VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAUM

[image: image1.png]

A Project report

On

SECURED WIRELESS DATA TRANSMISSION
Submitted in partial fulfillment for the award of degree of
BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION

By

 GURUPRASAD H

 4JC06EC037
 KARTHIK D

 4JC06EC042
 KULDEEP M S

 4JC06EC047
 MADHUSOODANA BADIKILLYA M 4JC06EC049
 Under the guidance of
Smt. B. A SUJATHA KUMARI
Assistant Professor

Department of Electronics and Communication Engineering

SJCE, Mysore
[image: image2.jpg]

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING

MYSORE-570006
2009-2010
J. S. S. MAHAVIDYAPEETHA

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING
MYSORE-570006
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
[image: image3.jpg]

CERTIFICATE

Certified that the project work entitled, “SECURED WIRELESS DATA TRANSMISSION” is a bona fide work carried out by Guruprasad H, Karthik D, Kuldeep M S, Madhusoodana Badikillaya M in partial fulfillment for the award of degree in Bachelor of Engineering in Electronics and Communication of the Visvesvaraya Technological University, Belgaum, Karnataka during the year 2009-10. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the report deposited in the departmental library. The project report has been approved as it satisfies the academic requirements in respect of project work prescribed for the Bachelor of Engineering degree.
Signature of the guide Signature of the HOD Signature of the Principal (Smt.B. A Sujatha Kumari) (Prof. C.R Venugopal) (Dr.B.G.Sangameshwara)
Name of the student University Seat Number
GURUPRASAD H

 4JCO6EC037

KARTHIK D

 4JC06EC042

KULDEEP M S

 4JC06EC047

MADHUSOODANA BADIKILLAYA M

 4JC06EC049
External Viva

Name of the examiners

Signature with date

1. …………………………………

 ……………………………..
2. .………………………………..

 ……………………………..

ACKNOWLEDGEMENT

First and foremost we pay due regards to this renowned institution which provided us a platform and an opportunity for carrying out this project work.
Excellent facilities and ample amenities along with academic atmosphere go a long way in shaping and moulding young professional of exceptional caliber. In this respect our thanks are due to our respected Principal Dr. B.G. Sangameshwara.
We would like to thank our Head of the Department Prof. C.R Venugopal for allowing us to carry out the project successfully.

We express our deep sense of gratitude to our Guide Smt B. A Sujatha Kumari, for her concerned guidance and encouragement given to us to complete the project successfully.
We are grateful to the technical and non- technical staffs of our institution and well wishers who were all responsible for the successful completion of the project.
We thank our parents and friends for their continuous support and motivation.
 -Guruprasad H
 -Karthik D

 -Kuldeep M S

 -Madhusoodana Badikillaya M
ABSTRACT

Security is a critical issue in wireless applications both for the users and providers of such systems. A data transmission system, wherein a text data is being transmitted generally adopts cryptography to ensure secure communication over a media.
This project is used to transmit a text message from one place to another place using wireless system. The text message obtained by the keypad is encrypted by using the Microcontroller and the encrypted message is transmitted through wireless system. At the receiver end, the signal is received by the standard receiver and the analog signal is fed to the Microcontroller and it is decrypted by the Microcontroller and the message is displayed over the LCD display. For the efficient data transmission we have used amplitude shift keying (on-off keying). We can use several receivers and the message from the transmitter can be sent to the entire receivers at the same time. Each receiver can be accessed separately by its address. The Microcontroller is used to do the above work. It gets data from the Keyboard and encrypts with a private algorithm. The encrypted message is displayed at the transmitter using an LCD display. At the receiver end the Microcontroller decrypts it with the same algorithm and displays the data over the LCD display.

LIST OF CONTENTS

 Page no.
List of Figures

 iv
List of Tables

 iv
List of Acronyms

 v
Chapter 1

Introduction

 1

1.1 Need for wireless communication

 1

1.2 Security in wireless communication

 1
1.3 Microcontroller based transmission and reception

 1
1.4 Encryption and Decryption

 2
Chapter 2

An Overview of Secured wireless data transmission
 3
2.1 Block diagram

 3
2.2 Hardware
 4
2.2.1 Atmega 16 microcontroller
2.2.2 16x2 LCD Display
2.2.3 Keyboard

2.2.4 AM Transmitter

2.2.5 Crystal Oscillator, Resistors and Capacitors
2.2.6 AM Receiver

2.3 Software

 9
1. AVR Studio 9
2. ISP Programmer 15
Chapter 3

System design and implementation

 24
3.1. Hardware Design

 24
 3.2. Software Design

 27

 Page no.

Chapter 4
Summary 35
4.1. Conclusion

 35
4.2. Further Improvements

 37
Chapter 5

Bibliography

37
Appendix 1

 38
Appendix 2

 50
LIST OF ACRONYMS
ADC Analog to Digital Converter

API Application Programming Interface

AVR Advanced Virtual RISC

BSD Berkeley Software Distribution
CAD Computer Aided Design

CGI Common Graphics Interface

CMOS

 Complementary Metal Oxide Semiconductor

CPU

 Central Processing Unit

DC Direct Current
EMF Electro Motive Force

FTDI

 Future Technology Devices International
GPL

 General Public License
GUI Graphical User Interface

HTML Hyper Text Mark-up Language

HTTP Hyper Text Transfer Protocol

IC Integrated Circuit
IP Internet Protocol
LAN

 Local Area Network

MAN

 Metropolitan Area Network

MIPS Microprocessor without Interlocked Pipeline Stages
MOSFET Metal Oxide Semiconductor Field Effect Transistor

NVRAM Non-Volatile Random Access Memory

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RPM

 Rotations Per Minute

SCGI Simple Common Gateway Interface

SD RAM Synchronous Dynamic Random Access Memory

SDK Software Development Kit

SSI Server Side Includes

TFTP

 Trivial File Transfer Protocol

TTL

 Transistor Transistor Logic

USB Universal Serial Bus

WAN Wide Area Network

Chapter 1
INTRODUCTION
We live in a world wherein everything is communicated using the remote devices. Wireless communication has acquired such a major role in human life, without which it is difficult for him to spend even a single day. In this project we try to build a wireless communication medium wherein a text data trans-reception is securely achieved.
1.1 NEED FOR WIRELESS COMMUNICATION
Transmission of the information from one media to the other is of major importance all these days. The information transmission can be achieved in two ways: Wired communication or wireless communication. If the distance which the information is supposed to be transmitted is larger, then wireless communication is preferred. Through wireless communication it is possible to have communication between a host and a remote user, bidirectionally. There are various forms of modulation, with the aid of which it can be implemented. In this project, wireless communication is achieved using Amplitude modulation.
1.2 SECURITY IN WIRELESS COMMUNICATION
Security is a critical issue in wireless communication both for the users at the receiver end and providers of such systems. Although the same may be said of all communications systems, wireless application have special requirements and vulnerabilities and are therefore of special concern. Emerging wireless networks share many common characteristics with traditional wire-line networks such as public switch telephone/data networks, and hence many security issues with the wire-line networks also apply to the wireless environment. Generally, secured wireless data transmission is achieved by making use of cryptography. Encryption of the data at the transmitter and decryption of the same at the receiver ensures security of data transmission.
1.3 MICROCONTROLLER BASED TRANSMISSION AND RECEPTION

In this project, we have used two microcontrollers for data transmission and reception respectively. We have made use of one of the efficient microcontrollers, Atmega16 both for transmission and reception. These Microcontroller based serial communication is very fast, effective and efficient means of text data trans-reception. The text data is input to the microcontroller through one of its ports, using the 4*4 keypad. The text data is encrypted using a particular data encryption algorithm. The encrypted data is sent via the microcontroller and the data received at the receiving microcontroller is decrypted using the same algorithm.

1.4 ENCRYPTION AND DECRYPTION
In cryptography, encryption is the process of transforming information (referred to as plaintext) using an algorithm (called cipher) to make it unreadable to anyone except those possessing special knowledge, usually referred to as a key. There are various algorithms available for data encryption. Here in this project, we have used the substitution algorithm, in which every alphabet or the symbol is substituted by another alphabet or the symbol. The result of the process is encrypted information (in cryptography, referred to as cipher text).
Encryption is used to protect data in transit, for example data being transferred in a wireless media (e.g. the Internet, mobile phones),

microphone"
wireless microphones
,

intercom"
wireless intercom
 systems, Bluetooth devices and bank automatic teller machines. Encrypting data in transit also helps to secure it as it is often difficult to physically secure all access to networks. Here in this project, the encrypted data or the message is displayed using a 16*2 LCD display
Decryption is the reverse process of data encryption. Here the algorithm used for decryption is sae as that used for encryption. The microcontroller at the receiver does the reverse substitution, i.e. it substitutes the actual alternative for the encrypted symbol or the alphabet. Here in this project, the decrypted data or the message is displayed using a 16*2 LCD display.

.

Chapter 2

AN OVERVIEW OF SECURED WIRELESS DATA TRANSMISSION
The secured wireless data transmission system consists of hardware and software components. They are both essential for the working of the entire system. All the hardware and software components are attached to the microcontroller itself.

2.1 Block Diagram

A block diagram depicting the working of the secured wireless data transmission shown in the Figure 2.1.It shows the transmitter and figure 2.2 shows the block diagram of the receiver.

At the transmitter, the port B of the microcontroller is fed with the 4*4 keypad, wherein the text data in fed to the microcontroller. A regulated 5V supply is given to the Vcc pin. At the transmitting pin, the data is sent to the AM transmitter. Otherr ports- port D and port A of the microcontroller are used to display the encrypted message.

[image: image4.jpg]Fow. 1

Fow2

Fow3

Fowd

——
']
.

N
KN KX K
. o]
RO IR
SRS

4 %4 Keypad

au]

ATMEGAL16

MICROCONTROLLER

16 2 LCD Display

Figure 2.1. Block Diagram of Wireless data transmitter
 As shown in the Figure 2.2, the receiver is made up of a microcontroller, the ports of which are connected to the AM receiver and the LCD display. A 16*2 LCD is used to display the decrypted message. The AM receiver receives the encrypted data sent from the AM transmitter at the other side. The microcontroller action decrypts the message and the same is displayed in the LCD display. Power supply and ground connections are made as shown in the diagram.
 [image: image5.jpg]16 2 LCD Display

A
4, RECIEVER ATMEGA16
u) MICROCONTROLLER

Figure 2.2: Block Diagram of Wireless data receiver
2.2 HARDWARE

The hardware of this project consists of the Atmega16-16pu microcontroller, 16*2 LCD display, keypad, AM transmitter and the AM receiver, whose characteristics are as depicted below:
2.2.1 ATMEGA16-16PU MICROCONTROLLER

The microcontroller used in the project is Atmel’s Atmega16 16pu.It is a low power CMOS 8-bit microcontroller based on the AVR RISC architecture. It has 16K bytes of In-System Self-programmable Flash program memory which is very helpful for during software design phase.
2.2.2 16x2 LCD DISPLAY:
[image: image6.png]FmEEraR

“mow

fe: 7lpg
D1 8oy
D2 3]0y
D36 10] b 2Line x 16 Character
DicE) 11] 0 LeD Display.
G 12| o
D6(E) 13| oo
7@ 1] 07
E_RwW RS GND VO Ve
NN N ER
vee

BND [1825) °F

L vee

106 | yoe

Strohe (1
10k
Select Priner (17

1ok

Cortrast

Figure 2.3: Pin Diagram of a 16*2 LCD display

Above is the quite simple schematic. The LCD panel's Enable and Register Select is connected to the Control Port. The Control Port is an open collector / open drain output. While most Parallel Ports have internal pull-up resistors, there are a few which don't. Therefore by incorporating the two 10K external pull up resistors, the circuit is more portable for a wider range of computers, some of which may have no internal pull up resistors.

We make no effort to place the Data bus into reverse direction. Therefore we hard wire the R/W line of the LCD panel, into write mode. This will cause no bus conflicts on the data lines. As a result we cannot read back the LCD's internal Busy Flag which tells us if the LCD has accepted and finished processing the last instruction. This problem is overcome by inserting known delays into our program.

	The 2 line x 16 character LCD modules are available from a wide range of manufacturers and should all be compatible with the HD44780. The one I used to test this circuit was a Powertip PC-1602F and an old Philips LTN211F-10 which was extracted from a Poker Machine! The diagram to the right, shows the pin numbers for these devices. When viewed from the front, the left pin is pin 14 and the right pin is pin 1.

2.2.3 KEYBOARD
[image: image7.png]cois

caiz

E:

3

coi2

jcolt

5

swia

Fowt

Fouwz

5

Rous

swiz

Figure 2.4: Schematic of a 4*4 keypad

There are many methods depending on how you connect your keypad with your controller, but the basic logic is same. We make the column as input and we drive the rows making them o/p, this whole procedure of reading the keyboard is called scanning.

In order to detect which key is pressed from the matrix, we make row lines low one by one and read the columns. If we first make Row1 low, then read the columns. If any of the key in row1 is pressed will make the corrosponding column as low i.e if second key is pressed in Row1, then column2 will give low. So we come to know that key 2 of Row1 is pressed.This is how scanning is done.

So to scan the keypad completely, we need to make rows low one by one and read the columns. If any of the button is pressed in a row, it will take the corrosponding column to a low state which tells us that a key is pressed in that row. If button 1 of a row is pressed then Column 1 will become low, if button 2 then column2 and so on...
2.2.4 AM TRANSMITTER:
[image: image8.jpg]

Figure 2.5: AM transmission module

Here in this project, the AM transmission and reception modules have been used, directly. In amplitude modulation, the instantaneous amplitude of a carrier wave is varied in accordance with the instantaneous amplitude of the modulating signal. Main advantages of AM are small bandwidth and simple transmitter and receiver designs. Amplitude modulation is implemented by mixing the carrier wave in a nonlinear device with the modulating signal. This produces upper and lower sidebands, which are the sum and difference frequencies of the carrier wave and modulating signal.
AM transmission module is as shown in figure 2.5.
2.2.5 CRYSTAL OSCILLATOR, RESISTOR AND CAPACITORS:

In this project, for the proper working of the microcontrollers, we have made use of the crystal oscillators. Crystal oscillators are oscillators where the primary frequency determining element is a quartz crystal. Because of the inherent characteristics of the quartz crystal the crystal oscillator may be held to extreme accuracy of frequency stability. Crystal oscillators are not needed for Atmega16-16pu microcontroller at low frequencies, but it becomes a mandatory at high clock frequencies.

 Capacitors are used for necessary blocking purposes. Resistors are used for the voltage dividing and regulation actions accordingly.

.

2.2.6 AM RECEIVER:

[image: image9.jpg]

Figure 2.6: AM reception module
AM reception module is as shown in figure 2.6. It has an antenna pin, two data pins, two ground pins and a power supply. The receiver in this project receives the encrypted text message and transmits the same to the microcontroller for further actions.
2.3 SOFTWARE

The software used in the secured wireless data transmission system are: AVR studio and ISP programmer for microcontroller programming.
2.3.1 AVR STUDIO:

In this project, AVR studio 4 is the software used for compiling the microcontroller codes. AVR Studio is the Integrated Development Environment (IDE) for developing 8-bit AVR applications in Windows NT/2000/XP/Vista/7 environments.

AVR Studio provides a complete set of features including debugger supporting run control including source and instruction-level stepping and breakpoints; registers, memory and I/O views; and target configuration and management as well as full programming support for standalone programmers.

AVR Studio 4 features include:
· Integrated Assembler

· Integrated Simulator

· Integrates with GCC compiler plug-in

· Support for all Atmel tools that support the 8-bit AVR architecture, including the AVR ONE!, JTAGICE mkI, JTAGICE mkII, AVR Dragon, AVRISP, AVR ISPmkII, AVR Butterfly, STK500 and STK600

· AVR RTOS plug-in support

· support for AT90PWM1 and ATtiny40

· Command Line Interface tools updated with TPI support

· Online help
[image: image10.png] AVR Studio - [CAUsers\Madhu\ Documents\vectr.cl N S |) |)

e Projet Buld Edt View Iools Debug Window Help -ax
DEdad LY] EL LYY YY) =R id < LE =)
Trace Disabled Cl W LT s e e
AVRGCC vx whils(UDRI=0x55);]
e Tnit_Led(); "
£ rectr (default’ 7/ dElay_ns(2000) ;
/23 Source Files . /1)AD_CONVERTER
/2 Header iles for(s:)) ANALOG_ COMPARATOR
/23 External Dependencies while (|(UCSRA & (1<<REC))). -+ EJBOOT_LOAD
563 Other Fles //Get received data from buffer =]
rectrlss tenp=UDR; B eEprOM
rectrmap. datwrito(tenp) ;) S EXTERNAL_INTERRUPT
//_delay_ns(250) 1 8YJTAG
) 2 roRTA
return 1; 2/ 2 PORTB
¥ = PoRTC
= PoRTD
xgu)d Init_Led(void) EER
comurite(56)
comurite(12):
comurite(D6)
comurite(01): s
comvrite(131); Jaa™wW
EE-
b 45 waTCHDOG
void comvrite (unsigned char a)
<
PORTE 8=0xfe;
FORTE =0xfa
FORTA =a;
FORTE |=0x01; ‘
_delay_ns(10):
FORTE 5=0xfe; Name Addess Ve Bis
b
void daturite (unsigned char a)
<
PORTE &=0xfe;
FORTE |-0x02;
FORTA=a.
FORTE [-0x01;
_delay_ns(10):
FORTE 5=0xfe;
b =
KT} |
< + | Bl CaUsers\Madho\Documentsvectr.c a5
Build - x

El8uild | @ Message | 5 Find in Files | @ Breakpoints and Tracepoints

ATmegal. AVR Simulator Auto @ inaycoit CAP NUM OVR

Figure 2.7: A screenshot of AVR studio 4
Using AVR Tools

Atmel makes a number of HW tools designed to make your life as a developer easier. The current version of AVR Studio 4 supports the following tools:
1. ICE50. This is a brand new high end In Circuit Emulator. When you use it, you remove the AVR controller from your target hardware and replaces it with the probe /personality adapter from the ICE. The ICE50 hooks up over a fast serial communications link (in the future it will also use USB). When you select RUN in AVR Studio, AVR Studio downloads the code to execute together with information about breakpoints, tracepoints, processor speed, you name it, to the ICE, and the tells the ICE to run until it hits a breakpoint in the code or a break condition occurs. The ICE behaves EXACTLY like the chip it emulates. When a break condition is hit, the ICE50 will notify AVR Studio, and the AVR Studio will request information about all details of the chip that is in display in the screen, such as the value of all internal registers, the stack pointer, memory contents and so forth. The ICE50 is an FPGA based implementation of the part with additional HW for emulating the analog parts of the device. It also includes trace, which basically means that every instruction it executes including arguments is stored in memory, and when the user breaks, all instructions can be displayed in readable form in a trace view. This can be an excellent tool for finding errors in the execution flow. This is an indispensable tool for large high level programming language projects, and it is also an excellent tool for finding errors in the target HW design.

2. JTAGICE. This is also a rather new low cost high performance In Circuit Emulator. The larger ATmega devices (the ones with >= 16KByte flash memory) includes a JTAG/OCD high speed communication port. In HW on those devices (currently ATmega128, ATmega323, ATmega32, ATmega16) there is circuitry that can stop the part and read out the internal state of the part including the value of internal memories and registers.

3. STK500 / 501 is a very successful Starter Kit. It supports all AVR devices, it has LED's and switches so you can write programs for your device that reacts to real life events, and all programming modes of the device is supported. You can also use it as a test target for ICE50 or JTAGICE. STK501 is a mezzanine board that supports the ATmega128 TQFP package. It includes adapter for the JTAGICE.

4. AVRISP. The new In System Programmer. Make an ISP port on your target design and program / reprogram your device. Simple as that.

Together, AVR Studio 4, ICE50, JTAGICE, STK500/501 and AVRISP makes a complete code creation, simulation, emulation, programming and test environment for the new Atmel AVR parts

 2.3.2 ISP PROGRAMMER:
	
	

This software supports programming of Atmel microcontrollers 89Sxx ('51), ATtiny, ATmega and 90Sxx (AVR). It can erase built-in Flash and EEPROM memories as well as read and program them. ISP Programmer also supports serial Atmel DataFlash memories. Communication with devices is made serially in system (ISP - In-System Programming) without the need to pull the chip out of the socket or desolder it.
The microcontroller you want to program needs to be connected to the printer port (LPT) of the computer (directly with wires, without STROBE signal), according to this list:
 Microcontroller LPT port LPT port

 signal signal pin number

 [STROBE] ---- STROBE 1

 RESET ---- AUTOLF 14

 MOSI ---- INIT 16

 SCK ---- SLCT-IN 17

 MISO ---- ACK 10

 GND ---- GND 25
Table 1.1: Pin configuration of Atmega16 and the LPT port
STROBE signal connected to pin 1 of LPT port is used to control enabling of 3-state buffers of programming serial bus (SCK,MISO,MOSI). Using it is optional. But in case of connecting LPT port directly to microcontroller pins, you should use the same logic levels (ground / 5V) as LPT port in host and verify that programming would not brake the normal operation of the peripherials connected to this microcontroller. For example programming signals should not be connected to the enable pin of the LCD.

Below is the example schematic of the programming cable using 3-state buffer:
[image: image11.png]53

OND

Y 1 o
1T ANTOLF
= —== M0 v
= b
16 INIT Ulh 74LVC244 Il
4 1 =3 Il
T st 1
S 2 n 16
Moo
5 T i S
[[42 B 12
5 1w
L 84
o]
il vee = vcc GND 10
o L
B @b
5
°T=
e
S
T
At
T
g
I
Ler L

Figure 2.8: the example schematic of the programming cable using 3-state buffer
With the ISP Programmer you are able to use any programming cable pinout, including AT-Prog, SI-Prog, UISP, STK200/300 and AEC ISP. You can choose any pins of the LPT port for programming signals, as well as define arbitrary RESET signal level.
[image: image12.png]Fuse and lock bits: ATtiny2313

Lok i
LB2 LB1 04

st
dowe s sn m oees oeez ceer oo 99
0 @8 & 0 ©0 8 O o Ceee)
E—— WOTON BODLEVEL? BODLEVELT BrDLEVELD psTsEL 098
@ @) @ B © @ @ 2 ()
o

SELFPRGEN P
7 7 7 7 7 7 Program

Losdiustosaione.] [Seveimestisketone e
———_—— e oot |

[E b [5E
Ext

Figure 2.9: the Screenshots of ISp programmer fuse and lock bits
Chapter 3

SYSTEM DESIGN AND IMPLEMENTATION

 The Hardware and Software components have to designed such that they work together to form a complete system, the secured wireless data transmission system.

3.1 HARDWARE DESIGN:

 The transmission module:
The transmission module of the wireless communication system contains a microcontroller- Atmega16, a 4*4 keypad, a 16*2 LCD display and an AM transmitter.
The Microcontroller:
The Atmega16 microcontroller has four I/O ports. The microcontroller is programmed in C. The ATmega16 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega16 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
The ATmega16 provides the following features:
16K bytes of In-System Programmable Flash Program memory with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary scan, On-chip Debugging support and programming, three flexible Timer/Counters with com pare modes, Internal and External Interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscil lator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run allowing the user to maintain a timer base while the rest of the device is sleeping.
One of the posts of Atmega16 is connected to keypad. The interfacing of the 4*4 keypad is done properly.
The block diagram of Atmega16 CPU core is as shown below:
[image: image13.png]Data Bus 8-bit

Program Status.
Rash |

. Counter and Control
[e —

l nterrupt
N Gt
Tatucion Goneral
Register Pupose
f— regaers
i
Tramcion T T T
Decoder 2| Timer
l g ¢ A Foaiog
Control Lines § 2 Comparator
F H
8 £ /O Module1
L
Dsia
Dea, 10 Mogule 2
10 Mode n

EEPROM

1OLines

Figure 3.1. The block diagram of Atmega16 CPU core
The Keypad:
Figure 3.2 shows the interfacing diagram of the 4*4 hex keypad to the microcontroller. The Keypad has 4 rows and 4 columns. Columns are treated as inputs with interrupts. Rows are treated as outputs. Initially, all rows are grounded and columns are checked for any key press. After checking for the key debouncing, each rows are given the supply individually and the columns are checked for any key press. Depending on the row-column matching, distinct digits or alphabets are generated.
[image: image14.png]AT91

Rows
(Output) <

<

Columns
(Input with Interrupt)

(PO

PIO

PIO

\.ri0

(Pi0
PIO

(_Po

VOC

VCC

VOC

VOC

100Ki 100Ki 100K i 100Ki

R

TH

o

T

ol

o

sH

20

B'L

o

ol

3'£_

i

el

D'L

ol

Figure 3.2. Interfacing diagram of the 4*4 hex keypad to the microcontroller
Once any key press is found, the same is sent to the microcontroller for the processing of the data. The hex keypad generates 16 distinct symbols. For alphabets, the 16 different keys are termed as A, B, C, D, E,F, G, H, I, J, K , L, M, N, O and P.
The 16*2 LCD
The 16 cross 2 LCD has 16 input pins. These pins are connected to the port B and port D of Atmega16 microcontroller. The features of the display include:

a. 16 Characters x 2 Lines
b. 5 x 7 Dots with Cursor
c. Built in Controller
d. +5v Power Supply (Also Available for +3V)
e. 1/16 Duty Circle
[image: image15.jpg]

Figure 3.3. The 16 cross 2 LCd display module

The write mode timing diagram of the display are as shown in figure 3.4 [image: image16.png]DBO+*DB7

DBO-+DB7

Figure 3.4. The write mode of the 16 cross 2 display.

THE TRANSMITTER:
 [image: image17.jpg]Fow. 1

Fow2

Fow3

Fowd

——
']
.

N
KN KX K
. o]
RO IR
SRS

4 %4 Keypad

au]

ATMEGAL16

MICROCONTROLLER

16 2 LCD Display

Figure 3.5. Circuit Diagram of transmitter
THE RECEIVER:

[image: image18.jpg]16 2 LCD Display

A
4, RECIEVER ATMEGA16
u) MICROCONTROLLER

Figure 3.5. Circuit Diagram of receiver
3.2 SOFTWARE DESIGN:

 The software comprises of two parts:

a. Microcontroller program to interface the 4*4 keypad.

b. Microcontroller program to encrypt and decrypt the messages.
c. Microcontroller program to display the messages.
d. A front end written in PHP running on a remote terminal.
Microcontroller program to interface the 4*4 keypad
The program running in the microcontroller is used to get the input from the 4 cross 4 hex keypad. The programming of the microcontroller is done using the AVR studio 4 which is the most efficient platform for the Atmega family microcontrollers. The program is written in C language. The AVR studio is the best-platform application written in C which is derived from the IDE made for the Processing programming language and the Wiring project. It is designed to introduce programming to artists and other newcomers unfamiliar with software development. It includes a code editor with features such as syntax highlighting, brace matching, and automatic indentation, and is also capable of compiling and uploading programs to the board with a single click. There is typically no need to edit Makefiles or run programs on the command line. Atmega Microcontroller are written in C/C++. Microcontroller programs are written in C and these are the library functions used in our program:

#include <avr/io.h>: The <avr/io.h> function is called when our program starts. It is used to initialize variables, pin modes, including libraries, etc. The setup function will only run once, after each power up or reset of the microcontroller.
#define F_CPU 8000000: After creating a setup() function, which initializes and sets the initial values, the #define F_CPU 8000000 function defines the clocking frequency. It can be adjusted manually, as according to the need of programming allowing our program to change and respond. It is used to actively control the speed of excecution.
#include <util/delay.h>: It configures the specified pin and utility to behave either as an input or an output.

The programming front-end in AVR Studio supports the STK500 and STK600 starter kits as well as the JTAGICE, JTAGICE mkII, AVR Dragon, AVRISP and AVRISP mkII
The correct device and programming interface must be set before any programming operations.

Select the device in the Device combo-box. This makes sure that the correct programming algorithms are used for the device, and that only features that are available for the device are displayed in the dialog. Next, specify the programming interface as described in the following section.

Pressing the "Read Signature" button reads the device's signature. The dialog checks if the signature matches the selected device. Please refer to the AVR datasheets to read more about signature bytes.

A full chip-erase is performed by pressing the "Erase Device" button. This erases the entire contents of the connected device, including FLASH, EEPROM and lock-bits.

Program Flowchart:

[image: image19]
 Figure 3.5. Flowchart for transmitting microcontroller program
 The flowchart of the microcontroller program is shown in Figure 3.5. The microcontroller remains in a continuous loop until it is reset. The transmitting microcontroller gets keypad data and encrypts the incoming data into appropriate instructions before displaying and sending it to the amplitude shift keying (on-off keying) module.
Encryption using Substitution Algorithm:
 The substitution algorithm used in our project is as shown in flowchart figure 3.5. Substitution over a single letter—simple substitution—can be demonstrated by writing out the alphabet in some order to represent the substitution. This is termed a substitution alphabet. The cipher alphabet may be shifted or reversed (creating the Caesar and Atbash ciphers, respectively) or scrambled in a more complex fashion, in which case it is called a mixed alphabet or deranged alphabet. Traditionally, mixed alphabets are created by first writing out a keyword, removing repeated letters in it, and then writing all the remaining letters in the alphabet.
Decryption using Substitution Algorithm:
The substitution algorithm at the decryption end, i.e. the receiver used in our project is as shown in flowchart figure 3.5.

[image: image20]

Figure 3.6. Flowchart for receiving microcontroller program
Chapter 4

 SUMMARY

4.1 CONCLUSION

This project gave us an excellent programming and hardware designing experience. It also made us realize our potential to think. It enhanced our skills and our ability to work in a team. We were able to divide the work between ourselves and finally integrate them. We learnt how to manage time for the successful implementation of the project.

 The secured wireless data transmission system is a clustered device that can be used any where is the world. The implementation included development of a transmitter side to send the messages. The very idea was to come up with an encryption based short message service mobile phone, which could be used only for messaging purposes.. The device can be controlled by accessing the microcontroller at the transmitter of the device by changing the code written to it. The wireless communication syatem can be controlled by changing the receiver microcontroller code too.

The challenges faced during the project implementation taught us how to overcome problems in a project working together as a team. It also taught us how to think rationally to devise simple solution to overcome the problems.

 The secured wireless transmission system we developed is an integration of hardware and software. It is an embedded system and a mobile device. The hardware of this system is very flexible and can be integrated with other devices. Some more keypads, some other dvices can also be connected to the vacant ports of the microcontroller, if needed. All the software used are easy to understand and user friendly. The software enabled us to modify their configurations directly. The documentation pages and tutorials in the forums associated with the software helped us to design the software. The experienced users of the software help the new user to design the software to their needs. This would not have been possible if the AVR 4 software were not there.

The hardware is flexible in the sense that devices which support standard wireless data or message communication protocols. If they have built in network support, they can be controlled independently using their own software. This project can be embedded to a GPS based system.

 The hardware design of the project provided with an insight of how the digital devices work. We were able to use the hardware resources to provide maximum capability to the wireless system. We learned how to program the efficient digital circuits. The serial port which was available directly on the microcontroller. The port was also used as a debugging tool during the programming process.

The software used in the project is flexible in the sense that it can be modified to suit to many requirements. The softwares are installed on the microcontroller uniquely as separate modules. Hence modification to one software will not affect the others. There are numerous packages available on the AVR studio 4 download page which caters to variety of applications and they are all easy to understand.

The software development kit available for the AVR studio and ISP programmer allows us to write programs as regular programs. The compiler associated with the kit cross compiles the programs for the device on which it is to be installed.

The AVR studio 4 system is based on windows operating system. Hence during the project we were able to get a real experience of the operating system. We constantly used AVR studio HELP and ISP programmer HELP option whenever we encountered problems with install, configure and burnintg of the programs to the microcontroller. We were able to learn quickly how a microcontroller CPU and operating system is packaged and how different modules work in tandem to give the user the complete control of the hardware resources. We also learnt How different softwares and scripts at the back-end work to give the user a comfortable interface and programming. The project also involved assembly language programming for the microcontroller. The serial port program was initially written in assembly level language. The AVR studio 4 used for the assembly level programming provided us with good tutorials and examples for our code design. It provided a simple interface from which we could write the code, compile it and upload it to the microcontroller.

 The project has scope for further improvements. The design flexibility makes it easy to add other modules to improve the project. The applications of the project include GPS based embedded system, wireless chatting telephone, secured data transmission in military applications, messaging among the traffic contol policers and home automation among others.
4.2 FURTHER IMPROVEMENTS
The secured wireless data transmission system can be further improved. The hardware and software design flexibility allows integration of different modules. Some of the improvements are listed.
a. The data transmission now is uni-directional. This can be made two way data transmission and hence full duplex data trans-reception can be attained.
b. Here, we have just transmitted the alphabets. Any QWERTY layout symbols van be transmitted. A 4*4 keypad can be replaced by a personal computer keyboard.
c. The LCD display size can be extended hence improving the trans-receiving ability.

d. The secured wireless transmission system now used uses a substitution encryption algorithm. Any other complex algorithm can be implemented. More complex the algorithm is, more difficult for the intruders to crack the data being transmitted and hence more secure is the system.
e. The distance upto which the AM can transmit the signal here is 50m. For a real time system, by using more powerful ASK modules, the range can be extended.
f. If the batteries can be charged using solar power then there are endless possibilities for the application of the system.

Chapter 5

BIBLIOGRAPHY
[1]. “The 8051 Microcontroller and Embedded Systems using Assembly and C”, by Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D. Mckinlay.
[2]. Cryptography and Network Security”, by William Stalling, Pearson Education, 2003
[3]. “Introduction to Wireless Telecommunications Systems and Networks” by Gary J. Mullet, Cengage learning.

[4]. http://en.wikipedia.org/wiki/Microcontroller
[5]. http://en.wikipedia.org/wiki/Data_Encryption_Standard

APPENDIX 1

Datasheet of Atmega16:

[image: image21.png]Features
* High-performance, Low-power AVR® 8-bit Microcontroller
* Advanced RISC Architecture
— 131 Powerful Instructions — Most Single-clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* High Endurance Non-volatile Memory segments
— 16K Bytes of In-System Self-programmable Flash program memory
— 512 Bytes EEPROM
— 1K Byte Internal SRAM
— Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
— Data retention: 20 years at 85°C/100 years at 25°C"
— Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— Programming Lock for Software Security
* JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
— Real Time Counter with Separate Oscillator
— Four PWM Channels

[image: image22.png]- 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels in TQFP Package Only
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
— Byte-oriented Two-wire Serial Interface
— Programmable Serial USART
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
I/0 and Packages
— 32 Programmable I/O Lines
— 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF
Operating Voltages
— 2.7 - 5.5V for ATmegal6L
— 4.5- 5.5V for ATmegal6
Speed Grades
— 0- 8 MHz for ATmega16L
— 0-16 MHz for ATmega16
Power Consumption @ 1 MHz, 3V, and 25.-C for ATmega16L
— Active: 1.1 mA
— Idle Mode: 0.35 mA
— Power-down Mode: <1 pA

Pin Configurations: [image: image23.png]PDIP

Ny
(XCK/TO) PBO T 1 40 [PAO (ADCO)
(T1) PB1 1 2 39 [1 PA1 (ADC1)
(INT2/AINO) PB2] 3 38 [0 PA2 (ADC2)
(OCO/AIN1) PB3 [4 37 [0 PA3 (ADC3)
(8S) PB4 1 5 36 [1 PA4 (ADC4)
(MOSI) PB5] 6 35 [1 PA5 (ADCS5)
(MISO) PB6] 7 34 [PA6 (ADC6)
(SCK) PB7 [} 8 33 [1 PA7 (ADC7)
RESET O] 9 32 [J AREF
vee O 10 313 GND
GND O 11 30 [0 AVCC
XTAL2 O 12 29 17 PC7 (TOSC2)
XTAL1 C] 13 28 11 PC6 (TOSC1)
(RXD) PDO] 14 27 {1 PC5 (TDI)
(TXD) PD1 1 15 26 17 PC4 (TDO)
(INTO) PD2 (1 16 25 [PC3 (TMS)
(INT1) PD3 Cf 17 24 11 PC2 (TCK)
(0C1B) PD4] 18 23 17 PC1 (SDA)
(OC1A) PD5] 19 22 13 PCO (SCL)
(ICP1) PD6] 20 2113 PD7 (0C2)

 [image: image24.png]TQFP/QFNIMLF

88 o

R

SS3 8338

B22ER 28882

23282z

FEEEBs08E2R2

nn0nnnonnnonn

® 44,42, 40, 38 36, 34
wos) PBs f 1 33 b
Moy PBE L2 7 120
(SCK) PB7 O 3 3 p
RESET 4 | VP
vee g5 V29 P
oo s o TR
XAz o7 T
XTALT O] 8 ! rig=]
RxD)PDO Cf 9 ! Vs
(TxD) PDT] 10 24 P
(NT0) Po2 11 =]

NOTE:

Bottom pad should
be soldered to ground.

PA4 (ADC4)
PAS (ADCS)
PAS (ADCE)
PAT (ADC7)
AREF

GND

Avee

PC7 (TOSC2)
PCB (TOSC1)
PC5 (TDI)
PC4 (TDO)

Overview:

The Atmega16 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the Atmega16 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Block Diagram:

 [image: image25.png]

 Figure 1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The Atmega16 provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 32 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte oriented Two wire Serial Interface, a 6-channel ADC (eight channels in TQFP and QFN/MLF packages) with 10-bit accuracy, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Powerdown mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next Interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The Flash Program memory can be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash Section will continue to run while the Application Flash Section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcontroller that provides a highly-flexible and cost-effective solution

to many embedded control applications. The ATmega8 AVR is supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits.
Disclaimer: Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.
Pin Descriptions:

VCC: Digital supply voltage.

GND: Ground.

Port B (PB7...PB0) XTAL1/XTAL2/TOSC1/ TOSC2: Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The

Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier. If the Internal Calibrated RC Oscillator is used as chip clock source, PB7...6 is used as TOSC2...1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

Port C (PC5...PC0): Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

PC6/RESET: If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. Shorter pulses are not guaranteed to

generate a Reset.

Port D (PD7..PD0): Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

RESET: Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running.

AVCC: AVCC is the supply voltage pin for the A/D Converter, Port C (3..0), and ADC (7..6). It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.

AREF: AREF is the analog reference pin for the A/D Converter.

ADC7..6 (TQFP and QFN/MLF Package Only): In the TQFP and QFN/MLF package, ADC7..6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.
Notes:1.Refer to the USART description for details on how to access UBRRH and UCSRC.
2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

Instruction Set Summary of Atmega16
	Mnemonics
	Operands
	Description
	Operation
	Flags
	#Clocks

	ARITHMETIC AND LOGIC INSTRUCTIONS

	ADD
	Rd, Rr
	Add two Registers
	Rd ← Rd + Rr
	Z,C,N,V,H
	1

	ADC
	Rd, Rr
	Add with Carry two Registers
	Rd ← Rd + Rr + C
	Z,C,N,V,H
	1

	ADIW
	Rdl,K
	Add Immediate to Word
	Rdh:Rdl ← Rdh:Rdl + K
	Z,C,N,V,S
	2

	SUB
	Rd, Rr
	Subtract two Registers
	Rd ← Rd - Rr
	Z,C,N,V,H
	1

	SUBI
	Rd, K
	Subtract Constant from Register
	Rd ← Rd - K
	Z,C,N,V,H
	1

	SBC
	Rd, Rr
	Subtract with Carry two Registers
	Rd ← Rd - Rr - C
	Z,C,N,V,H
	1

	SBCI
	Rd, K
	Subtract with Carry Constant from Reg.
	Rd ← Rd - K - C
	Z,C,N,V,H
	1

	SBIW
	Rdl,K
	Subtract Immediate from Word
	Rdh:Rdl ← Rdh:Rdl - K
	Z,C,N,V,S
	2

	AND
	Rd, Rr
	Logical AND Registers
	Rd ← Rd  Rr
	Z,N,V
	1

	ANDI
	Rd, K
	Logical AND Register and Constant
	Rd ← Rd  K
	Z,N,V
	1

	OR
	Rd, Rr
	Logical OR Registers
	Rd ← Rd v Rr
	Z,N,V
	1

	ORI
	Rd, K
	Logical OR Register and Constant
	Rd ← Rd v K
	Z,N,V
	1

	EOR
	Rd, Rr
	Exclusive OR Registers
	Rd ← Rd ⊕ Rr
	Z,N,V
	1

	COM
	Rd
	One’s Complement
	Rd ← 0xFF − Rd
	Z,C,N,V
	1

	NEG
	Rd
	Two’s Complement
	Rd ← 0x00 − Rd
	Z,C,N,V,H
	1

	SBR
	Rd,K
	Set Bit(s) in Register
	Rd ← Rd v K
	Z,N,V
	1

	CBR
	Rd,K
	Clear Bit(s) in Register
	Rd ← Rd  (0xFF - K)
	Z,N,V
	1

	INC
	Rd
	Increment
	Rd ← Rd + 1
	Z,N,V
	1

	DEC
	Rd
	Decrement
	Rd ← Rd − 1
	Z,N,V
	1

	TST
	Rd
	Test for Zero or Minus
	Rd ← Rd  Rd
	Z,N,V
	1

	CLR
	Rd
	Clear Register
	Rd ← Rd ⊕ Rd
	Z,N,V
	1

	SER
	Rd
	Set Register
	Rd ← 0xFF
	None
	1

	
	Rd, Rr
	Multiply Unsigned
	R1:R0 ← Rd x Rr
	Z,C
	2

	MULS
	Rd, Rr
	Multiply Signed
	R1:R0 ← Rd x Rr
	Z,C
	2

	MULSU
	Rd, Rr
	Multiply Signed with Unsigned
	R1:R0 ← Rd x Rr
	Z,C
	2

	FMUL
	Rd, Rr
	Fractional Multiply Unsigned
	R1:R0 ← (Rd x Rr) << 1
	Z,C
	2

	FMULS
	Rd, Rr
	Fractional Multiply Signed
	R1:R0 ← (Rd x Rr) << 1
	Z,C
	2

	FMULSU
	Rd, Rr
	Fractional Multiply Signed with Unsigned
	R1:R0 ← (Rd x Rr) << 1
	Z,C
	2

	BRANCH INSTRUCTIONS

	RJMP
	k
	Relative Jump
	PC ← PC + k + 1
	None
	2

	IJMP
	
	Indirect Jump to (Z)
	PC ← Z
	None
	2

	RCALL
	k
	Relative Subroutine Call
	PC ← PC + k + 1
	None
	3

	ICALL
	
	Indirect Call to (Z)
	PC ← Z
	None
	3

	RET
	
	Subroutine Return
	PC ← STACK
	None
	4

	RETI
	
	Interrupt Return
	PC ← STACK
	I
	4

	CPSE
	Rd,Rr
	Compare, Skip if Equal
	if (Rd = Rr) PC ← PC + 2 or 3
	None
	1 / 2 / 3

	CP
	Rd,Rr
	Compare
	Rd − Rr
	Z, N,V,C,H
	1

	CPC
	Rd,Rr
	Compare with Carry
	Rd − Rr − C
	Z, N,V,C,H
	1

	CPI
	Rd,K
	Compare Register with Immediate
	Rd − K
	Z, N,V,C,H
	1

	SBRC
	Rr, b
	Skip if Bit in Register Cleared
	if (Rr(b)=0) PC ← PC + 2 or 3
	None
	1 / 2 / 3

	SBRS
	Rr, b
	Skip if Bit in Register is Set
	if (Rr(b)=1) PC ← PC + 2 or 3
	None
	1 / 2 / 3

	SBIC
	P, b
	Skip if Bit in I/O Register Cleared
	if (P(b)=0) PC ← PC + 2 or 3
	None
	1 / 2 / 3

	SBIS
	P, b
	Skip if Bit in I/O Register is Set
	if (P(b)=1) PC ← PC + 2 or 3
	None
	1 / 2 / 3

	BRBS
	s, k
	Branch if Status Flag Set
	if (SREG(s) = 1) then PC←PC+k + 1
	None
	1 / 2

	BRBC
	s, k
	Branch if Status Flag Cleared
	if (SREG(s) = 0) then PC←PC+k + 1
	None
	1 / 2

	BREQ
	k
	Branch if Equal
	if (Z = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRNE
	k
	Branch if Not Equal
	if (Z = 0) then PC ← PC + k + 1
	None
	1 / 2

	BRCS
	k
	Branch if Carry Set
	if (C = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRCC
	k
	Branch if Carry Cleared
	if (C = 0) then PC ← PC + k + 1
	None
	1 / 2

	BRSH
	k
	Branch if Same or Higher
	if (C = 0) then PC ← PC + k + 1
	None
	1 / 2

	BRLO
	k
	Branch if Lower
	if (C = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRMI
	k
	Branch if Minus
	if (N = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRPL
	k
	Branch if Plus
	if (N = 0) then PC ← PC + k + 1
	None
	1 / 2

	BRGE
	k
	Branch if Greater or Equal, Signed
	if (N ⊕ V= 0) then PC ← PC + k + 1
	None
	1 / 2

	BRLT
	k
	Branch if Less Than Zero, Signed
	if (N ⊕ V= 1) then PC ← PC + k + 1
	None
	1 / 2

	BRHS
	k
	Branch if Half Carry Flag Set
	if (H = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRHC
	k
	Branch if Half Carry Flag Cleared
	if (H = 0) then PC ← PC + k + 1
	None
	1 / 2

	BRTS
	k
	Branch if T Flag Set
	if (T = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRTC
	k
	Branch if T Flag Cleared
	if (T = 0) then PC ← PC + k + 1
	None
	1 / 2

	BRVS
	k
	Branch if Overflow Flag is Set
	if (V = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRVC
	k
	Branch if Overflow Flag is Cleared
	if (V = 0) then PC ← PC + k + 1
	None
	1 / 2

	Mnemonics
	Operands
	Description
	Operation
	Flags
	#Clocks

Data transfer instructions of Atmega16
	BRIE
	k
	Branch if Interrupt Enabled
	if (I = 1) then PC ← PC + k + 1
	None
	1 / 2

	BRID
	k
	Branch if Interrupt Disabled
	if (I = 0) then PC ← PC + k + 1
	None
	1 / 2

	DATA TRANSFER INSTRUCTIONS

	MOV
	Rd, Rr
	Move Between Registers
	Rd ← Rr
	None
	1

	MOVW
	Rd, Rr
	Copy Register Word
	Rd+1:Rd ← Rr+1:Rr
	None
	1

	LDI
	Rd, K
	Load Immediate
	Rd ← K
	None
	1

	LD
	Rd, X
	Load Indirect
	Rd ← (X)
	None
	2

	LD
	Rd, X+
	Load Indirect and Post-Inc.
	Rd ← (X), X ← X + 1
	None
	2

	LD
	Rd, - X
	Load Indirect and Pre-Dec.
	X ← X - 1, Rd ← (X)
	None
	2

	LD
	Rd, Y
	Load Indirect
	Rd ← (Y)
	None
	2

	LD
	Rd, Y+
	Load Indirect and Post-Inc.
	Rd ← (Y), Y ← Y + 1
	None
	2

	LD
	Rd, - Y
	Load Indirect and Pre-Dec.
	Y ← Y - 1, Rd ← (Y)
	None
	2

	LDD
	Rd,Y+q
	Load Indirect with Displacement
	Rd ← (Y + q)
	None
	2

	LD
	Rd, Z
	Load Indirect
	Rd ← (Z)
	None
	2

	LD
	Rd, Z+
	Load Indirect and Post-Inc.
	Rd ← (Z), Z ← Z+1
	None
	2

	LD
	Rd, -Z
	Load Indirect and Pre-Dec.
	Z ← Z - 1, Rd ← (Z)
	None
	2

	LDD
	Rd, Z+q
	Load Indirect with Displacement
	Rd ← (Z + q)
	None
	2

	LDS
	Rd, k
	Load Direct from SRAM
	Rd ← (k)
	None
	2

	ST
	X, Rr
	Store Indirect
	(X) ← Rr
	None
	2

	ST
	X+, Rr
	Store Indirect and Post-Inc.
	(X) ← Rr, X ← X + 1
	None
	2

	ST
	- X, Rr
	Store Indirect and Pre-Dec.
	X ← X - 1, (X) ← Rr
	None
	2

	ST
	Y, Rr
	Store Indirect
	(Y) ← Rr
	None
	2

	ST
	Y+, Rr
	Store Indirect and Post-Inc.
	(Y) ← Rr, Y ← Y + 1
	None
	2

	ST
	- Y, Rr
	Store Indirect and Pre-Dec.
	Y ← Y - 1, (Y) ← Rr
	None
	2

	STD
	Y+q,Rr
	Store Indirect with Displacement
	(Y + q) ← Rr
	None
	2

	ST
	Z, Rr
	Store Indirect
	(Z) ← Rr
	None
	2

	ST
	Z+, Rr
	Store Indirect and Post-Inc.
	(Z) ← Rr, Z ← Z + 1
	None
	2

	ST
	-Z, Rr
	Store Indirect and Pre-Dec.
	Z ← Z - 1, (Z) ← Rr
	None
	2

	STD
	Z+q,Rr
	Store Indirect with Displacement
	(Z + q) ← Rr
	None
	2

	STS
	k, Rr
	Store Direct to SRAM
	(k) ← Rr
	None
	2

	LPM
	
	Load Program Memory
	R0 ← (Z)
	None
	3

	LPM
	Rd, Z
	Load Program Memory
	Rd ← (Z)
	None
	3

	LPM
	Rd, Z+
	Load Program Memory and Post-Inc
	Rd ← (Z), Z ← Z+1
	None
	3

	SPM
	
	Store Program Memory
	(Z) ← R1:R0
	None
	-

	IN
	Rd, P
	In Port
	Rd ← P
	None
	1

	OUT
	P, Rr
	Out Port
	P ← Rr
	None
	1

	PUSH
	Rr
	Push Register on Stack
	STACK ← Rr
	None
	2

	POP
	Rd
	Pop Register from Stack
	Rd ← STACK
	None
	2

	BIT AND BIT-TEST INSTRUCTIONS

	SBI
	P,b
	Set Bit in I/O Register
	I/O(P,b) ← 1
	None
	2

	CBI
	P,b
	Clear Bit in I/O Register
	I/O(P,b) ← 0
	None
	2

	LSL
	Rd
	Logical Shift Left
	Rd(n+1) ← Rd(n), Rd(0) ← 0
	Z,C,N,V
	1

	LSR
	Rd
	Logical Shift Right
	Rd(n) ← Rd(n+1), Rd(7) ← 0
	Z,C,N,V
	1

	ROL
	Rd
	Rotate Left Through Carry
	Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
	Z,C,N,V
	1

	ROR
	Rd
	Rotate Right Through Carry
	Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
	Z,C,N,V
	1

	ASR
	Rd
	Arithmetic Shift Right
	Rd(n) ← Rd(n+1), n=0..6
	Z,C,N,V
	1

	SWAP
	Rd
	Swap Nibbles
	Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
	None
	1

	BSET
	s
	Flag Set
	SREG(s) ← 1
	SREG(s)
	1

	BCLR
	s
	Flag Clear
	SREG(s) ← 0
	SREG(s)
	1

	BST
	Rr, b
	Bit Store from Register to T
	T ← Rr(b)
	T
	1

	BLD
	Rd, b
	Bit load from T to Register
	Rd(b) ← T
	None
	1

	SEC
	
	Set Carry
	C ← 1
	C
	1

	CLC
	
	Clear Carry
	C ← 0
	C
	1

	SEN
	
	Set Negative Flag
	N ← 1
	N
	1

	CLN
	
	Clear Negative Flag
	N ← 0
	N
	1

	SEZ
	
	Set Zero Flag
	Z ← 1
	Z
	1

	CLZ
	
	Clear Zero Flag
	Z ← 0
	Z
	1

	SEI
	
	Global Interrupt Enable
	I ← 1
	I
	1

	CLI
	
	Global Interrupt Disable
	I ← 0
	I
	1

	SES
	
	Set Signed Test Flag
	S ← 1
	S
	1

	CLS
	
	Clear Signed Test Flag
	S ← 0
	S
	1

	SEV
	
	Set Twos Complement Overflow.
	V ← 1
	V
	1

	CLV
	
	Clear Twos Complement Overflow
	V ← 0
	V
	1

	SET
	
	Set T in SREG
	T ← 1
	T
	1

	Mnemonics
	Operands
	Description
	Operation
	Flags
	#Clocks

APPENDIX 2

Datasheet of JHD162A
JHD 162A is the 16 * 2 LCD display module we used in our project.
DESCRIPTION:
[image: image26.png]JHD162A SERIES

JZAF?P?ARCPGQRGAQ £ DISPLAY CONTENT Z16 CHAR x 2ROW
CHAR.DOTSZ£5 X 8
DRIVING MODE £ 1/16D
AVAILABLE TYPES £
TNIXSTN(YELLOW GREEN™ GREY™ B/W)
REFLECTIVE™ WITH EL OR LED BACKLIGHT

EL/100VACIX400HZ
LED/4.2VDC
JENPPPKCRCP &Tw;3,. T1 /. #%Tw;. T*R_;03 8
Parameter Testing Standard Values
Symbol | Criteria | Min | Typ. | Max | Unit
Supply voliage VooV - 45 | s0 | 55 | v
s
Input high voltage Vin - 2 | - |V |V
Input low voliage Vi - 03| - o6 |V
Oupuinighvoisge | Vou | -low=02mA | 24 | - R
Oupu lowvolage | Vou | lo=l2mA | - - os |y
Operating voliage o | Veossov | - 15 | 30 | ma

[image: image27.png]CONTROL

1sT

Ks0066
OR EQUIV

COM16

.

LCD PANEL

SEG40 /
SEG40

%L.

SEGMENT DRIVER

Figure a: Interfacing diagram of the 16*2 display
[image: image28.png]DBO"+ DB7 Uik vewoes O

! o\ Vi
DBO+*DB7] v o vaid oam A"

Figure b: write mode timing diagram of the 16*2 display
[image: image29.png]10

11

13

15

16

Vss

vece

VEE

RS

R/W

DBO0

DBI

DB2

DB3

DB4

DB5

DB6

DB7

LED+

LED-

Figure c: Pin descriptions of 162 LCD display

[image: image30.png]Write Mode
(Refer to Fig-6)

Read Mode
(Refer to Fig-7)

Characteristic Symbol Min.

E Cycle Time

E Rise / Fall Time tate
E Pulse Width (High, Low)
R/W and RS Setup Time tsul

R/W and RS Hold Time the
Data Setup Time tsu2

Data Hold Time
E Cycle Time
E Rise / Fall Time

E Pulse Width (High, Low)

R/W and RS Setup Time

R/W and RS Hold Time

Data Output Delay Time

Data Hold Time

ns

ns

[image: image31.png]vee
LCD
1 [vss
2 vee
| RLCD 3 VEE
4 RS
s Rw
ul Ve 6 |
1 P10 poo —2 L
2 38 s |pl
PIl POl
3 37 9 |p2
] P12 P02 5 s
P13 P03 —1lo oo
5 y 35 1 o4
Pl4 P04
6 o |34 12 |ps
P15 POS
7 Pl6 P06 33 13 D6
—£ o7 P07 32 14 o7
15 i+
13 i p20 |21 16 |-
-2 3 1o P21 [—22
2 16PIN
15 ATS9CS1 o 24
TN P23 [—3¢
o P24
p2s —32 Ve
L e 26 —- =
p27 —28
19
RXD —L}I
TXD
ALEP —;%
PSEN

[image: image32.png]e /S

Intemal Intemal Operation
aagnal

.(I\ J\ :‘I\ A

'
sk &_“ lag Chack Busy Flag Check Instruction

Instruction Busy Fiag C

Figue e: Clock and timing diagram
[image: image33.png]Table 5. Relationship between Character Code (DDRAM) and Character Pattern (CGRAM)

Character Code (DDRAM data) CGRAM Address Pattern
D7 D6 D5 D4 D3 D2 D1 DO|A5 A4 A3 A2 Al AO|P7 P6 P5 P4 P3 P2 P1 Po| number
0 0 00 x 0 0 0[O0 0 0 0 € 0O T 1) 0| pattern 1

patiern

Figue f: Relationship between character code and characted pattern (JHD162A)
Keypad interfacing
[image: image34.png]Introduction

This Application Note describes programming techniques implemented on the AT91
ARM-based microcontroller for scanning a 4x4 Keyboard matrix usually found in both
consumer and industrial applications for numeric data entry.

AT91 Keyboard interface

In this application, a 4x4 matrix keypad requiring eight Input/Output ports for interfac-
ing is used as an example.

Rows are connected to Peripheral Input/Output (P1O) pins configured as output. Col-
umns are connected to PIO pins configured as input with interrupts. In this
configuration, four pull-up resistors must be added in order to apply a high level on the
corresponding input pins as shown in Figure 1. The corresponding hexadecimal value
of the pressed key is sent on four LEDs.

 [image: image35.png]Introduction

This Application Note describes programming techniques implemented on the AT91
ARM-based microcontroller for scanning a 4x4 Keyboard matrix usually found in both
consumer and industrial applications for numeric data entry.

AT91 Keyboard interface

In this application, a 4x4 matrix keypad requiring eight Input/Output ports for interfac-
ing is used as an example.

Rows are connected to Peripheral Input/Output (P1O) pins configured as output. Col-
umns are connected to PIO pins configured as input with interrupts. In this
configuration, four pull-up resistors must be added in order to apply a high level on the
corresponding input pins as shown in Figure 1. The corresponding hexadecimal value
of the pressed key is sent on four LEDs.

[image: image36.png]Introduction

This Application Note describes programming techniques implemented on the AT91
ARM-based microcontroller for scanning a 4x4 Keyboard matrix usually found in both
consumer and industrial applications for numeric data entry.

AT91 Keyboard interface

In this application, a 4x4 matrix keypad requiring eight Input/Output ports for interfac-
ing is used as an example.

Rows are connected to Peripheral Input/Output (P1O) pins configured as output. Col-
umns are connected to PIO pins configured as input with interrupts. In this
configuration, four pull-up resistors must be added in order to apply a high level on the
corresponding input pins as shown in Figure 1. The corresponding hexadecimal value
of the pressed key is sent on four LEDs.

[image: image37.png]Introduction

This Application Note describes programming techniques implemented on the AT91
ARM-based microcontroller for scanning a 4x4 Keyboard matrix usually found in both
consumer and industrial applications for numeric data entry.

AT91 Keyboard interface

In this application, a 4x4 matrix keypad requiring eight Input/Output ports for interfac-
ing is used as an example.

Rows are connected to Peripheral Input/Output (P1O) pins configured as output. Col-
umns are connected to PIO pins configured as input with interrupts. In this
configuration, four pull-up resistors must be added in order to apply a high level on the
corresponding input pins as shown in Figure 1. The corresponding hexadecimal value
of the pressed key is sent on four LEDs.

[image: image38.png]AT91

Rows
(Output) <

<

Columns
(Input with Interrupt)

(PO

PIO

PIO

\.ri0

(Pi0
PIO

(_Po

VOC

VCC

VOC

VOC

100Ki 100Ki 100K i 100Ki

R

TH

o

T

ol

o

sH

20

B'L

o

ol

3'£_

i

el

D'L

ol

Figue g: 4 cross 4 hex keypad interfacing diagram
[image: image39.png]PIO Interrupt Timer Interrupt

Any Key
Pressed?

Any Key
Pressed?

Yes
Start Timer
Debouncing
e
Exit PIO Interrupt

Yes
Encode and Display
Key Pressed
e ———

Exit Timer Interrupt

Figue h: 4 cross 4 hex keypad scan flowchart

[image: image40.png]/1% xeyboara Rows definition
#4efine XEVBOARD_ROWO (1<<l)//* on B1
#4efine XEVBOARD_ROWI(1<<2)//* on P2
#4efine XEYBOARD_ROW2 (1<<3)//* on B3
#4efine XEYROARD_ROWS (1<<4)//" on B4

#define XEYEOARD_ROW_MASX
(KEYBOARD_ROVO | XEYBOARD_ROW1 | KEYBOARD_R0W2 | KEVBOARD_ROW3)

/1% xeyboara Columns definition
#4efine XEYBOARD_COLUMNO (1<<5)//* on BS
#4efine XEYBOARD_COLUMNI (1<<6)//* on B6
#4efine XEYBOARD_COLUMNZ (1<<7)//* on B7
#4efine XEYROARD_COLUMN3 (1<<8)//* on B8

#define XEYEOARD_COLUMN_ MASX
(KEY20ARD_COLUMNO | XEYBOARD_COLUMN | XEYEOARD_COLUMN2 | KEYEOARD_COLUMN3)

/% Reyboard translation
#4etine COLUMNOO
#aefine coLUMNIL
#etine coLUMNZ2
#aefine COLUMNI3

#4etine 2000
#etine ROWLL
#etine ROW22
#etine R0W33
$define New_Xey Pressed 0x01

Figue h: Keypad initialization program in AVR studio 4 (C language).

Get the message from the keypad

Send the decrypted data to the LCD display

Decrypt the data

Get data at the AM receiver

START

Send serial data at 2400 bauds

Issue signals to LCD based on the sent/encoded byte

Encrypt the fetched data

START

PAGE
Dept. of E&C, SJCE

