technical infrastructure maintenance from Ericsson.
Global System for Mobile Communications, or GSM (originally from Group Special Mobile), is the world's most popular standard for mobile telephone systems. The GSM estimates that 80% of the global mobile market uses the standard. Over 1.5 billion people use GSM across more than 212 countries and territories. This ubiquity means that subscribers can use their phones throughout the world, enabled by international roaming arrangements between mobile network operators. GSM differs from its predecessor technologies in that both signaling and speech channels are digital, and thus GSM is considered a second generation (2G) mobile phone system. This also facilitates the wide-spread implementation of data communication applications into the system.
The GSM standard has been an advantage to both consumers, who may benefit from the ability to roam and switch carriers without replacing phones, and also to network operators, who can choose equipment from many GSM equipment vendors. GSM also pioneered low-cost implementation of the short message service (SMS), also called text messaging, which has since been supported on other mobile phone standards as well. The standard includes a worldwide emergency telephone number feature.
GSM is a cellular network, which means that mobile phones connect to it by searching for cells in the immediate vicinity. There are five different cell sizes in a GSM network—macro, micro, Pico, and femto and umbrella cells. The coverage area of each cell varies according to the implementation environment. Macro cells can be regarded as cells where the Base station antenna is installed on a mast or a building above average roof top level. Micro cells are cells whose antenna height is under average rooftop level; they are typically used in urban areas. Pico cells are small cells whose coverage diameter is a few
dozen meters; they are mainly used indoors. Femto cells are cells designed for use in residential or small business environments and connect to the service provider’s network via a broadband internet connection. Umbrella cells are used to cover shadowed regions of smaller cells and fill in gaps in coverage between those cells.
Cell horizontal radius varies depending on antenna height, antenna gain and propagation conditions from a couple of hundred meters to several tens of kilometers. The longest distance the GSM specification supports in practical use is 35 kilometers (22 mi). There are also several implementations of the concept of an extended cell, where the cell radius could be double or even more, depending on the antenna system, the type of terrain and the timing advance.
Indoor coverage is also supported by GSM and may be achieved by using an indoor picocell base station, or an indoor repeater with distributed indoor antennas fed through power splitters, to deliver the radio signals from an antenna outdoors to the separate indoor distributed antenna system. These are typically deployed when a lot of call capacity is needed indoors; for example, in shopping centers or airports. However, this is not a prerequisite, since indoor coverage is also provided by in-building penetration of the radio signals from any nearby cell.
The modulation used in GSM is Gaussian minimum-shift keying (GMSK), a kind of continuous-phase frequency shift keying. IN GMSK, the signal to be modulated onto the carrier is first smoothed with a Gaussian low-pass filter prior to being fed to a frequency modulator, which greatly reduces the interference to neighboring channels.
2.3.5.2 GSM carrier frequencies/ frequency bands:
GSM networks operate in a number of different carrier frequency ranges (separated into GSM frequency ranges for 2G and UMTS frequency bands for 3G), with most 2G GSM networks operating in the 900 MHz or 1800 MHz bands. Where these bands were already allocated, the 850 MHz and 1900 MHz bands were used instead (for example in Canada and the United States). In rare cases the 400 and 450 MHz frequency bands are assigned in some countries because they were previously used for first-generation systems. Most 3G networks in Europe operate in the 2100 MHz frequency band. Regardless of the frequency selected by an operator, it is divided into time slots for individual phones to use.
This allows eight full-rate or sixteen half-rate speech channels per radio frequency. These eight radio time slots (or eight burst periods) are grouped into a TDMA frame. Half rate channels use alternate frames in the same time slot. The channel data rate for all 8 channels is 270.833 kbit/s, and the frame duration is 4.615 ms. The transmission power in the handset is limited to a maximum of 2 watts in GSM850/900 and 1 watt in GSM1800/1900.
2.3.5.3 GSM Network structure:
[image: image31.png]Structure of 2 OSM network (hey clements) (g TEF

mobte 2ann 01 || wase 2amn subosem ws

Fig 2.27: GSM Network Structure
The network is structured into a number of discrete sections:
· The Base Station Subsystem (the base stations and their controllers).
· The Network and Switching Subsystem (the part of the network most similar to a fixed network). This is sometimes also just called the core network.
· The GPRS Core Network (the optional part which allows packet based Internet connections).
2.3.5.4 Subscriber Identity Module (SIM):
One of the key features of GSM is the Subscriber Identity Module, commonly known as a SIM card. The SIM is a detachable smart card containing the user's subscription information and phone book. This allows the user to retain his or her information after switching handsets. Alternatively, the user can also change operators while retaining the handset simply by changing the SIM. Some operators will block this by allowing the phone to use only a single SIM, or only a SIM issued by them; this practice is known as SIM locking.
Sometimes mobile network operators restrict handsets that they sell for use with their own network. This is called locking and is implemented by a software feature of the phone. Because the purchase price of the mobile phone to the consumer is typically subsidized with revenue from subscriptions, operators must recoup this investment before a subscriber terminates service. A subscriber may usually contact the provider to remove the lock for a fee, utilize private services to remove the lock, or make use of free or fee-based software and web sites to unlock the handset themselves.

2.3.5.5 GSM Services & GSM Security:

From the beginning, the planners of GSM wanted ISDN compatibility in terms of the services offered and the control signaling used. However, radio transmission limitations, in terms of bandwidth and cost, do not allow the standard ISDN B-channel bit rate of 64 kbps to be practically achieved. Using the ITU-T definitions, telecommunication services can be divided into bearer services, teleservices, and supplementary services. The most basic teleservice supported by GSM is telephony. As with all other communications, speech is digitally encoded and transmitted through the GSM network as a digital stream. There is also an emergency service, where the nearest emergency-service provider is notified by dialing three digits (similar to 911).
A variety of data services is offered. GSM users can send and receive data, at rates up to 9600 bps, to users on POTS (Plain Old Telephone Service), ISDN, Packet Switched Public Data Networks, and Circuit Switched Public Data Networks using a variety of access methods and protocols, such as X.25 or X.32. Since GSM is a digital network, a modem is not required between the user and GSM network, although an audio modem is required inside the GSM network to interwork with POTS. Other data services include Group 3 facsimile, as described in ITU-T recommendation T.30, which is supported by use of an appropriate fax adaptor.

A unique feature of GSM, not found in older analog systems, is the Short Message Service (SMS). SMS is a bi-directional service for short alphanumeric (upto160 bytes) Messages. Messages are transported in a store-and-forward fashion. For point-to-point SMS, a message can be sent to another subscriber to the service, and an of receipt acknowledgement is provided to the sender. SMS can also be used in a cell-broadcast mode,
for sending messages such as traffic updates or news updates. Messages can also be stored in the SIM card for later retrieval. Supplementary services are provided on top of tele services or bearer services. In the current (Phase I) specifications, they include several forms of call forward (such as call forwarding when the mobile subscriber is unreachable by the network), and call barring of outgoing or incoming calls, for example when roaming in another country. Many additional supplementary services will be provided in the specifications, such as caller identification, call waiting, multi-party conversations.

GSM Interfacing:
Interfacing with PC:
 The GSM modem consists of a SIMCOM300 GSM module which is interfaced with the MAX232 level converter with DB9 connector. The modem and the PC can be connected using DB9 data cable via serial port of the PC. The modem can be tested by connecting with PC and sending AT commands and notifying how it responds to AT-Commands.
 With the modem, open a terminal application. Communication settings should be found in the modem datasheet. In our application we required the settings of 9600 Baud-rate, 8 Data-bits, None-Parity, 1 Stop-bit and Hardware Flow control as shown in below figure. Now the connected system should enable sending AT-Commands from the terminal window. Test with “AT” to verify this.
[image: image32.emf]

Fig 2.28: GSM Interfacing

Advantages & Uses of GSM:

1. Roaming with GSM phones is a major advantage over the competing technology as roaming across CDMA networks.

2. Another major reason for the growth in GSM usage, particularly between 1998 to 2002, was the availability of prepaid calling from mobile phone operators. This allows people who are either unable or unwilling to enter into a contract with an operator to have mobile phones. Prepaid also enabled the rapid expansion of GSM in many developing countries where large sections of the population do not have access to banks or bank accounts and countries where there are no effective credit rating agencies. (In the USA, starting a non-prepaid contract with a cellular phone operator is almost always subject to credit verification through personal information provided by credit rating agencies).

3. The architecture of GSM allows for rapid flow of information by voice or data messaging (SMS). Users now have access to more information, whether personal, technical, economic or political, more quickly than was possible before the global presence of GSM. Even remote communities are able to integrate into networks (sometimes global) thereby making information, knowledge and culture accessible, in theory, to anyone.

4. One of the most appealing aspects of wireless communications is its mobility. Much of the success of GSM is due to its mobility management, offering users the freedom and convenience to conduct business from almost anywhere at any time.

5. GSM has been the catalyst in the tremendous shift in traffic volume from fixed networks to mobile networks. This has resulted in the emergence of a mobile paradigm, whereby the mobile phone has become the first choice of personal phone.

6. Higher digital voice quality.

7. Low cost alternatives to making call such a text messaging.
USES OF GSM:
· Uses encryption to make phone calls more secure
· Data networking
· Group III facsimile services
· Short Message Service (SMS) for text messages and paging
· Call forwarding
· Caller ID U
· Call waiting.
· Multi-party conferencing

After a few turbulent years for the industry, we highlight some of the key factors we view as critical for the continued success of GSM. These include:

· Enabling convergence with other wireless technologies

· Developing Mobile Centric Applications

· Evolving the mobile business model

· Mobile terminal enhancements and variety

· Fostering industry partnerships and co-operations

· Interoperability and Inter-generational roaming between various platforms.
GSM AT- Commands:
When a modem is connected to any device (computer, fax, etc.,) we need AT commands to direct the modem for its operations. Basically we send commands directly to the modem after activating Terminal mode. This mode is also called as local mode or direct mode. Apart from the basic AT commands, to send the SMS message, it is required to have some special AT commands. The basic regularly used AT commands along with the SMS AT commands are discussed below.
The AT Command Format:
 Instructions sent to the modem are referred as AT commands because they are always preceded by a prefix AT that are used to get the attention of the modem

<AT> <COMMAND> {Argument}{=n} <enter>

AT - attention code

 Command - a command consists of one letter

 Argument - Optional information that further defines the command

 =n - used when setting a register

You may string commands together in one command line as long as the total length of command does not exceed 63 bytes . The attention code, AT, is only required at the beginning of the command line. A/, +++ are the only two commands which are not preceded by AT.

Using AT Commands

When issued to the fax modem, AT commands direct the fax modem to dial, answer, hang up, and to perform many other communication tasks. Some of the most commonly used commands are:

AT (Attention): This is the command line prefix. (All the commands listed, except A/ and +++, must be preceded by the command AT). A Answer an incoming call D Dial the following phone number E Turn echo OFF H Hang up O Return to on-line state Z Reset the modem to the values stored in the N.V. Ram +++ Return to the Command State A/ Repeat last command (Do not precede this command with AT or follow it with <Enter>).

Request revision identification +CGMR
 Description:
This command is used to get the revised software version.
[image: image33.emf]
Preferred Message Storage +CPMS

 Description:

This command allows the message storage area to be selected (for reading, writing, etc).

 Syntax:
[image: image34.png]Ll CPs ven] Jonem?]

Possible respanees

Note : Possible message storages

TR TS B TSRS
B

s, st detete: SM1S, CBM or SM1S
Sievis Asport
Wite, sangi Sms

R

ote : Resd

GRS "S5, TSV A0
o

Note : Resd, wiit...SMS fromta S
5SS sre storea in SIM, 10 4 the total
memory svaiibie in S

ATTCPE=T AW
Note Seicct eise messoge storage

NS EAROR 302

AT CPIE"BM

Note : Select CBM message storage.

TCPWE 22070
B

ote Read, st delete CBM from RAM 2
CE are stored iy AN

R

ote : Resd

CPIS: 812,20, ST 310
B

e list, detete CBM trom RAM
Wiite SA1S to SN

Defined values:

<mem1>: Memory used to list, read and delete messages. It can be:

- “SM”
: SMS message storage in SIM (default)

- “BM”
: CBM message storage (in volatile memory).

- “SR”
: Status Report message storage (in SIM if the EF-SMR file exists, otherwise in the ME non volatile memory).
Note: “SR” ME non volatile memory is cleared when another SIM card is inserted. It is kept, even after a reset, while the same SIM card is used.

<mem2>
: Memory used to write and send messages

- “SM”
: SMS message storage in SIM (default).
If the command is correct, the following message indication is sent:

+CPMS: <used1>, <total1>, <used2>, <total2>

When <mem1> is selected, all following +CMGL, +CMGR and +CMGD commands are related to the type of SMS stored in this memory.
Preferred Message Format +CMGF

Description:

The message formats supported are text mode and PDU mode. In PDU mode, a complete SMS Message including all header information is given as a binary string (in hexadecimal format).Therefore, only the following set of characters is allowed: {‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’, ‘A’, ‘B’,’C’,’D’,’E’,’F’}. Each pair or character is converted to a byte (e.g.: ‘41’ is converted to the ASCII character ‘A’, whose ASCII code is 0x41 or 65).

In Text mode, all commands and responses are in ASCII characters. The format selected is stored in EEPROM by the +CSAS command.

Syntax:
[image: image35.png]Fosslbi resporess

TomeET
B

Note : Current message format ote : Text mode

AT CMcH Feeaa
o
[Note : Possible message format Note : Text or PDU modes are available

Example, sending an SMS Message in PDU mode

[image: image36.png][Possible rasponses

00010300012 14365000004csE03408

Hote - Send complete MSG in PDU mode.

ox
iote : PDU mode vaiis
NS &

o

ote : MG comectly sen, <mr s

Defined values:

The <pdu> message is composed of the SC address (« 00 means no SC address given, use default SC address read with +CSCA command) and the TPDU message.

In this example, the length of octets of the TPDU buffer is 14, coded as GSM 03.40 In this case the TPDU is : 0x01 0x03 0x06 0x91 0x21 0x43 0x65 0x00 0x00 0x04 0xC9 0xE9 0x34 0x0B, which means regarding GSM 03.40 :

<fo>

0x01 (SMS-SUBMIT, no validity period)

<mr> (TP TP-MR)

0x03 (Message Reference)

<da> (TP TP-DA)

0x06 0x91 0x21 0x43 0x65 (destination address +123456)

<pid> (TP TP-PID)

0x00 (Protocol Identifier)

<dcs> (TP TP-DCS)

0x00 (Data Coding Scheme: 7 bits alphabet)

<length> (TP TP-UDL)
0x04 (User Data Length, 4 characters of text)

TP-UD

0xC9 0xE9 0x34 0x0B (User Data: ISSY)

TPDU in hexadecimal format must be converted into two ASCII characters, e.g. octet with hexadecimal value 0x2A is presented to the ME as two characters ‘2’ (ASCII 50) and ‘A’ (ASCII 65).
Read message +CMGR

Description:

This command allows the application to read stored messages. The messages are read from the memory selected by +CPMS command.

Syntax:

Command syntax: AT+CMGR=<index>

Response syntax for text mode:

+CMGR :< stat>, <oa>,[<alpha>,] <scts> [,<tooa>,<fo>,

<pid>,<dcs>,<sca>,<tosca>,<length>] <CR><LF> <data>(for SMS MS MS-DELIVER only)

+CMGR :
<stat>,<da>,[<alpha>,] [,<toda>,<fo>,<pid>,<dcs>, [<vp>], <sca>,

<tosca>,<length>]<CR><LF> <data> (for SMS-SUBMIT only)

+CMGR :
<stat>,<fo>,<mr>,[<ra>],[<tora>],<scts>,<dt>,<st> (for SMS SMS- STATUS-REPORT only).

Response syntax for PDU mode: +CMGR: <stat>, [<alpha>] ,<length> <CR><LF> <pdu>

A message read with status “REC UNREAD” will be updated in memory with the status “REC READ”.

Note: the <stat> parameter for SMS Status Reports is always “READ”.

Example:
[image: image37.png]Possible responses.

AT=CwTT ST
[Nore Nevy mesiage receive

ATTCMEA=T
Note : Faad the message

TCMGR. “EC UNHEAD,"6146200806"
S3/10/01.15 122 111+ 00", 2GR <LF>
ecaercri

o

ATTehiGT
Note : Read the message again

CHIGR: "REC UNFEAD""61462808050"
58/10/01,15 22 111+00", <CR <L~
ecaercri

o

ote Message i read now

ATTohG TGS ERROR. 327
Note : Asad at 8 wrong index iote: Exvor invalid index
ERIGF D RGHE T NG 2, Tengthe RS =TF==paus

Mot : 1n POU mode.

o

ote Message is stored but unsent, no
Solohas s

AT TCAGR = CPE="SA SO 2 [oK

[Reser to text mode, set rad memory 1o

SH™ and slow storage of furthar KIS

ot Feport into "SH" memen

AT CiSe oSS TEs

(Send an SMS previousty stored o
CoaTET

ew SIS Siatus Report stored in “SH

ATTCmiGT
Read the SMIS Status Report

“ChGH EAD 5780
33812305675..120.01/08/31,16:16:08

o

New message indication +CNMI

Description:

This command selects the procedure for message reception from the network.

Syntax:

[image: image38.png]AT+CNMI=<mode>. <mt>. sbm>. <ds>, <bfr>
Fossible responses
g o

ATTCT
Mote - <me

AT CwTT T
ATTCNM22655 ox
Note : <m.

O 123557 ORTO0T. 12 30
32,240, “16376",120,6<CR><LF>
oy oK

ATTeT
hiote <

AT CIGS. ™ 337982508007 2CR= ToweETT
[Message to send <ctr 2= B
Note : Send & message i text mods ote : Successtu transmission

7CDS 3. 116, 7+53146260800" T75.

93/10/01.12 30 :07+04", "98/1601 12
iote” message was correctly detivered

Defined values:

<mode> : controls the processing of unsolicited result codes

Only <mode>=2 is supported.

Any other value for <mode> (0,1 or 3) is accepted (return code will be OK), but the processing of unsolicited result codes will be the same as with<mode>=2.<mode>.
0:
Buffer unsolicited result codes in the TA. If TA result code buffer is full, indications can be
buffered in some other place or the oldest indications may be discarded and replaced with the new received indications.
1:
Discard indication and reject new received message unsolicited result codes when TA-TE link is reserved. Otherwise forward them directly to the TE.
2:
Buffer unsolicited result codes in the TA when TA-TE link is reserved and flush them to the TE after reservation. Otherwise forward them directly to the TE.
3:
Forward unsolicited result codes directly to the TE. TA-TE link specific inband used to Embed result codes and data when TA is in on-line data mode

<mt> : sets the result code indication routing for SMS-DELIVERs. Default is 0.

<mt>

0:
No SMS-DELIVER indications are routed.

1:
SMS-DELIVERs are routed using unsolicited code: +CMTI: “SM”,<index>
2:
SMS-DELIVERs (except class 2 messages) are routed using unsolicited code: +CMT: [<alpha>,] <length> <CR> <LF> <pdu> (PDU mode) or +CMT : <oa>,[<alpha>,] <scts>

 [, <tooa>, <fo>, <pid>, <dcs>, <sca>, <tosca>, <length>] <CR><LF><data> (text mode)

3:
 Class 3 SMS-DELIVERS are routed directly using code in <mt>=2;

Message of other classes result in indication <mt>=1

<bm>: set the rules for storing received CBMs (Cell Broadcast Message) types depend on its

 coding scheme, the setting of Select CBM Types (+CSCB command) and <bm>.Default is 0.
<bm>

0:
No CBM indications are routed to the TE. The CBMs are stored.
1:
The CBM is stored and an indication of the memory location is routed to the customer application using unsolicited result code: +CBMI: “BM”, <index>

2:
New CBMs are routed directly to the TE using unsolicited result code.

+CBM: <length><CR><LF><pdu> (PDU mode) or

+CBM :<sn>,<mid>,<dcs>,<page>,<pages>(Text mode) <CR><LF> <data>

3:
Class 3 CBMs: as <bm>=2. Other classes CBMs: as <bm>=1.

<ds> for SMS-STATUS-REPORTs. Default is 0.

<ds>

0:
No SMS-STATUS-REPORTs are routed.

1:
SMS-STATUS-REPORTs are routed using unsolicited code: +CDS : <length> <CR> <LF> <pdu> (PDU mode) or +CDS : <fo>,<mr>, [<ra>], [<tora>], <scts>,<dt>,<st> (Text mode)

2:
SMS-STATUS-REPORTs are stored and routed using the unsolicited result code :

+CDSI: “SR”,<index> <bfr> Default is 0.

<bfr>

0:
TA buffer of unsolicited result codes defined within this command is flushed to the TE when <mode> 1…3 is entered (OK response shall be given before flushing the codes).
1:
TA buffer of unsolicited result codes defined within this command is cleared when

<mode> 1…3 is entered.
2.3.6 BUZZER:
The piezo buzzer produces sound based on reverse of the piezoelectric effect. The generation of pressure variation or strain by the application of electric potential across a piezoelectric material is the underlying principle. These buzzers can be used alert a user of an event corresponding to a switching action, counter signal or sensor input. They are also used in alarm circuits.

The buzzer produces a same noisy sound irrespective of the voltage variation applied to it. It consists of piezo crystals between two conductors. When a potential is applied across these crystals, they push on one conductor and pull on the other. This, push and pull action, results in a sound wave. Most buzzers produce sound in the range of 2 to 4 kHz. The Red lead is connected to the Input and the Black lead is connected to Ground.

Pin Diagram:

[image: image39.jpg]EngincersGarage]

[image: image40.png]

Fig 2.29: Pin Diagram of Buzzer

Principle of operation:
Depending on how a piezoelectric material is cut, three main modes of operation can be distinguished: transverse, longitudinal, and shear.

Transverse effect:
A force is applied along a neutral axis (y) and the charges are generated along the (x) direction, perpendicular to the line of force. The amount of charge depends on the geometrical dimensions of the respective piezoelectric element. When dimensions a, b, c apply,

Cx = dxyFyb / a,

Where ‘a’ is the dimension in line with the neutral axis, ‘b’ is in line with the charge generating axis and‘d’ is the corresponding piezoelectric coefficient.
Longitudinal effect:
The amount of charge produced is strictly proportional to the applied force and is independent of size and shape of the piezoelectric element. Using several elements that are mechanically in series and electrically in parallel is the only way to increase the charge output. The resulting charge is Cx = dxxFxn,

Where ‘dxx’ is the piezoelectric coefficient for a charge in x-direction released by forces applied along x-direction (in pC/N). ‘Fx’ is the applied Force in x-direction [N] and ‘n’ corresponds to the number of stacked elements.

Shear effect:

Again, the charges produced are strictly proportional to the applied forces and are independent of the element’s size and shape. For n elements mechanically in series and electrically in parallel the charge is Cx = 2dxxFxn.

In contrast to the longitudinal and shear effects, the transverse effect opens the possibility to fine-tune sensitivity on the force applied and the element dimension.
Electrical properties:

Fig 2.30: Schematic symbol and Electronic Model of a Piezoelectric Sensor.
A piezoelectric transducer has very high DC output impedance and can be modeled as a proportional voltage source and filter network. The voltage V at the source is directly proportional to the applied force, pressure, or strain. The output signal is then related to this mechanical force as if it had passed through the equivalent circuit.

A detailed model includes the effects of the sensor's mechanical construction and other non-idealities. The inductance Lm is due to the seismic mass and inertia of the sensor itself. Ce is inversely proportional to the mechanical elasticity of the sensor. C0 represents the static capacitance of the transducer, resulting from an inertial mass of infinite size. Ri is the insulation leakage resistance of the transducer element. If the sensor is connected to a load resistance, this also acts in parallel with the insulation resistance, both increasing the high-pass cutoff frequency.

For use as a sensor, the flat region of the frequency response plot is typically used, between the high-pass cutoff and the resonant peak. The load and leakage resistance need to be large enough that low frequencies of interest are not lost. A simplified equivalent circuit model can be used in this region, in which Cs represents the capacitance of the sensor surface itself, determined by the standard formula for capacitance of parallel plates. It can also be modeled as a charge source in parallel with the source capacitance, with the charge directly proportional to the applied force, as above.

Fig 2.31: In the flat region, the sensor can be modeled as a voltage source in series with the sensor's capacitance or a charge source in parallel with the capacitance

2.3.7 External EEPROM memory (93A435):

These memory devices are used to store the data for off line process. The AT24C64 provides 65,536 bits of serial electrically erasable and programmable read only memory (EEPROM) organized as 8192 words of 8 bits each. The device is optimized for use in many industrial and commercial applications where low power and low voltage operation are essential. The AT24C64is available in space saving 8-pin PDIP.

The AT24C32/64 provides 32,768/65,536 bits of serial electrically erasable and programmable read only memory (EEPROM) organized as 4096/8192 words of 8 bits each. The device’s cascadable feature allows up to 8 devices to share a common 2-wire bus. The device is optimized for use in many industrial and commercial applications where low power and low voltage operation are essential.
The AT24C32/64 is available in space saving 8-pin JEDEC PDIP, 8-pin JEDEC SOIC, 8-pin EIAJ SOIC, and 8-pin TSSOP (AT24C64) packages and is accessed via a 2-wire serial interface. In addition, the entire family is available in 2.7V (2.7V to 5.5V) and 1.8V (1.8V to 5.5V) versions.
Features:
· Low-Voltage and Standard-Voltage Operation
· 2.7 (VCC = 2.7V to 5.5V)
· 1.8 (VCC = 1.8V to 5.5V)
· Low-Power Devices (ISB = 2 μA at 5.5V) Available
· Internally Organized 4096 x 8, 8192 x 8

· 2-Wire Serial Interface
· Schmitt Trigger, Filtered Inputs for Noise Suppression
· Bidirectional Data Transfer Protocol
· 100 kHz (1.8V, 2.5V, 2.7V) and 400 kHz (5V) Clock Rate
· Write Protect Pin for Hardware Data Protection
· 32-Byte Page Write Mode (Partial Page Writes Allowed)
· Self-Timed Write Cycle (10 ms max)
· High Reliability
· Endurance: 1 Million Write Cycles

· Data Retention: 100 Years
· Automotive Grade and Extended Temperature Devices Available
· 8-Pin JEDEC PDIP
PIN Diagram:
[image: image43.emf]
Fig 2.32: Pin Diagram of EEPROM
PIN Configuration:
[image: image44.png]Pin Name | Function
AOD-A2 Address Inputs
SDA Serial Data

SCL Serial Clock Input
WP Write Protect

Fig 2.33: Pin Configuration of EEPROM
Pin Description:
SERIAL CLOCK (SCL):
The SCL input is used to positive edge clock data into each EEPROM device and negative edge clock data out of each device.

SERIAL DATA (SDA):
The SDA pin is bidirectional for serial data transfer. This pin is Open-drain driven and may be wire-ORed with any number of other open-drain or open collector devices.
DEVICE/PAGE ADDRESSES (A2, A1, and A0):

 The A2, A1 and A0 pins are device address inputs that are hard wired or left not connected for hardware compatibility with AT24C16. When the pins are hardwired, as many as eight 32K/64K devices may be addressed on a single bus system (device addressing is discussed in detail under the Device Addressing section). When the pins are not hardwired, the default A2, A1, and A0 are zero.
WRITE PROTECT (WP):

The write protect input, when tied to GND, allows normal write operations. When WP is tied high to VCC, all write operations to the upper quadrant (8/16K bits) of memory are inhibited. If left unconnected, WP is internally pulled down to GND.
Device Operation:

CLOCK and DATA TRANSITIONS:
 The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods (refer to Data Validity timing diagram). Data changes during SCL high periods will indicate a start or stop condition as defined below.
START CONDITION:
 A high-to-low transition of SDA with SCL high is a start condition. Which must precede any other command (refer to Start and Stop Definition timing Diagram).
STOP CONDITION:
A low-to-high transition of SDA with SCL high is a stop condition. After a read sequence, the stop command will place the EEPROM in a standby power mode (refer to Start and Stop Definition timing diagram).
ACKNOWLEDGE:
All addresses and data words are serially transmitted to and from the EEPROM in 8-bit words. The EEPROM sends a zero during the ninth clock cycle to acknowledge that it has received each word.
STANDBY MODE:

The AT24C32/64 features a low power standby mode which is enabled: a) upon power-up and b) after the receipt of the STOP bit and the completion of any internal operations.

MEMORY RESET:

After an interruption in protocol, power loss or system reset, any 2-Wire part can be reset by following these steps:

(a) Clock up to 9 cycles,

 (b) Look for SDA high in each cycle while SCL is high and then

 (c) Create a start condition as SDA is high.

2.4 SOFTWARE DESIGN:

2.4.1Introduction:

Software design involves representing the software system function in a form that may be transformed into one or more executable programs. The software design is divided into following sub processes.

a) Architectural Design

b) Function Oriented Design

a) Architectural Design:

 The initial design process of identifying the subsystems and establishing the frame work for subsystems control and communication is called Architectural Design.
The outputs of architectural design process are number of graphical representations of the system models along with associated text. It describes how the system is structured into subsystems and how each subsystem is structured into modules.

As a part of architectural design process, following activities had been carried out.

· System structuring

· Control model
System structuring:

System structuring deals with decomposing a system into a set of interacting subsystems, this comprises of 3 systems. The System structuring of this project is as follows.

Fig 2.34: System Structuring of System Using GSM

Control Model

To work as a system, subsystems must be controlled as that there service is delivered to the right place at the right time. Control models are concerned with control flow between subsystems.

Centralized control model has been used to control various subsystems. The micro controller has been programmed to control various notice board connected to it. Centralized control model is easy to understand and implement.

b) Function Oriented Design:

 Function Oriented Design strategy relies on decomposing the system into a set of interacting functions with a centralized system state shared by these functions. Functions also maintain local state information but only for the duration of their execution. The execution deals with all the stages deals with the initialization of the GSM commands followed by the transferring the data to message display board. This activity involves drawing and analyzing data flow diagrams.

2.4.2 Data Flow Diagrams:

Describes how the data flows through the system and how the output is derived from the input through a sequence of functional transformations. Data flow diagrams show functional transformations but don’t suggest how might be implemented.

Fig 2.35: Data Flow Diagram
A system described in this way might be implemented as a single program using functions to implement each transformation.
 SHAPE * MERGEFORMAT

 Fig 2.36: Message Display

 When the new message is received, the message is copied to micro controller. Then the password in the message is checked. If the password is correct then that message is displayed on the notice board. When the new message is received, the message is copied to micro controller. Then the microcontroller checks if the message is in valid format. If not its sends an error message to owner.
2.4.3 Functional descriptions:
Main Functions:

	Function Name
	Main

	Prototype
	void main()

	Description
	Initializes all sub systems. Check the applications periodically.

	Inputs
	None

	Outputs
	Takes appropriate actions based on the inputs.

Initialization Routines:
	Function Name
	Modem_init

	Prototype
	void modem_init(void)

	Description
	Initializes the modem

	Inputs
	

	Outputs
	GSM modem is ready to be used in the project

	Function Name
	Init_lcd

	Prototype
	Void init_lcd(void)

	Description
	Initializes the LCD to display characters and numbers.

	Inputs
	

	Outputs
	LCD is ready for displaying

	Function Name
	Serial_init

	Prototype
	Void serial_init(void)

	Description
	Initializes the serial communication. Set the data transfer rate

	Inputs
	

	Outputs
	Serial communication is available for communication.

SMS routines:

	Function Name
	Recv_sms_no

	Prototype
	Unsigned char recv_sms_no(void);

	Description
	Gets the new message index number

	Inputs
	

	Outputs
	New message index number

	Function Name
	Read sms

	Prototype
	Void read_sms(unsigned char)

	Description
	Read the message with the number passed

	Inputs
	Index number of the message to be read

	Outputs
	Extracts password, sender mobile number, command issued and. Checks password is correct or not.

	Function Name
	Delete sms

	Prototype
	Void delete_sms(unsigned char)

	Description
	Delete the message with the index number specified

	Inputs
	Index number of the sms

	Outputs
	Message is deleted

	Function Name
	Data compare

	Prototype
	Void data_compare(void)

	Description
	Checks the command in the new message and invokes appropriate function to accomplish it

	Inputs
	Command in the sms

	Outputs
	Appropriate function is invoked to perform the command

GSM routines:

	Function Name
	Send byte

	Prototype
	Void send_byte(unsigned char)

	Description
	Sends a byte of data from micro controller to gsm modem

	Inputs
	Pointer to the string to be sent

	Outputs
	

	Function Name
	Send string

	Prototype
	Void sendstring(unsigned char*str);

	Description
	Sends a string from micro controller to gsm modem

	Inputs
	Pointer to the string to be sent

	Outputs
	

	Function Name
	Receive byte

	Prototype
	Unsigned char recv_byte(void);

	Description
	Received a byte of data from modem

	Inputs
	

	Outputs
	Character received from modem

Memory routines:

	Function Name
	Read byte

	Prototype
	Unsigned char memread(unsigned char add);

	Description
	Byte of data is read from specified address of the EEPROM using 12C communication protocol

	Inputs
	Address of the byte to be read

	Outputs
	Data at the address specified.

	Function Name
	Write byte

	Prototype
	Void mem write(unsigned char add,unsigned char data);

	Description
	Write of data is read from specified address of the EEPROM using 12C communication protocol

	Inputs
	Address of the byte to be read and Data to write at the address specified.

	Outputs
	

	Function Name
	Read memory

	Prototype
	Unsigned char membitread(0);

	Description
	Reads a byte of data from the address set to read. This is a sub function of read byte.

	Inputs
	

	Outputs
	Returns the character read from the address of the EEPROM

	Function Name
	Write memory

	Prototype
	Void Memwritebit(unsigned char ch);

	Description
	This routines writes a byte into EEPROM

	Inputs
	Data to be written to EEPROM

	Outputs
	

	Function Name
	Receive byte

	Prototype
	Unsigned char recv_byte(void);

	Description
	Received a byte of data from modem

	Inputs
	

	Outputs
	Character received from modem

	Function Name
	Start bits

	Prototype
	Void MemStartBit();

	Description
	12C standard start condition. Indicates the start of the frame sent.

	Inputs
	

	Outputs
	

	Function Name
	Stop bits

	Prototype
	Void MemStopBit();

	Description
	12C standard stop condition. Indicates the end of the frame sent.

	Inputs
	

	Outputs
	

Delay Routines:
	Function Name
	Delay 30 milli seconds

	Prototype
	Void del_30s(void);

	Description
	Generates delay of 30 seconds.

	Inputs
	

	Outputs
	

	Function Name
	Delay 3 milli seconds

	Prototype
	Void del_1s(void);

	Description
	Generates delay of 3 seconds.

	Inputs
	

	Outputs
	

	Function Name
	Delay 1 second

	Prototype
	Void del_1s(void);

	Description
	Generates delay of 1 second.

	Inputs
	

	Outputs
	

	Function Name
	Delay 1 mille second

	Prototype
	Void del_1ms(void);

	Description
	Generates delay of 1 mille second.

	Inputs
	

	Outputs
	

LCD Routines:
	Function Name
	LCD Digits

	Prototype
	Void Lcd Digits(unsigned char);

	Description
	Displays the digits on the first line of the LCD.

	Inputs
	Character to be displayed on the first line of the LCD.

	Outputs
	Digit is displayed on the first line of the LCD.

	Function Name
	LCD Clear

	Prototype
	Void Lcd Clear(void);

	Description
	Clear

	Inputs
	None

	Outputs
	None

	Function Name
	LCD Character

	Prototype
	Void Lcd Character(unsigned char ch);

	Description
	Displays character on LCD.

	Inputs
	Character to be displayed.

	Outputs
	

	Function Name
	LCD Data

	Prototype
	Void LCD Data(unsigned char);

	Description
	Displays character passed on the LCD.

	Inputs
	Character to be displayed on LCD at predefined Address.

	Outputs
	Character is displayed on LCD.

	Function Name
	LCD Instruction

	Prototype
	Void LCD instruction(unsigned char ch);

	Description
	This routine writes one byte of data into LCD as instruction.

	Inputs
	Instruction to be sent to LCD.

	Outputs
	Instruction to send to LCD.

	Function Name
	LCD Data

	Prototype
	Void LCD data(unsigned char ch);

	Description
	This routine writes one byte of data into LCD as data.

	Inputs
	Data to be sent to LCD.

	Outputs
	Data to send to LCD.

Fig 2.37: Functional Descriptions
CHAPTER 3

CIRCUIT DIAGRAM

CIRCUIT DIAGRAM

[image: image46.png]Fle Edt Vew Document Tools Window Help

B E el e

s2.5%

G
(5

Find

89C51
Microcontroller

89C51 Microcontroller

=
«
B

v

i)

Circuit diagram of Remote notice board using GSM with SMS- designed for Gobrah

Fig 3.1: Circuit Diagram of Project
3.1 Working:

 As soon as the circuit is switched on the Transformer, Rectifier and the Regulator circuit converts the 230v ac into 5v dc. This supply is driven to the all parts of the circuit.

The microcontroller comes to the active state when the supply is given from the ac mains. When this occurs the microcontroller clears the program counter with help of the reset circuitry connected to the microcontroller.

The GSM modem in the circuit first searches for the network signal if available it receives the message which is transmitted by the transmitter (mobile phone). The GSM modem with help of the MAX-232 circuit it converts the GSM voltage levels to the microcontroller voltage levels and then transmits the received message to microcontroller1.

The microcontroller first checks password for the received message if the received password is compared to the password which is written in the source code. If this password matches with the original then the microcontroller1 saves the message in EEPROM and the same is transmitted to the microcontroller2.

The two microcontrollers are connected by the parallel communication technique. The microcontroller2 receives the message which is transmitted by microcontroller1 and the same is transmitted to LCD and the LCD displays it on its screen.

CHAPTER 4

MICRO VISION IDE
MICRO VISION IDE
4.1Introduction and Implementation:

What's New in µVision3?
 µVision3 adds many new features to the Editor like Text Templates, Quick Function Navigation, and Syntax Coloring with brace high lighting Configuration Wizard for dialog based startup and debugger setup. µVision3 is fully compatible to µVision2 and can be used in parallel with µVision2.

What is µVision3?
 µVision3 is an IDE (Integrated Development Environment) that helps you write, compile, and debug embedded programs. It encapsulates the following components:

· A project manager.

· A make facility.

· Tool configuration.

· Editor.

· A powerful debugger.

To help you get started, several example programs (located in the \C51\Examples, \C251\Examples, \C166\Examples, and \ARM\...\Examples) are provided.
· HELLO is a simple program that prints the string "Hello World" using the Serial Interface.
· MEASURE is a data acquisition system for analog and digital systems.
· TRAFFIC is a traffic light controller with the RTX Tiny operating system.
· SIEVE is the SIEVE Benchmark.
· DHRY is the Dhrystone Benchmark.
· WHETS are the Single-Precision Whetstone Benchmark.

Additional example programs not listed here are provided for each device architecture.
BUILDING AN APPLICATION IN µVISION
To build (compile, assemble, and link) an application in µVision2, you must:
· Select Project -(forexample,166\EXAMPLES\HELLO\HELLO.UV2).
· Select Project - Rebuild all target files or Build target.
· µVision2 compiles, assembles, and links the files in project.
Creating Your Own Application in µVision2
To create a new project in µVision2
· Select Project - New Project.
· Select a directory and enter the name of the project file.
· Select Project - Select Device and select an 8051, 251, or C16x/ST10 device from the Device Database.
· Create source files to add to the project.
· Select Project - Targets, Groups, Files. Add/Files, select Source Group1, and add the source files to the project.
· Select Project - Options and set the tool options. Note when you select the target device from the Device Database™ all special options are set automatically. You typically only need to configure the memory map of your target hardware. Default memory model settings are optimal for most applications.
· Select Project - Rebuild all target files or Build target.
Debugging an Application in µVision2
To debug an application created using µVision2, you must:
1. Select Debug - Start/Stop Debug Session.
2. Use the Step toolbar buttons to single-step through your program. You may enter G, main in the Output Window to execute to the main C function.
3. Open the Serial Window using the Serial #1 button on the toolbar.
4. Debug your program using standard options like Step, Go, Break, and so on.
Starting µVision2 and Creating a Project
µVision2 is a standard Windows application and started by clicking on the program icon. To create a new project file select from the µVision2 menu

Project – New Project…. This opens a standard Windows dialog that asks you for the new project file name. We suggest that you use a separate folder for each project. You can simply use the icon Create New Folder in this dialog to get a new empty folder. Then select this folder and enter the file name for the new project, i.e. Project1. µVision2 creates a new project file with the name PROJECT1.UV2 which contains a default target and file group name. You can see these names in the Project
Window – Files:

Now use from the menu Project – Select Device for Target and select a CPU for your project. The Select Device dialog box shows the µVision2 device database. Just select the microcontroller you use. We are using for our examples the Philips 80C51RD+ CPU. This selection sets necessary tool options for the 80C51RD+ device and simplifies in this way the tool Configuration.

Building Projects and Creating a HEX Files:

Typical, the tool settings under Options – Target are all you need to start a new application. You may translate all source files and line the application with a click on the Build Target toolbar icon. When you build an application with syntax errors, µVision2 will display errors and warning messages in the Output Window – Build page. A double click on a message line opens the source file on the correct location in a µVision2 editor window. Once you have successfully generated your application you can start debugging.

After you have tested your application, it is required to create an Intel HEX file to download the software into an EPROM programmer or simulator. µVision2 creates HEX files with each build process when Create HEX files under Options for Target – Output is enabled. You may start your PROM programming utility after the make process when you specify the program under the option Run User Program #1.
CPU Simulation:
µVision2 simulates up to 16 Mbytes of memory from which areas can be mapped for read, write, or code execution access. The µVision2 simulator traps and reports illegal memory accesses.

In addition to memory mapping, the simulator also provides support for the integrated peripherals of the various 8051 derivatives. The on-chip peripherals of the CPU you have selected are configured from the Device.

Database selection:
Information about selecting a device. You may select and display the on-chip peripheral components using the Debug menu. You can also change the aspects of each peripheral using the controls in the dialog boxes.
Start Debugging:
You start the debug mode of µVision2 with the Debug – Start/Stop Debug Session command. Depending on the Options for Target – Debug Configuration, µVision2 will load the application program and run the startup code µVision2 saves the editor screen layout and restores the screen layout of the last debug session. If the program execution stops, µVision2 opens an editor window with the source text or shows CPU instructions in the disassembly window. The next executable statement is marked with a yellow arrow. During debugging, most editor features are still available.

For example, you can use the find command or correct program errors. Program source text of your application is shown in the same windows. The µVision2 debug mode differs from the edit mode in the following aspects:
· The “Debug Menu and Debug Commands” described below are available. The additional debug windows are discussed in the following.
· The project structure or tool parameters cannot be modified. All build Commands are disabled.
Disassembly Window:
The Disassembly window shows your target program as mixed source and assembly program or just assembly code. A trace history of previously executed instructions may be displayed with Debug – View Trace Records. To enable the trace history, set Debug – Enable/Disable Trace Recording.

If you select the Disassembly Window as the active window all program step commands work on CPU instruction level rather than program source lines. You can select a text line and set or modify code breakpoints using toolbar buttons or the context menu commands.

You may use the dialog Debug – Inline Assembly… to modify the CPU instructions. That allows you to correct mistakes or to make temporary changes to the target program you are debugging.
4.2 Steps to Execute Source Code:
1. Click on the Keil uVision Icon on Desktop

2. The following fig will appear

[image: image47.jpg]TS [T
R ere

3. Click on the Project menu from the title bar

4. Then Click on New Project

[image: image48.jpg]

5. Save the Project by typing suitable project name with no extension in u r own folder sited in either C:\ or D:\

[image: image49.jpg]=i
G o i P P [k 35t
TR T Ty
e mm s ere
sousRs ——3

6. Then Click on save button above.

7. Select the component for u r project. i.e. Atmel……

8. Click on the + Symbol beside of Atmel

[image: image50.jpg]

9. Select AT89C51 as shown below

[image: image51.jpg]\
5 gm

Shwmer T et

10. Then Click on “OK”
11. The Following fig will appear
12. Then Click either YES or NO………mostly “NO”
13. Now your project is ready to USE
14. Now double click on the Target1, you would get another option “Source group 1” as shown in next page. [image: image52]
15. Click on the file option from menu bar and select “new”

[image: image53.jpg]

16. The next screen will be as shown in next page, and just maximize it by double clicking on its blue boarder.

[image: image54.jpg]YL LRI Er e s a—T
wsanE e
S Wl % 5 Sl -

ST o

17. Now start writing program in either in “C” or “ASM”

18. For a program written in Assembly, then save it with extension “. asm” and for “C” based program save it with extension “ .C”
[image: image55.jpg]Bt 03 1 e (v P P 1ok 3 i 0
BEHS i ne 2 rEan
SCCIEAL

19. Now right click on Source group 1 and click on “Add files to Group Source”

[image: image56.jpg]

20. Now you will get another window, on which by default “C” files will appear.
[image: image57.jpg]e G e o o o Pesrss T 965 i 10
Y T R o e}

weanm are
P —

21. Now select as per your file extension given while saving the file

22. Click only one time on option “ADD”

23. Now Press function key F7 to compile. Any error will appear if so happen.
[image: image58.jpg]

24. If the file contains no error, then press Control+F5 simultaneously.

25. The new window is as follows

[image: image59.jpg]

26. Then Click “OK”

27. Now Click on the Peripherals from menu bar, and check your required port as shown in fig below

[image: image60.jpg]=8anm
muone

28. Drag the port a side and click in the program file.

[image: image61.jpg]weanm are

B NOMB | ek ABTHOES
= e }
TRy vt o fims T B

Fig4.1: Keil Software Slides
29. Now keep Pressing function key “F11” slowly and observe.

30. You are running your program successfully
4.3 Source Code:

Program for Microcontroller1

#include<reg52.h>

#include<string.h>

sfr p1=0x90;

sfr p3=0xb0;

sfr p0=0x80;

sfr p2=0xa0;

sbit led=p2^0;

sbit status=p1^0;

sbit buzzer=p2^5;

void transmit(unsigned char *t_data);

void transmit_c(unsigned char ch);

void transmit2();

void transmitnum();

void broadcast();

void transmit3();

void broadcast1();

void send();

void msgdel();

void delay(int);

void init();

unsigned int i,j,s,found,buf,buf1,k,letters,num1,num2,num3,num4,num5,num6,num7,num8,num9,num,n,x1,x2,flag;

unsigned char str[60];

void main(void)

{

home:

buzzer=0;

status=1;

flag=0;

buf=0;

buf1=0;

led=1;

num=num1=num2=num3=num4=num5=num6=num7=num8=num9=n=x1=x2=0;

delay(90000);

for (i=0;i<=56;i++)

{

str[i]=0x20;

}

init();

msgdel();

while(1)

{

 transmit("AT+CMGL=");

 SBUF='"';

 while(!TI);

 TI=0;

 transmit("REC UNREAD");

 SBUF='"';

 while(!TI);

 TI=0;

 SBUF=0x0d;

 while(!TI);

 TI=0;

j=0;

found=0;

s=0;

i=0;

n=0;

 while(1)

 {

 while(!RI);

 RI=0;

str[j]=SBUF;

 if(SBUF==0x0d)

 {

 s++;

 }

 if((s>=2)&&(i<15))

 {

 break;

 }

 if(SBUF=='9')

 {

if(flag==0)

{

 n=1;

flag=1;

}

 }

 if(SBUF=='@')

 {

if(n==1)

{

num=str[0];

num1=str[1];

num2=str[2];

num3=str[3];

num4=str[4];

num5=str[5];

num6=str[6];

num7=str[7];

num8=str[8];

num9=str[9];

x1=str[10];

x2=str[11];

n=0;

j=0;

str[j]='@';

}

 found++;

 }

if(found!=0){j++;}

 if(n!=0){j++;}

if(found==3)

 break;

letters=j;

 // i++;

 // if(i>100)

 // break;

 // if(j>60)

 // break;

 }

str[j]='\0';

buf1=strncmp(str,"@456@",4);

if(buf1==0)

 {

 led=1;

 init();

 broadcast1();

 goto home;

 }

}

}

void msgdel()

{

transmit("AT+CMGD=1");

SBUF=0x0d;

while(!TI);

TI=0;

i=0;

j=0;

while(i<2)

{

while(!RI);

RI=0;

str[j]=SBUF;

if(SBUF==0x0d)

i++;

j++;

}

delay(90000);

transmit("AT+CMGD=2");

SBUF=0x0d;

while(!TI);

TI=0;

i=0;

j=0;

while(i<2)

{

while(!RI);

RI=0;

str[j]=SBUF;

if(SBUF==0x0d)

i++;

j++;

}

delay(90000);

led=1;

}

void init()

{

SCON=0x50;

TMOD=0x20;

TH1=0xe8;

TR1=1;

delay(90000);

transmit("at");

SBUF=0x0d;

while(!TI);

TI=0;

i=0;

j=0;

while(i<2)

{

while(!RI);

RI=0;

str[j]=SBUF;

if(SBUF==0x0d)

i++;

j++;

}

delay(90000);

led=0;

//Checking For Sim Status

transmit("AT+CPIN?");

SBUF=0x0d;

while(!TI);

TI=0;

i=0;

j=0;

while(i<2)

{

while(!RI);

RI=0;

str[j]=SBUF;

if(SBUF==0x0d)

i++;

j++;

}

delay(90000);

led=1;

transmit("AT+CMGF=1");

SBUF=0x0d;

while(!TI);

TI=0;

i=0;

j=0;

while(i<2)

{

while(!RI);

RI=0;

str[j]=SBUF;

if(SBUF==0x0d)

i++;

j++;

}

delay(90000);

led=0;

}

void broadcast1()

{

transmit("AT+CMGS=");

SBUF='"';

while(!TI);

TI=0;

transmitnum();

SBUF='"';

while(!TI);

TI=0;

SBUF=0x0d;

while(!TI);

TI=0;

transmit("MESSAGE RECEIVED BY GSM ");

j=0;

TI=0;

//SBUF=0XBB;

//while(!TI);

//TI=0;

//SBUF=letters;

//while(!TI);

//TI=0;

//transmitnum();

transmit3();

transmit_c(0x1a);

delay(10000);

}

void transmit3()

{

status=0;

buzzer=1;

delay(90000);

SBUF=letters;

while(!TI);

TI=0;

for(i=5;i<=letters;i++)

{

SBUF=str[i];

while(!TI);

TI=0;

}

while(i<=56)

{

SBUF=0x20;

while(!TI);

TI=0;

i++;

}

status=1;

buzzer=0;

}

void transmitnum()

{

SBUF=num;

while(!TI);

TI=0;

SBUF=num1;

while(!TI);

TI=0;

SBUF=num2;

while(!TI);

TI=0;

SBUF=num3;

while(!TI);

TI=0;

SBUF=num4;

while(!TI);

TI=0;

SBUF=num5;

while(!TI);

TI=0;

SBUF=num6;

while(!TI);

TI=0;

SBUF=num7;

while(!TI);

TI=0;

SBUF=num8;

while(!TI);

TI=0;

SBUF=num9;

while(!TI);

TI=0;

SBUF=x1;

while(!TI);

TI=0;

SBUF=x2;

while(!TI);

TI=0;

}

void transmit(unsigned char *t_data)

{

while(*t_data!='\0')

{

SBUF = *t_data;

while(!TI);

TI=0;

t_data++;

}

}

void transmit_c(unsigned char ch)

{

SBUF=ch;

while(TI);

TI=0;

}

void delay(int useconds)

{

unsigned int j;

while(useconds--)

for(j=0;j<10;j++);

}
Program for Microcontroller2
RS BIT P2.6

EN BIT P2.7
cs
bit
p1.0

sk
bit
p1.1
di
bit
p1.2
do
bit
p1.3
ADD_LO
DATA 21H

DATA_LO
DATA 22H

CNT
DATA 23H

data_hi
data
 24h
 LOAD
DATA 25H
COUNTER
 DATA 26H
NADDR
EQU
 9
size

EQU
 f0
Org

0000h

ljmp

rt

rt:
CLR
SIZE

RT1:
mov

sp,#91h
mov

p1,#0ffh

MOV
LOAD,#00H
mov

p2,#0FFh
MOV
 P3,#0FFH

mov
TMOD, #20H

mov

SCON, #50H
; enable only reception

mov
IE, #80H

 mov
th1,#0E8h

CLR
RI

setb

TR1

; run timer 1

SETB P2.0

SETB P2.1
MOV
a,#30H

Lcall
com

LCALL DELAY

Mov
 a,#38h

; 2 line lcd intialization

Lcall
com

Lcall
delay

mov a,#01h

 ;clear the screen

lcall
com

lcall
delay

mov
a,#0Ch

lcall
com

lcall
delay

lcall
welcome

 CLR

RI

 MOV

R1,#30H
 MOV

R3,#45H
RRT1:

 MOV

A,#0FFH

 MOV
@R1,A

 INC
R1
 DJNZ
R3,RRT1

 MOV
R1,#30H

 MOV
R3,#45H

setb p1.4

LJMP MAIN
PT:
CLR CS
CLR SK

 SETB DI

 SETB DO

 Lcall
wr_en

MAIN1:

 Mov
add_lo,#00D

 MOV
R1,#30H

IFNOT1:
MOV
A,@R1
mov
data_lo,a

lcall
write
MOV
A,ADD_LO
ADD
A,#04D
MOV
ADD_LO,A
INC R1
MOV
A,R1
CJNE
A,#60H,IFNOT1
 mov
add_lo,#220D
MOV
A,LOAD
mov
data_lo,a

lcall
write
 lcall
wr_ds
SETB CS
SETB SK
SETB DI
SETB DO

LJMP RT

MA50:
 LJMP MAIN1
main:

SETB
P2.0

SETB P2.1

MOV R1,#30H

JB
 P1.4,PROCEED

CLR P2.0

CLR P2.1

JNB RI,$

CLR RI

MOV A,SBUF

Mov
load,a

IFNOT:

Jnb
ri,$

Clr
ri

MOV
A,SBUF

MOV
@R1,A

INC R1

MOV
A,R1

CJNE
A,#60H,IFNOT

LJMP
PT
PROCEED:

Mov
a,#01h

;clear the screen

Lcall
com

Lcall
delay

mov a,#80h

lcall
com

lcall
delay

MOV
COUNTER,#00H

CLR CS
CLR SK
SETB DI
SETB DO
mov
add_lo,#00D

RPTT:
LCALL
READ

MOV

A,DATA_LO

LCALL
RATA

LCALL
DELAY

MOV

A,ADD_LO

ADD

A,#04D

MOV

ADD_LO,A

INC

COUNTER

MOV

A,COUNTER

CJNE

A,#10H,RPTTX

Mov
a,#0C0h
Lcall
com

Lcall
delay

MOV
A,COUNTER

RPTTX: CJNE A,#20H,RPTT

MOV
COUNTER,#00H

SETB CS

SETB SK

SETB DI

SETB DO

LCALL
DDELAY

LJMP

MAIN
ddelay:
 MOV R4,#110

 Zz21z: MOV R5,#110

 Zz11z: MOV R6,#110
 DJNZ R6,$

 DJNZ R5,Zz11z

 DJNZ R4,Zz21z

 RET
read:

setb
CS

; raise CS

; Shift out start bit (1) and op code (10).

Mov
dpl, #110b

Mov
b, #3

Call
outdata
; Shift out address, MSB first.

mov
dpl, add_lo

; low byte

mov
dph,#00H

; high byte (may be undefined)

mov
b, #NADDR

; bit count

call
outdata

; Read output data.

call
indata

; get return data

clr
CS

; drop CS

ret

write:

setb
CS

; raise CS

; Shift out start bit (1) and op code (01).

mov
dpl, #101b

mov
b, #3

call
outdata

; Shift out address, MSB first.

mov
dpl, add_lo

; low byte

mov
dph, #00H

; high byte (may be undefined)

mov
b, #NADDR
; bit count

call
outdata

; Shift out data, MSB first.

; Number of bytes varies according to SIZE flag.

mov
dpl, data_lo

jb
size, ee61

mov
b, #8

jmp
ee62

ee61:
mov
dph, data_hi

mov
b, #16

ee62:

call
outdata

clr
CS

; drop CS

; Poll device status.

call
status

; returns CY
ret

wr_en:

; Enable erase/write.

; Erase/write remains enabled until disabled with EWDS.

; Returns nothing. Destroys B, DPTR.

setb
CS

; raise CS

; Shift out start bit (1), op code (00) and 11.

mov
dptr, #(10011b SHL (NADDR-2))

mov
b, #(NADDR+3)

call
outdata

clr
CS

; drop CS

ret
wr_ds:

; Disable erase/write.

; Returns nothing. Destroys B, DPTR.

setb
CS

; raise CS

; Shift out start bit (1), op code (00) and 00.

mov
dptr, #(10000b SHL (NADDR-2))

mov
b, #(NADDR+3)

call
outdata

clr
CS

; drop CS

ret
status:

push
b

setb
DO

; float pin

setb
CS

; select device

mov
b, #220

; 220 * 50 uS = 11 mS

; Delay 50 microseconds.

ee40:

push
b

; 2 uS

mov
b, #22

; 2 uS

djnz
b, $

; 2 uS * 22

pop
b

; 2 uS

jb
DO, ee41

; jump if DO is high (READY)

djnz
b, ee40

; next pass

setb
c

; flag error

jmp
ee42

; return

ee41:

clr
c

; clear error flag

ee42:

clr
CS

; deselect device

pop
b

ret
indata:

setb
DO

; float pin

; Read and assemble first data byte.

call
shin

jnb
size, ee21

; jump if data is only one byte wide

mov
data_hi, a

; save high byte

; Read and assemble second data byte.

call
shin

ee21:

mov
data_lo, a

; save low byte

ret
shin:

push
b

clr
SK

; drop clock

mov
b, #8

; init loop / delay min one uS

ee30:

setb
SK

; raise clock

nop

; delay min one uS

mov
c, DO

; read serial data output

rlc
a

; shift in bit / delay min one uS

clr
SK

; drop clock

djnz
b, ee30

; next bit / delay min one uS

pop
b

ret
outdata:

push
b

mov
a, b

; get bit count

clr
c

; compare count to eight

subb
a, #8

jc
ee6

; jump if count less than eight

jz
ee5

; jump if count equals eight

mov
b, a

; save adjusted bit count

clr
c

; compare adjusted count to eight

subb
a, #8

jc
ee2

; jump if count less than eight

jnz
ee9

; jump if count greater than eight

mov
a, dph

jmp
ee4

ee2:

push
b

; save count

mov
a, dph

; get data

ee3:

rr
a

; shift data

djnz
b, ee3

pop
b

; restore count

ee4:

call
shout

mov
b, #8

ee5:

mov
a, dpl

jmp
ee8

ee6:

push
b

; save count

mov
a, dpl

; get data

ee7:

rr
a

; shift data

djnz
b, ee7

pop
b

; restore count

ee8:

call
shout

ee9:

setb
DO

; leave pin floating

pop
b

ret
shout:

ee50:

clr
SK

; drop clock

rlc
a

; move bit into CY

mov
DI, c

; output bit

nop

; delay min 400 ns

setb
SK

; raise clock

djnz
b, ee50

; next bit / delay min one us

clr
SK

; drop clock

ret

com:

 mov p0,a

 clr rs

 setb en

 clr en

 ret

Rata:
mov p0,a

setb rs

setb en

clr en

ret
delay:

mov r2,#20h
ll7B: mov r3,#22h

djnz r3,$

djnz r2,ll7B

 ret
WELCOME:
mov dptr,#0A00h ;welcome

mov r6,#12h

 ll8: mov a,#00h

movc a,@a+dptr

 lcall Rata

 lcall delay

 inc dptr

djnz r6,ll8

RET
org 0A00h

 db ' WELCOME '

END
CHAPTER 5

FABRICATION DETAILS

FABRICATION DETAILS

The fabrication of one demonstration unit is carried out in the following sequence:

1. Finalizing the total circuit diagram, listing out the components and their sources of procurement.

2. Procuring the components, testing the components and screening the components.

3. Making layout, preparing the inter connection diagram as per the circuit diagram, preparing the drilling details, cutting the laminate to the required size.

4. Drilling the holes on the board as per the component layout, painting the tracks on the board as per inter connection diagram.

5. Etching the board to remove the un-wanted copper other than track portion. Then cleaning the board with water, and solder coating the copper tracks to protect the tracks from rusting or oxidation due to moisture.

6. Assembling the components as per the component layout and circuit diagram and soldering components.

7. Integrating the total unit inter wiring the unit and final testing the unit.

8. Keeping the unit ready for demonstration.

5.1. PCB Fabrication:

The fabrication of a PCB includes four steps.

a) Preparing the PCB pattern.

b) Transferring the pattern onto the PCB.

c) Developing the PCB.

d) Finishing (i.e.) drilling, cutting, smoothing, turning etc.

 Pattern designing is the primary step in fabricating a PCB. In this step, all interconnection between the components in the given circuit are converted into PCB tracks. Several factors such as positioning the diameter of holes, the area that each component would occupy, the type of end terminal should be considered.
Transferring the PCB Pattern:

 The copper side of the PCB should be thoroughly cleaned with the help of alcoholic spirit or petrol. It must be completely free from dust and other contaminants.

 The mirror image of the pattern must be carbon copied and to the laminate the complete pattern may now be made each resistant with the help of paint and thin brush.
Developing:

 In this developing all excessive copper is removed from the board and only the printed pattern is left behind. About 100ml of tap water should be heated to 75 ° C and 30.5 grams of FeCl3 added to it, the mixture should be thoroughly stirred and a few drops of HCl may be added to speed up the process.

 The board with its copper side facing upward should be placed in a flat bottomed plastic tray and the aqueous solution of FeCl2 poured in the etching process would take 40 to 60 min to complete.

 After etching the board it should be washed under running water and then held against light .the printed pattern should be cleanly visible. The paint should be removed with the help of thinner.

Finishing Touches

 After the etching is completed, hole of suitable diameter should be drilled, then the PCB may be tin plated using an ordinary 35 Watts soldering rod along with the solder core, the copper side may be given a coat of varnish to prevent oxidation.

Drilling

Drills for PCB use usually come with either a set of collects of various sizes or a 3-Jaw chuck. For accuracy however 3-jaw chunks aren’t brilliant and small drill below 1 mm from grooves in the jaws preventing good grips.

Soldering

Begin the construction by soldering the resistors followed by the capacitors and the LEDs diodes and IC sockets. Don’t try soldering an IC directly unless you trust your skill in soldering. All components should be soldered as shown in the figure. Now connect the switch and then solder/screw if on the PCB using multiple washers or spaces. Soldering it directly will only reduce its height above other components and hamper in its easy fixation in the cabinet. Now connect the battery lead.

Assembling

The circuit can be enclosed in any kind of cabinet. Before fitting the PCB suitable holes must be drilled in the cabinet for the switch, LED and buzzer. Note that a rotary switch can be used instead of a slide type.

Switch on the circuit to be desired range. It will automatically start its timing cycles. To be sure that it is working properly watch the LED flash. The components are selected to trigger the alarm a few minutes before the set limit.

CHAPTER 6

TESTING

TESTING

Fig 6.1: Testing Process

Systems should not be tested as single monolithic systems. Large systems are built out of sub-systems, which are composed of procedure and functions. The testing process should therefore, proceed in stages where testing is carried out in conjunction with system implementation. Bottom up testing strategy has been followed to test this project.

The most widely used testing process consists of the following five stages:

6.1 TESTING PROCESS:
Unit Testing:

Individual component are tested to ensure that they operate correctly. Each component is tested independently, without other system component.

Module Testing:

A module is a collection of dependent component such as procedures and functions. A module encapsulates related component related components so can be tested without other system modules.

Sub-system Testing:

This phase involves testing collection of modules, which have been integrated into sub-systems. Sub-systems may be independently designed and implemented. The sub-system test process concentrates only on detection of interface errors by rigorously exercising this interface.
System Testing:

The sub systems are integrated to make up the entire system. The testing process is concerned with finding errors, which results from unanticipated interaction between sub system and system components.

6.2 TEST CASES:
Acceptance Testing:

This is the final stage of testing process before the system is accepted for operational use. The system is tested with the data supplied from the system procurer rather than simulated data.

	Serial No.
	Test Case Description
	Expected Output
	Actual Output

	TCID001
	GSM modem should be able to receive new message sent to it.
	GSM modem should receive new message sent to it.
	GSM modem is receiving new messages sent to it.

	TCID002
	When GSM modem receives new message, it should be indicated to microcontroller.
	New message indication should be given to microcontroller.
	New message indication is given to microcontroller.

	TCID003
	When new message is received, microcontroller should be able to read the new message.
	Microcontroller should read new message received.
	Microcontroller is reading the new messages received.

	TCID004
	Microcontroller should delete the new messages after reading it.
	The new message should be deleted after reading it from modem.
	Microcontroller is deleting the new messages after reading it.

	TCID005
	Microcontroller should send the received message to notice board for display.
	The message is displayed on notice board.
	Microcontroller displays message on notice board

Fig 6.2: Test Cases
CHAPTER 7

OBSERVATIONS AND
INTERPRETATION OF RESULTS
OBSERVATIONS AND INTERPRETATION OF RESULTS:
7.1 Observations:
[image: image62.jpg]

[image: image63.jpg]e o

Fig7.1: Results

7.2 Interpretation of Results:
The results of this project can be verified very easily by going through this section. Results are interpreted for each test case and observations are explained.

TCID001:

GSM modem should be able to receive new messages sent to it.

Interpretation:

Before working with modem, it should be initialized. The modem is set to receive new message. It is possible to check this by, sending a message and checking the inbox of the SIM card.

Observation:

GSM modem is able to receive new message sent to it. Unless the inbox is full of messages, the GSM modem can receive new message.

TCID002:

When GSM modem receives new messages, it should be indicated to microcontroller.

Interpretation:

 Initially the GSM modem is set, how to indicate the new messages to the microcontroller. It is possible to check this by sending a message to the system. The microcontroller displays a message “SMS Received”, whenever a new message is received.

Observation:

The new message indication is given to the microcontroller. And microcontroller displays the message “SMS Received” on LCD.

TCID003:

When new message is received, microcontroller should be able to read the new message.

Interpretation:

As soon as a new message is received, the microcontroller reads it by sending a command to read the new message. As soon as the new message is read, microcontroller displays the message “Message From” followed by the mobile phone number of the sender.

Observation:

As soon as the new message is read, microcontroller displays the message “Message From” followed by the mobile phone number of the sender.

TCID004:

Microcontroller sends the received message to notice board for display.
Interpretation:

Message will be sent to the notice board.

Observation:

Message displayed on notice board.

TCID005:

The command format should be “@456@message to be displayed@”.

Interpretation:

The “@456@” is the password and it is checked.

Observation:

The message is displayed on notice board, if the password is correct.
CHAPTER 8

MERITS, DE-MERITS
AND APPLICATIONS

MERITS, DEMERITS AND APPLICATIONS
Merits

· Its operation is simple and easy

· It is less expensive

· It is highly efficient

· power required is less
De-Merits
As there are advantages, there are some limitations of this project.

· This Project is a Microcontroller based Project. The main limitation is the size of ROM available on the chip for programming.

· Since we are using wireless technology for communication, the efficient operation of our project depends on signal of the service provider.

· Another major limitation is the congestion in the network. Due to congestion in the network the message sending and receiving will be delayed, which will affect the performance of the system.
Applications:

· It is mainly used in our homes.

· It is also use in the colleges and schools.

· It is used in agriculture to ON\OFF the motor pumps

CHAPTER 9

CONCLUSION

AND
FUTURE SCOPE
CONCLUSION:
Now a days every advertisement is going to be digital. The big shops and shopping centers are using the digital displays now. In Railway station and bus stands everything that is ticket information, platform number etc is displaying in digital moving display. But in these displays if they wants to change the massage or style they have to go there and connect the display to PC or laptop.

Suppose the same message if the person to display in main centers of the cities means he have to go there with laptop and change the massage by connecting into PC. This project we can use mainly for police or army.i.e displays will be connected to all the main cities if they wants to display message about something crucial within 5 minutes, they can’t so keeping in the mind we are designing a new display system which can access remotely, we are using the GSM technology to access the displays is one of the new technology in the embedded field to make the communication between microcontroller and mobile.

Using this application the client can operate notice board, which could be located remotely or in hostile environment. The only pre-requisite is that, system should be placed in the service provider’s network coverage area and it is possible to control the notice board connected only when the client operates in the service provider’s network coverage area. if the user is out of network coverage area, he can’t control notice board, but will receive any messages from the system. The user to send messages to be displayed, from remote place without him being present at the location of the display, thus making the whole process efficient and time saving.

FUTURE SCOPE:
Wireless GSM communication is finding a huge development in Satellite Communications. The GSM signals are sensed and reflected back to the earth stations. These signals contain information about weather forecasting, geological surveys and other cosmic developments. The present working Status of the appliances can be implemented along with secured controlling of appliances. We can also implement acknowledgement of the messages sent. This is used for sensing the elements through the GSM Modem.
CHAPTER 10
BIBLIOGRAPHY
BIBLIOGRAPHY
Literature References:
The 8052 Microcontroller and embedded Systems”

-----Muhammad Ali Mazadi.

-----Janice Gillispie Mazadi.

8052-Microcontroller Architecture, Programming and Applications.

-----Kenneth J Ayala
Embedded System Software Primer.

-----David.E.Simon.

Web sites:
1. www.mitel.databook.com
2. www.atmel.databook.com
3. www.franklin.com
4. www.keil.com
5. www.microchip.com
6. www.jungo.com

APPENDIX I
GSM Module SIM300:
SIM300C is a Tri-band GSM/GPRS engine that works on frequencies of EGSM 900 MHz, DCS 1800 MHz and PCS1900 MHz.SIM300C provides GPRS multi-slot class 10/ class8（optional） capability and support the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. With a tiny configuration of 50mm x 33mm x 6.2mm, SIM300C can fit almost all the space requirement in your industrial application, such as M2M, and mobile data communication system etc. With the charge circuit integrated inside the SIM300C, it is very suitable for the battery power application.

The physical interface to the mobile application is made through a 60 pins DIP connector, which provides all hardware interfaces between the module and customers’ boards. The SIM300C provides RF antenna interface with two alternatives: antenna connector and antenna pad. The antenna connector is MURATA MM9329-2700. And customer’s antenna can be soldered to the antenna pad. The SIM300C is designed with power saving technique, the current consumption to as low as 2.5mA in SLEEP mode. The SIM300C is integrated with the TCP/IP protocol, extended TCP/IP AT commands are developed for customers to use the TCP/IP protocol easily, which is very useful for those data transfer applications.
SIM300C key features

	Power supply
	Single supply voltage 3.4V – 4.5V

	Power saving
	Typical power consumption in SLEEP mode to 2.5mA (BS-PA-MFRMS=5)

	GSM class
	Small MS

	Transmit power
	􀁺 Class 4 (2W) at EGSM900

􀁺 Class 1 (1W) at DCS1800 and PCS 1900

	GPRS connectivity
	􀁺 GPRS multi-slot class 8 （optional）

􀁺 GPRS multi-slot class 10 (default)

􀁺 GPRS mobile station class B

	Temperature range
	􀁺 Normal operation: -30°C to +70°C

􀁺 Restricted operation: -30°C to +80°C

􀁺 Storage temperature -40°C to +85°C

	DATA GPRS:
CSD:
	􀁺 GPRS data downlink transfer: max. 85.6 kbps

􀁺 GPRS data uplink transfer: max. 42.8 kbps

􀁺 Coding scheme: CS-1, CS-2, CS-3 and CS-4

􀁺 SIM300C supports the protocols PAP (Password Authentication Protocol) usually used for PPP connections.

􀁺 The SIM300C integrates the TCP/IP protocol.

􀁺 Support Packet Switched Broadcast Control Channel (PBCCH)

􀁺 CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps, non-transparent

􀁺 Unstructured Supplementary Services Data (USSD) support

	SMS
	􀁺 MT, MO, CB, Text and PDU mode

􀁺 SMS storage: SIM card

􀁺 Support transmission of SMS alternatively over CSD or GPRS. User can choose preferred mode.

	FAX
	Group 3 Class 1

	SIM interface
	Support SIM card: 1.8V ,3V

	External antenna
	Connected via 50 Ohm antenna connector or antenna pad

	Audio features
	Speech codec modes:

􀁺 Half Rate (ETS 06.20)

􀁺 Full Rate (ETS 06.10)

􀁺 Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)

􀁺 Echo suppression

	Serial interface and Debug interface
	􀁺 There are Seven lines on Serial Port Interface

􀁺 Serial Port can be used for CSD FAX, GPRS service and send AT command of controlling module.

􀁺 Serial Port can use multiplexing function

􀁺 Autobauding supports baud rate from 1200 bps to 115200bps.

􀁺 Debug port Two lines on Serial Port Interface /TXD and /RXD

􀁺 Debug Port only used for debugging

	Phonebook management
	Support phonebook types: SM, FD, LD, RC, ON, MC.

	SIM Application Toolkit
	Support SAT class 3, GSM 11.14 Release 98

	Real time clock
	Implemented

	Timer function
	Programmable via AT command

	Physical characteristics
	Size: 50±0.15 x 33±0.15 x7.7±0.3 mm (including application connector)

50±0.15 x 33±0.15 x 6.2±0.3 mm (excluding application connector)

Weight: 13.8g

Regulator

(7805)

Trans former

Rectifier

Filter

Buzzer

Buzzer Driver

Buzzer OSC

MICRO

CONTROLLER

P89c52

MICRO

CONTROLLER

P89c52

MEMORY

GSM

MODEM

RS 232

LCD

MOBILE

 Display Unit

Microcontroller

GSM	modem	

MESSAGE TO DISPLAY BOARD

A

CHECK FOR PASSWORD

MICROCONTROLLER READS THE MESSAGE

LCD WAITING FOR MESSAGE

START

CHECK GSM MODULE

A

DISPLAY

CHECK IF VALID MESSAGE TO DISPLAY

COPY MESSAGE

MESSAGE ON NOTICE BOARD

Sub-system Testing

Acceptance Testing

System Testing

Module Testing

Unit Testing

PAGE
DRK College of Engineering & Technology

2

