A DISTRIBUTED PROTOCOL TO SERVE DYNAMIC GROUPS
FOR PEER-TO-PEER STREAMING

ABSTRACT:
Peer-to-peer (P2P) streaming has been widely deployed over the Internet. A streaming system usually has multiple channels, and peers may form multiple groups for content distribution. In this paper, we propose a distributed overlay framework (called SMesh) for dynamic groups where users may frequently hop from one group to another while the total pool of users remain stable. SMesh first builds a relatively stable mesh consisting of all hosts for control messaging. The mesh supports dynamic host joining and leaving, and will guide the construction of delivery trees. Using the Delaunay Triangulation (DT) protocol as an example, we show how to construct an efficient mesh with low maintenance cost. We further study various tree construction mechanisms based on the mesh, including embedded, bypass, and intermediate trees. Through simulations on Internet-like topologies, we show that SMesh achieves low delay and low link stress.

INTRODUCTION:

With the penetration of broadband Internet access, there has been an increasing interest in media streaming services. Recently, P2P streaming has been proposed and developed to overcome the limitations of traditional server-based streaming. In a P2P streaming system, cooperative peers self-organize themselves into an overlay network via unicast connections. They cache and relay data for each other, thereby eliminating the need for resourceful servers from the system. Today, several practical P2P streaming software implementations have been shown to be able to serve up to thousands of peers with acceptable quality of service.

In a P2P streaming system, the server (or a set of servers) usually provides multiple channels. A peer can freely switch from one channel to another. For example, one of the most popular P2P streaming systems, PP Live, has provided over 400 channels according to a measurement study from the Polytechnic University, the total number of peers in PP Live during a day in 2007 varies from around 50 thousand to 400 thousand, and the number of peers in a single channel, e.g., CCTV1, varies from several hundred to several thousand. We can see that there is a large pool of peers in the streaming network. Peers are divided into multiple small groups, each corresponding to a channel. Peers in the same group share and relay the same streaming content for each other. In another study, a six-month 150- channel IPTV trace shows that people frequently change from one channel to another, with the median and mean channel holding time being 8 seconds and 14.8 minutes, respectively. In fact, there are many other similar applications over the Internet. In the application, the system contains multiple groups with different sources and contents. A user may join a specific group according to its interest. While the lifetime of users in the system is relatively long and the user pool is rather stable, users may hop from one group to another quite frequently.

In above applications, as peers may dynamically hop from one group to another, it becomes an important issue to efficiently deliver specific contents to peers. One obvious approach is to broadcast all contents to all hosts and let them select the contents. Clearly, this is not efficient in terms of bandwidth and end-to-end delay, especially for unpopular channels. Maintaining a separate and distinct delivery overlay for each channel appears to be another solution. However, this approach introduces high control overhead to maintain multiple dynamic overlays.

In this paper, we consider building a data delivery tree for each group. To reduce tree construction and maintenance costs, we build a single shared overlay mesh. The mesh is formed by all peers in the system and is, hence, independent of joining and leaving events in any group. This relatively stable mesh is used for control messaging and guiding the construction of overlay trees. With the help of the mesh, trees can be efficiently constructed with no need of loop detection and elimination. Since an overlay tree serves only a subset of peers in the network, we term this framework Subset-Mesh, or SMesh. Our framework may use any existing mesh-based overlay network. In this paper, we use Delaunay Triangulation (DT) as an example [10]. We propose several techniques to improve the DT mesh, e.g., for accurately estimating host locations and distributed partition detection. Based on the mesh, we study several tree construction mechanisms to trade off delay and network resource consumption.

We further present a distributed algorithm on how to detect and recover mesh partitions.
Our mesh has the following properties: - Low delivery delay: As mesh formation and message forwarding are based on hosts’ network locations, the delay for data delivery is significantly reduced as compared to that in the traditional DT mesh.

· Distributed: Unlike the traditional DT mesh, SMesh does not require a central server for mesh maintenance. It is fully distributed and scalable.
· Construction of data delivery trees: Given the mesh, we study how source-specific overlay trees can be efficiently constructed and maintained.
· We consider three ways to construct a tree:
1) Embedded tree, where tree branches are all mesh edges;
2) Bypass tree, where tree nodes can only be group members and tree branches may not be mesh edges; and
3) Intermediate tree, which is a trade-off between an embedded tree and a bypass tree.
These trees have the following properties:

Overhead reduction: As compared to traditional tree-based protocols, SMesh achieves much lower control overhead for tree construction and maintenance. This is because the mesh has maintained enough host information and can efficiently deal with host hopping between different groups.
QoS provisioning: SMesh provides QoS in the following senses:
1) It limits the node stress of a host in a tree according to the host’s capability.
2) It aggregates long-delay paths and delegates data delivery to shorter paths. As a result, packets may take more hops to reach their destinations, and this trades off end-to-end delay with network resource consumption. SMesh does not rely on a static mesh. In the case of host joining or leaving, the underlying DT mesh can automatically adjust itself to form a new mesh. The trees on top of it will then accordingly adjust tree nodes and tree edges. Also note that in SMesh a host may join as many groups as its local resource allows. If a host joins multiple groups, its operations in different groups are independent of each other.

EXISTING SYSTEM:

Peer-to-peer (P2P) networks have been adopted for Internet live video-streaming service, and several practical systems have been deployed in past years due to the inherent scalability and ease of deployment. However, most of these systems are commercial and proprietary, and hence little research was done in the area of characterizing practical system performance properties. In this article, we mainly present our experience on a practical P2P-based live video- streaming system called Grid Media, which was employed to broadcast live the Chinese Spring Festival Gala show over the Internet a trace study to understand the service capacity, quality of streaming service, connection heterogeneity, user geographic distribution, and request and online duration characteristics.

PROPOSED SYSTEM:

Peer-to-peer (P2P) streaming has been widely deployed over the Internet. A streaming system usually has multiple channels, and peers may form multiple groups for content distribution. In this paper, we propose a distributed overlay framework (called SMesh) for dynamic groups where users may frequently hop from one group to another while the total pool of users remain stable. SMesh first builds a relatively stable mesh consisting of all hosts for control messaging. The mesh supports dynamic host joining and leaving, and will guide the construction of delivery trees. With the penetration of broadband Internet access, there has been an increasing interest in media streaming services. Recently, P2P streaming has been proposed and developed to overcome the limitations of traditional server-based streaming. In a P2P streaming system, cooperative peers self-organize themselves into an overlay network via unicast connections. They cache and relay data for each other, thereby eliminating the need for resourceful servers from the system. We can see that there is a large pool of peers in the streaming network. Peers are divided into multiple small groups, each corresponding to a channel. In the traditional DT protocol, each host knows its geographic coordinates. Hosts form a DT mesh based on their geographic coordinates. Compass routing, a kind of local routing, is then used to route a message along the mesh. In this approach, a host only needs to know the states of its immediate neighbors to construct and maintain the mesh, and the mesh is adaptive to dynamic host joining or leaving. Our observations shed light on those systems and further improvements in the arena of large-scale live video-streaming service over the Internet.

HARDWARE & SOFTWARE SPECIFICATION:

HARDWARE SPECIFICATION:
Processor : 	Pentium IV 2.8GHz.
RAM : 	512 MB RAM.
Hard Disk 	: 	40 GB.
Input device 	: 	Standard Keyboard and Mouse.
Output device 	: 	VGA and High Resolution Monitor.

SOFTWARE SPECIFICATION:
Operating System 	: 	Windows XP
Language 		: 	JDK 1.5.

IMPLEMENTATION:
Implementation is the stage of the project when the theoretical design is turned out into a working system. Thus it can be considered to be the most critical stage in achieving a successful new system and in giving the user, confidence that the new system will work and be effective.
	The implementation stage involves careful planning, investigation of the existing system and it’s constraints on implementation, designing of methods to achieve changeover and evaluation of changeover methods.

MODULE DESCRIPTION:

NETWORK MODULE:

Client-server computing or networking is a distributed application architecture that partitions tasks or workloads between service providers (servers) and service requesters, called clients. Often clients and servers operate over a computer network on separate hardware. A server machine is a high-performance host that is running one or more server programs which share its resources with clients. A client also shares any of its resources; Clients therefore initiate communication sessions with servers which await (listen to) incoming requests.

DYNAMIC RANDOMIZATION GROUP:
The delivery of a packet with the destination at a node in order to minimize the probability that packets are eavesdropped over a specific link, a randomization process for packet deliveries, in this process, the previous next-hop for the source node s is identified in the first step of the process. Then, the process randomly picks up a neighboring node as the next hop for the current packet transmission. The exclusion for the next hop selection avoids transmitting two consecutive packets in the same link, and the randomized pickup prevents attackers from easily predicting routing paths for the coming transmitted packets.

In above applications, as peers may dynamically hop from one group to another, it becomes an important issue to efficiently deliver specific contents to peers. One obvious approach is to broadcast all contents to all hosts and let them select the contents. Clearly, this is not efficient in terms of bandwidth and end-to-end delay, especially for unpopular channels. Maintaining a separate and distinct delivery overlay for each channel appears to be another solution. However, this approach introduces high control overhead to maintain multiple dynamic overlays.

PEER-TO-PEER STREAMING:

Peer-to-peer (P2P) streaming has been widely deployed over the Internet. A streaming system usually has multiple channels, and peers may form multiple groups for content distribution. a distributed overlay framework (called SMesh) for dynamic groups where users may frequently hop from one group to another while the total pool of users remain stable. SMesh first builds a relatively stable mesh consisting of all hosts for control messaging. The mesh supports dynamic host joining and leaving, and will guide the construction of delivery trees. Using the Delaunay Triangulation (DT) protocol as an example, we show how to construct an efficient mesh with low maintenance cost.

Internet access, there has been an increasing interest in media streaming services. Recently, P2P streaming has been proposed and developed to overcome the limitations of traditional server-based streaming. In a P2P streaming system, cooperative peers self-organize themselves into an overlay network via unicast connections. They cache and relay data for each other, thereby eliminating the need for resourceful servers from the system. In a P2P streaming system, the server (or a set of servers) usually provides multiple channels. A peer can freely switch from one channel to another for example, one of the most popular P2P streaming systems.

In this paper, we consider building a data delivery tree for each group. To reduce tree construction and maintenance costs, we build a single shared overlay mesh. The mesh is formed by all peers in the system and is, hence, independent of joining and leaving events in any group. This relatively stable mesh is used for control messaging and guiding the construction of overlay trees. With the help of the mesh, trees can be efficiently constructed with no need of loop detection and elimination. Since an overlay tree serves only a subset of peers in the network.

DELAUNAY TRIANGULATION (DT):

The mesh supports dynamic host joining and leaving, and will guide the construction of delivery trees. Using the Delaunay Triangulation (DT) protocol as an example, we show how to construct an efficient mesh with low maintenance cost. We further study various tree construction mechanisms based on the mesh, including embedded, bypass, and intermediate trees. Through simulations on Internet-like topologies, we show that SMesh achieves low delay and low link stress. In the traditional DT protocol, each host knows its geographic coordinates. Hosts form a DT mesh based on their geographic coordinates. Compass routing, a kind of local routing, is then used to route a message along the mesh. In this approach, a host only needs to know the states of its immediate neighbors to construct and maintain the mesh, and the mesh is adaptive to dynamic host joining or leaving. In the traditional DT protocol, mesh partition is detected by a central server. In each connected DT mesh, a host is selected as the leader, which periodically exchanges control messages with the server. If the mesh is partitioned, more than one host will claim to be leaders. The server then requests them to connect to each other.

SYSTEM STUDY:

FEASIBILITY STUDY:
The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.
Three key considerations involved in the feasibility analysis are	
· ECONOMICAL FEASIBILITY
· TECHNICAL FEASIBILITY
· SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY:
 This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY:
This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.

SOCIAL FEASIBILITY:
 The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.

SYSTEM TESTING:

 The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

TYPES OF TESTS:

Unit testing:

 Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program inputs produce valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

Integration testing:

 Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

Functional test:

 Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals.
Functional testing is centered on the following items:
Valid Input 	: 	identified classes of valid input must be accepted.
Invalid Input 	: 	identified classes of invalid input must be rejected.
Functions 	: 	identified functions must be exercised.
Output 	 	: 	identified classes of application outputs must be exercised.
Systems/Procedures: interfacing systems or procedures must be invoked.

 	Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

System Test:

 System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

White Box Testing:

 White Box Testing is a testing in which in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is purpose. It is used to test areas that cannot be reached from a black box level.

Black Box Testing:

 Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without considering how the software works.

Unit Testing:

	Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct phases.

Test strategy and approach
	Field testing will be performed manually and functional tests will be written in detail.

Test objectives:
· All field entries must work properly.
· Pages must be activated from the identified link.
· The entry screen, messages and responses must not be delayed.

Features to be tested:
· Verify that the entries are of the correct format
· No duplicate entries should be allowed
· All links should take the user to the correct page.

Integration Testing:

	Software integration testing is the incremental integration testing of two or more integrated software components on a single platform to produce failures caused by interface defects.
	The task of the integration test is to check that components or software applications, e.g. components in a software system or – one step up – software applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

Acceptance Testing:

	User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

SOFTWARE ENVIRONMENT:

Java Technology

Java technology is both a programming language and a platform.

The Java Programming Language
	The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

· Simple
· Architecture neutral
· Object oriented
· Portable
· Distributed	
· High performance
· Interpreted	
· Multithreaded
· Robust
· Dynamic
· Secure	

With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java programming language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a program into an intermediate language called Java byte codes —the platform-independent codes interpreted by the interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works.

[image: g1]
	
	You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a development tool or a Web browser that can run applets, is an implementation of the Java VM. Java byte codes help make “write once, run anywhere” possible. You can compile your program into byte codes on any platform that has a Java compiler. The byte codes can then be run on any implementation of the Java VM. That means that as long as a computer has a Java VM, the same program written in the Java programming language can run on Windows 2000, a Solaris workstation, or on an iMac.

[image: helloWorld]

The Java Platform
A platform is the hardware or software environment in which a program runs. We’ve already mentioned some of the most popular platforms like Windows 2000, Linux, Solaris, and MacOS. Most platforms can be described as a combination of the operating system and hardware. The Java platform differs from most other platforms in that it’s a software-only platform that runs on top of other hardware-based platforms.
The Java platform has two components:
· The Java Virtual Machine (Java VM)
· The Java Application Programming Interface (Java API)
You’ve already been introduced to the Java VM. It’s the base for the Java platform and is ported onto various hardware-based platforms.
The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do? Highlights what functionality some of the packages in the Java API provide.
The following figure depicts a program that’s running on the Java platform. As the figure shows, the Java API and the virtual machine insulate the program from the hardware.
[image: g3]
Native code is code that after you compile it, the compiled code runs on a specific hardware platform. As a platform-independent environment, the Java platform can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and just-in-time byte code compilers can bring performance close to that of native code without threatening portability.

What Can Java Technology Do?

The most common types of programs written in the Java programming language are applets and applications. If you’ve surfed the Web, you’re probably already familiar with applets. An applet is a program that adheres to certain conventions that allow it to run within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining applets for the Web. The general-purpose, high-level Java programming language is also a powerful software platform. Using the generous API, you can write many types of programs.

An application is a standalone program that runs directly on the Java platform. A special kind of application known as a server serves and supports clients on a network. Examples of servers are Web servers, proxy servers, mail servers, and print servers. Another specialized program is a servlet. A servlet can almost be thought of as an applet that runs on the server side. Java Servlets are a popular choice for building interactive web applications, replacing the use of CGI scripts. Servlets are similar to applets in that they are runtime extensions of applications. Instead of working in browsers, though, servlets run within Java Web servers, configuring or tailoring the server.
How does the API support all these kinds of programs? It does so with packages of software components that provides a wide range of functionality. Every full implementation of the Java platform gives you the following features:

· The essentials: Objects, strings, threads, numbers, input and output, data structures, system properties, date and time, and so on.
· Applets: The set of conventions used by applets.
· Networking: URLs, TCP (Transmission Control Protocol), UDP (User Data gram Protocol) sockets, and IP (Internet Protocol) addresses.
· Internationalization: Help for writing programs that can be localized for users worldwide. Programs can automatically adapt to specific locales and be displayed in the appropriate language.
· Security: Both low level and high level, including electronic signatures, public and private key management, access control, and certificates.
· Software components: Known as JavaBeansTM, can plug into existing component architectures.
· Object serialization: Allows lightweight persistence and communication via Remote Method Invocation (RMI).
· Java Database Connectivity (JDBCTM): Provides uniform access to a wide range of relational databases.
The Java platform also has APIs for 2D and 3D graphics, accessibility, servers, collaboration, telephony, speech, animation, and more. The following figure depicts what is included in the Java 2 SDK.

[image: gs5]

How Will Java Technology Change My Life?
We can’t promise you fame, fortune, or even a job if you learn the Java programming language. Still, it is likely to make your programs better and requires less effort than other languages. We believe that Java technology will help you do the following:
· Get started quickly: Although the Java programming language is a powerful object-oriented language, it’s easy to learn, especially for programmers already familiar with C or C++.
· Write less code: Comparisons of program metrics (class counts, method counts, and so on) suggest that a program written in the Java programming language can be four times smaller than the same program in C++.
· Write better code: The Java programming language encourages good coding practices, and its garbage collection helps you avoid memory leaks. Its object orientation, its JavaBeans component architecture, and its wide-ranging, easily extendible API let you reuse other people’s tested code and introduce fewer bugs.
· Develop programs more quickly: Your development time may be as much as twice as fast versus writing the same program in C++. Why? You write fewer lines of code and it is a simpler programming language than C++.
· Avoid platform dependencies with 100% Pure Java: You can keep your program portable by avoiding the use of libraries written in other languages. The 100% Pure JavaTM Product Certification Program has a repository of historical process manuals, white papers, brochures, and similar materials online.
· Write once, run anywhere: Because 100% Pure Java programs are compiled into machine-independent byte codes, they run consistently on any Java platform.
· Distribute software more easily: You can upgrade applets easily from a central server. Applets take advantage of the feature of allowing new classes to be loaded “on the fly,” without recompiling the entire program.

ODBC:

Microsoft Open Database Connectivity (ODBC) is a standard programming interface for application developers and database systems providers. Before ODBC became a de facto standard for Windows programs to interface with database systems, programmers had to use proprietary languages for each database they wanted to connect to. Now, ODBC has made the choice of the database system almost irrelevant from a coding perspective, which is as it should be. Application developers have much more important things to worry about than the syntax that is needed to port their program from one database to another when business needs suddenly change.

Through the ODBC Administrator in Control Panel, you can specify the particular database that is associated with a data source that an ODBC application program is written to use. Think of an ODBC data source as a door with a name on it. Each door will lead you to a particular database. For example, the data source named Sales Figures might be a SQL Server database, whereas the Accounts Payable data source could refer to an Access database. The physical database referred to by a data source can reside anywhere on the LAN.

The ODBC system files are not installed on your system by Windows 95. Rather, they are installed when you setup a separate database application, such as SQL Server Client or Visual Basic 4.0. When the ODBC icon is installed in Control Panel, it uses a file called ODBCINST.DLL. It is also possible to administer your ODBC data sources through a stand-alone program called ODBCADM.EXE. There is a 16-bit and a 32-bit version of this program and each maintains a separate list of ODBC data sources.

From a programming perspective, the beauty of ODBC is that the application can be written to use the same set of function calls to interface with any data source, regardless of the database vendor. The source code of the application doesn’t change whether it talks to Oracle or SQL Server. We only mention these two as an example. There are ODBC drivers available for several dozen popular database systems. Even Excel spreadsheets and plain text files can be turned into data sources. The operating system uses the Registry information written by ODBC Administrator to determine which low-level ODBC drivers are needed to talk to the data source (such as the interface to Oracle or SQL Server). The loading of the ODBC drivers is transparent to the ODBC application program. In a client/server environment, the ODBC API even handles many of the network issues for the application programmer.

The advantages of this scheme are so numerous that you are probably thinking there must be some catch. The only disadvantage of ODBC is that it isn’t as efficient as talking directly to the native database interface. ODBC has had many detractors make the charge that it is too slow. Microsoft has always claimed that the critical factor in performance is the quality of the driver software that is used. In our humble opinion, this is true. The availability of good ODBC drivers has improved a great deal recently. And anyway, the criticism about performance is somewhat analogous to those who said that compilers would never match the speed of pure assembly language. Maybe not, but the compiler (or ODBC) gives you the opportunity to write cleaner programs, which means you finish sooner. Meanwhile, computers get faster every year.

JDBC:

In an effort to set an independent database standard API for Java; Sun Microsystems developed Java Database Connectivity, or JDBC. JDBC offers a generic SQL database access mechanism that provides a consistent interface to a variety of RDBMSs. This consistent interface is achieved through the use of “plug-in” database connectivity modules, or drivers. If a database vendor wishes to have JDBC support, he or she must provide the driver for each platform that the database and Java run on.
To gain a wider acceptance of JDBC, Sun based JDBC’s framework on ODBC. As you discovered earlier in this chapter, ODBC has widespread support on a variety of platforms. Basing JDBC on ODBC will allow vendors to bring JDBC drivers to market much faster than developing a completely new connectivity solution.
JDBC was announced in March of 1996. It was released for a 90 day public review that ended June 8, 1996. Because of user input, the final JDBC v1.0 specification was released soon after.

The remainder of this section will cover enough information about JDBC for you to know what it is about and how to use it effectively. This is by no means a complete overview of JDBC. That would fill an entire book.

JDBC Goals:

Few software packages are designed without goals in mind. JDBC is one that, because of its many goals, drove the development of the API. These goals, in conjunction with early reviewer feedback, have finalized the JDBC class library into a solid framework for building database applications in Java.
The goals that were set for JDBC are important. They will give you some insight as to why certain classes and functionalities behave the way they do. The eight design goals for JDBC are as follows:

1. SQL Level API

 The designers felt that their main goal was to define a SQL interface for Java. Although not the lowest database interface level possible, it is at a low enough level for higher-level tools and APIs to be created. Conversely, it is at a high enough level for application programmers to use it confidently. Attaining this goal allows for future tool vendors to “generate” JDBC code and to hide many of JDBC’s complexities from the end user.
2. SQL Conformance

SQL syntax varies as you move from database vendor to database vendor. In an effort to support a wide variety of vendors, JDBC will allow any query statement to be passed through it to the underlying database driver. This allows the connectivity module to handle non-standard functionality in a manner that is suitable for its users.

3. JDBC must be implemental on top of common database interfaces
 	 The JDBC SQL API must “sit” on top of other common SQL level APIs. This goal allows JDBC to use existing ODBC level drivers by the use of a software interface. This interface would translate JDBC calls to ODBC and vice versa.

4. Provide a Java interface that is consistent with the rest of the Java system

Because of Java’s acceptance in the user community thus far, the designers feel that they should not stray from the current design of the core Java system.
5. Keep it simple

This goal probably appears in all software design goal listings. JDBC is no exception. Sun felt that the design of JDBC should be very simple, allowing for only one method of completing a task per mechanism. Allowing duplicate functionality only serves to confuse the users of the API.

6. Use strong, static typing wherever possible
 Strong typing allows for more error checking to be done at compile time; also, less error appear at runtime.
7. Keep the common cases simple
 Because more often than not, the usual SQL calls used by the programmer are simple SELECT’s, INSERT’s, DELETE’s and UPDATE’s, these queries should be simple to perform with JDBC. However, more complex SQL statements should also be possible.
Finally we decided to proceed the implementation using Java Networking.
And for dynamically updating the cache table we go for MS Access database.
 Java ha two things: a programming language and a platform.
 Java is a high-level programming language that is all of the following

			Simple			Architecture-neutral
			Object-oriented		Portable
Distributed 			High-performance
			Interpreted			multithreaded
			Robust			Dynamic
			Secure
		
Java is also unusual in that each Java program is both compiled and interpreted. With a compile you translate a Java program into an intermediate language called Java byte codes the platform-independent code instruction is passed and run on the computer.
Compilation happens just once; interpretation occurs each time the program is executed. The figure illustrates how this works.

 (
Java

Program
Compilers
Interpreter
My Program
)

You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a Java development tool or a Web browser that can run Java applets, is an implementation of the Java VM. The Java VM can also be implemented in hardware.

Java byte codes help make “write once, run anywhere” possible. You can compile your Java program into byte codes on my platform that has a Java compiler. The byte codes can then be run any implementation of the Java VM. For example, the same Java program can run Windows NT, Solaris, and Macintosh.

Networking TCP/IP stack:
The TCP/IP stack is shorter than the OSI one:
[image: xxx_files/tcp_stack.gif]
TCP is a connection-oriented protocol; UDP (User Datagram Protocol) is a connectionless protocol.
IP datagram’s:
The IP layer provides a connectionless and unreliable delivery system. It considers each datagram independently of the others. Any association between datagram must be supplied by the higher layers. The IP layer supplies a checksum that includes its own header. The header includes the source and destination addresses. The IP layer handles routing through an Internet. It is also responsible for breaking up large datagram into smaller ones for transmission and reassembling them at the other end.

 UDP:
UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram and port numbers. These are used to give a client/server model - see later.
TCP:
TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that two processes can use to communicate.
 Internet addresses
In order to use a service, you must be able to find it. The Internet uses an address scheme for machines so that they can be located. The address is a 32 bit integer which gives the IP address. This encodes a network ID and more addressing. The network ID falls into various classes according to the size of the network address.
Network address:
Class A uses 8 bits for the network address with 24 bits left over for other addressing. Class B uses 16 bit network addressing. Class C uses 24 bit network addressing and class D uses all 32.
Subnet address:
Internally, the UNIX network is divided into sub networks. Building 11 is currently on one sub network and uses 10-bit addressing, allowing 1024 different hosts.
Host address:
8 bits are finally used for host addresses within our subnet. This places a limit of 256 machines that can be on the subnet.
Total address:

[image: xxx_files/inet_addr.gif]
The 32 bit address is usually written as 4 integers separated by dots.
Port addresses
A service exists on a host, and is identified by its port. This is a 16 bit number. To send a message to a server, you send it to the port for that service of the host that it is running on. This is not location transparency! Certain of these ports are "well known".
Sockets:
A socket is a data structure maintained by the system to handle network connections. A socket is created using the call socket. It returns an integer that is like a file descriptor. In fact, under Windows, this handle can be used with Read File and Write File functions.
#include <sys/types.h>
#include <sys/socket.h>
int socket(int family, int type, int protocol);
Here "family" will be AF_INET for IP communications, protocol will be zero, and type will depend on whether TCP or UDP is used. Two processes wishing to communicate over a network create a socket each. These are similar to two ends of a pipe - but the actual pipe does not yet exist.

JFree Chart:
JFreeChart is a free 100% Java chart library that makes it easy for developers to display professional quality charts in their applications. JFreeChart's extensive feature set includes:
A consistent and well-documented API, supporting a wide range of chart types;
A flexible design that is easy to extend, and targets both server-side and client-side applications;
Support for many output types, including Swing components, image files (including PNG and JPEG), and vector graphics file formats (including PDF, EPS and SVG);
JFreeChart is "open source" or, more specifically, free software. It is distributed under the terms of the GNU Lesser General Public Licence (LGPL), which permits use in proprietary applications.
1. Map Visualizations:

Charts showing values that relate to geographical areas. Some examples include: (a) population density in each state of the United States, (b) income per capita for each country in Europe, (c) life expectancy in each country of the world. The tasks in this project include: Sourcing freely redistributable vector outlines for the countries of the world, states/provinces in particular countries (USA in particular, but also other areas);
Creating an appropriate dataset interface (plus default implementation), a rendered, and integrating this with the existing XYPlot class in JFreeChart;
Testing, documenting, testing some more, documenting some more.
2. Time Series Chart Interactivity

Implement a new (to JFreeChart) feature for interactive time series charts --- to display a separate control that shows a small version of ALL the time series data, with a sliding "view" rectangle that allows you to select the subset of the time series data to display in the main chart.

3. Dashboards

There is currently a lot of interest in dashboard displays. Create a flexible dashboard mechanism that supports a subset of JFreeChart chart types (dials, pies, thermometers, bars, and lines/time series) that can be delivered easily via both Java Web Start and an applet.
4. Property Editors

The property editor mechanism in JFreeChart only handles a small subset of the properties that can be set for charts. Extend (or reimplement) this mechanism to provide greater end-user control over the appearance of the charts.

CONCLUSION:
In P2P streaming networks, users may frequently hop from one group to another. In this paper, we propose a novel framework called SMesh to serve dynamic groups for Internet streaming. SMesh supports multiple groups and can efficiently distribute data to these dynamic groups. It first builds a shared overlay mesh for all hosts in the system. The stable mesh is then used to guide the construction of data delivery trees for each group. We study three ways to construct a tree, i.e., embedded, bypass, and intermediate trees. We also propose and study an aggregation and delegation algorithm to balance the load among hosts, which trades off end-to-end delay with lower network resource usage. Through simulations on Internet-like topologies, we show that SMesh achieves low RDP and low link stress as compared to traditional tree-based protocols.

REFERENCES:

[1] X. Zhang, J. Liu, B. Li, and T.-S.P. Yum, “CoolStreaming/DONet: A Data-Driven Overlay Network for Peer-to-Peer Live Media Streaming,” Proc. IEEE INFOCOM ’05, pp. 2102-2111, Mar. 2005.

[2] X. Liao, H. Jin, Y. Liu, L.M. Ni, and D. Deng, “Anysee: Peer-to- Peer Live Streaming,” Proc. IEEE INFOCOM ’06, Apr. 2006.

[3] Y. Tang, J.-G. Luo, Q. Zhang, M. Zhang, and S.-Q. Yang, “Deploying P2P Networks for Large-Scale Live Video-Streaming Service,” IEEE Comm. Magazine, vol. 45, no. 6, pp. 100-106, June 2007.

[4] PPLive, http://www.pplive.com, 2009.

[5] X. Hei, Y. Liu, and K.W. Ross, “Inferring Network-Wide Quality in P2P Live Streaming Systems,” IEEE J. Selected Areas in Comm., vol. 25, no. 9, pp. 1640-1654, Dec. 2007.

[6] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross, “A Measurement Study of a Large-Scale P2P IPTV System,” IEEE Trans. Multimedia, vol. 9, no. 8, pp. 1672-1687, Dec. 2007.

[7] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain, “Watching Television over an IP Network,” Proc. ACM Internet Measurement Conf. (IMC ’08), pp. 71-83, Oct. 2008.

[8] Skype, http://www.skype.com/, 2009.

[9] D. Rossi, M. Mellia, and M. Meo, “A Detailed Measurement of Skype Network Traffic,” Proc. Int’l Workshop Peer-To-Peer Systems (IPTPS ’08), Feb. 2008.

[10] J. Liebeherr, M. Nahas, and W. Si, “Application-Layer Multicasting with Delaunay Triangulation Overlays,” IEEE J. Selected Areas in Comm., vol. 20, no. 8, pp. 1472-1488, Oct. 2002.

[11] T.S.E. Ng and H. Zhang, “Predicting Internet Network Distance with Coordinates-Based Approaches,” Proc. IEEE INFOCOM ’02, pp. 170-179, June 2002.

[12] L. Tang and M. Crovella, “Virtual Landmarks for the Internet,” Proc. ACM Internet Measurement Conf. (IMC ’03), pp. 143-152, Oct. 2003.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized Network Coordinate System,” Proc. ACM SIGCOMM ’04, pp. 15-26, Aug. 2004.

[14] H. Lim, J.C. Hou, and C.-H. Choi, “Constructing Internet Coordinate System Based on Delay Measurement,” IEEE/ACM Trans. Networking, vol. 13, no. 3, pp. 513-525, June 2005.

[15] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” Proc. Canadian Conf. Computational Geometry (CCCG ’99), pp. 51-54, Aug. 1999.

BIBLIOGRAPHY
Good Teachers are worth more than thousand books, we have them in Our Department
References Made From:
1. Professional Java Network Programming
2. Java Complete Reference
4. Data Communications and Networking, by Behrouz A Forouzan.
5. Computer Networking: A Top-Down Approach, by James F. Kurose.
6. Operating System Concepts, by Abraham Silberschatz.

Sites Referred:
http://java.sun.com
http://www.sourcefordgde.com
http://www.networkcomputing.com/

image6.png
137.92.11.13
N

/]

network subnet host

image1.png
myProgran. java

nyProgran.class

Compiler

image2.png
oy afrodram

HelloHorldepp . java

image3.png
yProgran.java

Tava APl
Sstraane || b o i
Hardware-Based Plaiom)

image4.png
SDK 13

Java IDE

Java Compiler

oth

er Dev. Tools

Java Debugger

Client Compiler
P e) @) @ =
HotSpot () (et) (e El
Runtime Ten) (_wi) (acosssiiny) (__swing) (_oora

(Solars) (W32) [Linux

Y (Mac

1 (Gther

€1 3ur wnejeq

image5.png
application | | application| OSI 5-7
TCP UDP Osl 4
P 0Osl 3
[

Y
h/w interface oSl 1-2

