<>

TITLE
ANGEL: Enhancing the Utility of Generalization

For Privacy Preserving Publication
ABSTRACT

Generalization is a well-known method for privacy preserving data publication. Despite its vast popularity, it has several drawbacks such as heavy information loss, difficulty of supporting marginal publication, and so on. To overcome these drawbacks, we develop ANGEL, a new anonymization technique that is as effective as generalization in privacy protection, but is able to retain significantly more information in the micro data. ANGEL is applicable to any monotonic principles (e.g., l-diversity, t-closeness, etc.), with its superiority (in correlation preservation) especially obvious when tight privacy control must be enforced. We show that ANGEL lends itself elegantly to the hard problem of marginal publication. In particular, unlike generalization that can release only restricted marginals, our technique can be easily used to publish any marginals with strong privacy guarantees.

OBJECTIVE OF THE PROJECT
1.1. EXISTING SYSTEM

It risk further shrinking the already limited pool of eligible generalizations, and hence, would eventually be unable to feed the public with useful scientific data.

K-anonymity thwarts the so-called presence attacks, where an adversary obtains the precise QI-values of an individual, and wants to find out whether this individual exists in the micro data. However, k-anonymity alone provides weak protection against linking attacks.
Disadvantages of the Existing system:
· Heavy Information loss
· Does not Support the marginal publication

· No perfect Encryption Mechanism.

PROPOSED SYSTEM

· It develops new principles to give better privacy guarantees. For instance, l-diversity is proposed to overcome the defects of k-anonymity and yet, its own limitations led to t-closeness. Privacy, however, is a natural foe of utility. A privacy-safer principle reduces the number of selectable generalizations, thus decreasing the chance of finding a utility-friendly generalization.

· ANGEL is applicable to any monotonic anonymization principle (including k-anonymity l-diversity, t-closeness, etc.). Compared to traditional generalization, it ensures the same privacy guarantee but preserves significantly more information in the micro data

· ANGEL is that it lends itself very nicely to marginal publication. It easily supports the publication of any set of marginal’s, thus settling a problem known to be very difficult with generalization.

Key words:

· Privacy

· Generalization

· Angel

Privacy:

Privacy is sometimes related to anonymity, the wish to remain unnoticed or unidentified in the public realm. When something is private to a person, it usually means there is something within them that is considered inherently special or personally sensitive. The degree to which private information is exposed therefore depends on how the public will receive this information, which differs between places and over time. Privacy is broader than security and includes the concepts of appropriate use and protection of information.

Generalization:

Generalization is a popular method of thwarting linking attacks. It works by replacing QI-values in the microdata with fuzzier forms. Also generalization creates QI-groups, each of which consists of tuples with identical (generalized) QI-values. It is often convenient to regard generalization as a point-to-rectangle transformation in the QI- space, which is a space formed by all the QI attributes.

A microdata relation can be generalized in numerous ways. Various generalizations, however, may provide drastically different privacy protection. Hence, in practice, generalization needs to be guided by an anonymization principle, which is a criterion deciding whether a table has been adequately anonymized.

Angel -a new tool:

ANGEL, a new anonymization technique that overcomes all the above problems. ANGEL is applicable to any monotonic anonymization principle (including k-anonymity l-diversity, and t- closeness, etc.). Compared to traditional generalization, it ensures the same privacy guarantee, but preserves significantly more information in the microdata. The superiority of ANGEL is especially obvious when stringent anonymity control is enforced. This is a highly desirable feature because, the community continuously invents safer anonymization principles that fix the vulnerabilities of the previous ones. Another crucial feature of ANGEL is that it lends itself very nicely to marginal publication. It easily supports the publication of any set of marginals, thus settling a problem known to be very difficult with generalization.

 ANGEL supports all monotonic principles in exactly the same manner. As a result, no adaptation effort is necessary when a publisher decides to adopt a different principle. This is a significant advantage over the previous solutions to marginal publication (which are “hard-wired” to specific principles).

Usage:

Suppose that we want to publish the micro-data of Table , conforming to 2-diversity.
ANGEL first divides the table-1 into batches:

Batch 1: {Alan, Carrie}, Batch 2: {Bob, Daisy},

Batch 3: {Eddy, Gloria}, Batch 4: {Frank, Helena}

Observe that each batch obeys 2-diversity: it contains one pneumonia- and one bronchitis-tuple. ANGEL creates a batch table (BT), as in Table 3a, summarizing the Disease-statistics of each batch.
For example,

the first row of an example Table-2 states that exactly one tuple in Batch 1 carries pneumonia. Then, ANGEL creates another partitioning of Previous Table-1 , this time into buckets (which do not have to be 2-diverse):

Bucket 1: {Alan, Bob}, Bucket 2: {Carrie, Daisy},

Bucket 3: {Eddy, Frank}, Bucket 4: {Gloria, Helena}

Finally, ANGEL generalizes the tuples of each bucket into the same form, producing a generalized table(GT). Table 3 demonstrates the GT.
Note that GT does not include the Disease attribute, but stores, for

each tuple of the microdata, the ID of the batch containing it. For instance, the first tuple of
Table-2 has a Batch-ID 1, because its owner Alan belongs to Batch 1. Tables 3a and 3b are the final relations released by ANGEL.
The following are the tables :

[image: image19.png]

Table-1

Table-2
Motivation:

Large Information Loss in Stringent Privacy Protection
Researchers keep observing the drawbacks of existing principles and then develop new principles to give better privacy guarantees. For instance, l-diversity is proposed to overcome the defects of k-anonymity and yet, its own limitations led to t-closeness. Privacy, however, is a natural foe of utility. A privacy-safer principle reduces the number of selectable generalizations, thus decreasing the chance of finding a utility-friendly generalization.

Marginal Publication

Typically, generalization loses less information when the number of QI-attributes is smaller . Therefore, besides a large table that covers all the QI-attributes, the publisher may also release certain projections to enhance the public’s understanding on the underlying correlations.

Problem in existing system:

A Critique of the Generalization/Suppression Approach to k-Anonymity

k-Anonymity with minimal generalization and local suppresion has been shown to be NP-hard (Meyerson et al., 2004; Aggarwal et al., 2005). Even how to optimally combine generalization and local suppression is an open issue (careless combination may greatly diminish utility).
· Large Information Loss in Stringent Privacy Protection
· Marginal Publication
Drawbacks of generalization

Generalization alone poses several practical problems:

1.
Cost of finding the optimal recoding: for an attribute with c categories, there are possible generalizations.

2.
Determining the subset of appropriate generalizations: which are the new categories and which is the appropriate recoding between old and new categories.

Example. When generalizing ZIP codes, recoding 08201 and 08205 into 0820* makes sense only if 0820* is meaningful as a location. For the same reason, recoding 08201 and 08205 into 0*201 probably lacks any geographical significance. So, automatic generalization is thorny.

Furthermore, given a particular generalization rule, the literature diverges on which records containing are recoded:

Global recoding: All occurrences of are recoded (µ-Argus).

Local recoding: Only some of the occurrences are recoded (Sweeney, 2002; Samarati 2001).

Some of the drawbacks of global recoding are:

1.
It implies greater information loss.

2.
The recoding suitable for a set of records may be unsuitable for another set.

Local recoding is not without drawbacks either:

1. It is difficult to automate.
2. It complicates data analysis as old and new categories co-exist, and an old category can be recoded into more than one new category.
Solution Strategies :

ANGEL, a new anonymization technique that overcomes all the above problems. ANGEL is applicable to any monotonic anonymization principle (including k-anonymity l-diversity, t-closeness, etc.). Compared to traditional generalization, it ensures the same privacy guarantee but preserves significantly more information in the microdata.

The superiority of ANGEL is especially obvious when stringent anonymity control is enforced. This is a highly desirable feature because the community continuously invents safer anonymization principles that fix the vulnerabilities of the previous ones.

Another crucial feature of ANGEL is that it lends itself very nicely to marginal publication. It easily supports the publication of any set of marginals, thus settling a problem known to be very difficult with generalization.
Furthermore, ANGEL supports all monotonic principles in exactly the same manner. As a result, no adaptation effort is necessary when a publisher decides to adopt a different principle. This is a significant advantage over the previous solutions to marginal publication (which are “hard-wired” to specific principles).
General Constraints:

The primary challenge of project management is to achieve all of the project goals and objectives while honoring the preconceived project constraints. Typical constraints are scope, time, and budget. The secondary—and more ambitious—challenge is to optimize the allocation and integration of inputs necessary to meet pre-defined objectives.

In project management, the term scope has two distinct uses: Project Scope and Product Scope.

Project Scope "The work that needs to be accomplished to deliver a product, service, or result with the specified features and functions."

Product Scope "The features and functions that characterize a product, service, or result."

Time is part of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify the motions of objects. Time has been a major subject of religion, philosophy, and science, but defining it in a non-controversial manner applicable to all fields of study has consistently eluded the greatest scholars.

organization of documentations
 We have entered the age of digital technology. Computer exists everywhere from a small kiosk to giant corporate house. Amongst all the sectors, information technology is following and will pave a path for faster growth. Infact e-business is becoming the most favored word with corporate as it took over from traditional business practices.

 A clear perception of the growing requirement of the corporate world in the area of IT has enabled Zinnia Software Solutions to develop programs of specific relevance for the present and the future.

The ORGANIZATION

 Zinnia Software Solutions have become a leading solution provider for Internet based applications. Established in 2008- March, The Company has been promoted by some highly experienced Professionals dedicated to provide total IT solutions under one roof. It possesses not only the latest technology gadgets but also the most knowledgeable and experience hands to offer most user friendly customized solutions.

Zinnia Solutions provides high quality on site services for software development and the end users on a broad range of hardware & software platforms and latest technologies.
Within the nine months of its operations, Zinnia Solutions has carved a niche

for itself in the IT industry and has increased its business by acquiring some major domestic projects. No doubt the company has been able to make a name for itself in a relatively short span of time only because of its ability and commitments to ensure customer satisfaction by rewarding quality work on right time and in a right manner.

The Mission

 At Zinnia Solutions with Technical proficiency and expertise, we cohesively integrate graphic design with web page layout, with interactive programming, with database driven content, to plan, build and deploy e- business and to emerge as one of the top IT service provider.

Philosophy

The business philosophy of the company is to lay emphasis on Human Values and Personal Relations.

Zinnia Software Solutions offer specialized services in outsourced software development, which allows our clients to focus on their core competencies, while outsourcing IT requirements to Zinnia Solutions. The clients benefit from Zinnia it’s spectrum of technology tools, quality services and low cost of development.

List of services:

· Application Services

· Product Engineering

· Web Designing & Development

· Search Engine Optimization

· QA & Testing Service

Future Scope:
Recall that ANGEL utilizes the existing algorithms of simple generalization to perform angelization. It would be interesting to study whether it is possible to obtain better angelization directly, without resorting to simple generalization.

Furthermore, in this paper, we have considered only static microdata that do not need to be updated. In practice, there may be a need to publish another version of the microdata after it has received sufficient insertions and/or deletions. Extending our technique to such a republication scenario is an exciting topic. Finally, it would be challenging to investigate how to employ the distribution reconstructed from angelization to perform advanced data mining such as decision tree classification, association rule mining, etc.
INTRODUCTION

FEASIBILITY STUDY

All projects are feasible given unlimited resources and infinite time. But the development of software is plagued by the scarcity of resources and difficult delivery rates. It is both necessary and prudent to evaluate the feasibility of a project at the earliest possible time.

Three key considerations are involved in the feasibility analysis.

Economic Feasibility:

 This procedure is to determine the benefits and savings that are expected from a candidate system and compare them with costs. If benefits outweigh costs, then the decision is made to design and implement the system. Otherwise, further justification or alterations in proposed system will have to be made if it is to have a chance of being approved. This is an ongoing effort that improves in accuracy at each phase of the system life cycle.
Technical Feasibility:
 Technical feasibility centers on the existing computer system (hardware, software, etc.,) and to what extent it can support the proposed addition. If the budget is a serious constraint, then the project is judged not feasible.

Operational Feasibility:
 People are inherently resistant to change, and computers have been known to facilitate change. It is understandable that the introduction of a candidate system requires special effort to educate, sell, and train the staff on new ways of conducting business.

CONCEPTS

Privacy is an important issue when one wants to make use of data that involve individuals’ sensitive information, especially in a time when data collection is becoming easier and sophisticated data mining techniques are becoming more efficient. It is no surprise that research on protecting the privacy of individuals and the confidentiality of data has received many contributions from many fields such as computer science, statistics, economics, and social science.

DESIGN CONCEPTS
The design of an information system produces the details that state how a system will meet the requirements identified during analysis. The emphasis is on translating the performance, requirements into design specifications. This phase is known as logical system design phase which includes the details of output, the data to be input, file structures, data structures, controls and calculation procedures. The next phase, the Physical design produces a working system.. The various steps in designing the “CoPST: Cost-Based Predictive Spatio-Temporal Join” are given below.

The following steps are involved in design:

· First, decide how the output is to be produced and in what format.

· Second, the input data and the master files have to be designed to meet the system requirements.

· Finally, details related to the justification of the systems are presented.
 INPUT DESIGN

It is the process of converting input data to the computer-based data. The goal of designing input data is to make data entry as easier and free from error as possible. Input design determines the format and validation criteria for data entering the system. Personal computers and terminals can place a data at user’s fingertips, allowing them to call up specific data and make timely decisions based on the data.

This system contains data collection screen which display heading the defined their purposes. By employing flashing error messages, and providing necessary alerts on the screen, mist entering of data in the system is avoided. The rule that each screen should have a single purpose and restrict itself to logically related data verification, validation etc control and reduce errors.

The accuracy of output depends on the accuracy of input and it’s processing. So we have to carry out the input design very carefully. The key factors to be considered while designing input are: produce a cost effective method of input, achieve the highest possible level of accuracy and is acceptable to and understand by the user using meaningful words. The application has been designed in a user-friendly manner. The forms are designed in such a way that the cursor is place in the position where data must be entered.

 Effectiveness

The input Screen forms have been designed such that they are very effective i.e., serve a specific purpose. The Advertiser’s Login form used gets the details of the member and stores it, thus doing the registration.

 Accuracy

The forms have been designed such that they assure proper completion. Validation has been included and thus all the required fields are checked.

 Ease of Use

Forms are straight forward and require no extra time to understand.

4 Simplicity

The forms are simple and uncultured.

Attractiveness

Input forms have been designed such that it has appealing design that would please the user.

 OUTPUT DESIGN

Computer output is the most important and the direct source of information to the user. Efficient and intelligible output design should improve the system relationships with the user and help in decision making. Major forms of output are hard copy from the printer and soft copy from the CRT display. Output is the key tool to evaluate the performance of software so the designing of output should be done with great care. It should be able to satisfy the user’s requirements.

 CODE DESIGN

A group of characters used to identify an item of data is a code. A major problem encountered in working with a large amount of data is the retrieval of specific data when it is required. Codes are used to aid the user in information identification and retrieval. Large volume of data handling makes difficulty in individual identification. Code facilitated easier identification simplification in. Handling and retrieval of item by consuming less storage space. The codes are designed in such a manner that6 the user will easily understand it.
In the developed system a suitable coding is adopted, which can identify each user exactly. The user is identified by a unique ID which is automatically generated and it is unique. The need to communicate with and by means of computers has made increasing demands on user to user to work with and understand computer codes instead of natural language. It must always be remembered that human beings, including people who do not have much familiarity with data processing codes should be designed with the following features, will use a code.
 DATABASE DESIGN:

Databases are designed using the latest software available and the development process follows the specific requirements of the Client. We provide total flexibility in terms of database design - the development process is essentially "Client driven".

 It is important to remember that a well-designed database should provide an end product (database) that has been tailored to meet both your professional and practical business needs and therefore serve its intended purpose.

 Comprehensive and detailed analysis of the business needs, Preparation of a design specifications, Initial design concept, Database programming, Database esting/validation, Client support, Client site installation and of course extensive Database Developer & Client communication.
1.2. TECHNOLOGIES

JAVA:

Java technology is both a programming language and a platform.

The Java Programming Language

	The Java programming language, developed at Sun Microsystems under the guidance of Net luminaries James Gosling and Bill Joy, is designed to be a machine-independent programming language that is both safe enough to traverse networks and powerful enough to replace native executable code. The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

 Simple
	 Architecture neutral

	 Object oriented
	 Portable

	 Distributed
	 High performance

	 Interpreted
	 Multithreaded

	 Robust
	 Dynamic

	 Secure
	

With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java programming

Language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a program into an intermediate language called Java byte codes —the platform-independent codes interpreted by the interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works. [image: image1.png]We can think of Java bytecode as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it's a development tool or a Web browser that can run applets, is an implementation of the Java VM.

Java bytecode help make "write once, run anywhere" possible. We can compile your program into bytecode on any platform that has a Java compiler. The bytecode can then be run on any implementation of the Java VM. That means that as long as a computer has a Java VM, the same program written in the Java programming language can run on Windows 2000, a Solaris workstation, or an iMac.

[image: image2.png]
The Java Platform

A platform is the hardware or software environment in which a program runs. We've already mentioned some of the most popular platforms like Windows 2000, Linux, Solaris, and MacOS. Most platforms can be described as a combination of the operating system and hardware. The Java platform differs from most other platforms in that it's a software-only platform that runs on top of other hardware-based platforms.

The Java platform has two components:

· The Java Virtual Machine (Java VM)

· The Java Application Programming Interface (Java API)

A Virtual Machine

Java is both a compiled and an interpreted language. Java source code is turned into simple binary instructions, much like ordinary microprocessor machine code. However, whereas C or C++ source is refined to native instructions for a particular model of processor, Java source is compiled into a universal format—instructions for a virtual machine.

Compiled Java byte-code, also called J-code, is executed by a Java runtime interpreter. The runtime system performs all the normal activities of a real processor, but it does so in a safe, virtual environment. It executes the stack-based instruction set and manages a storage heap. It creates and manipulates primitive datatypes, and loads and invokes newly referenced blocks of code. Most importantly, it does all this in accordance with a strictly defined open specification that can be implemented by anyone who wants to produce a Java-compliant virtual machine. Together, the virtual machine and language definition provide a complete specification. There are no features of Java left undefined or implementation-dependent. For example, Java specifies the sizes of all its primitive data types, rather than leave it up to each implementation.

The Java interpreter is relatively lightweight and small; it can be implemented in whatever form is desirable for a particular platform. On most systems, the interpreter is written in a fast, natively compiled language like C or C++. The interpreter can be run as a separate application, or it can be embedded in another piece of software, such as a web browser.

All of this means that Java code is implicitly portable. The same Java application byte-code can run on any platform that provides a Java runtime environment, as shown in Figure 1.1. You don't have to produce alternative versions of your application for different platforms, and you don't have to distribute source code to end users.

[image: image3.png]
The JAVA Runtime environment

The fundamental unit of Java code is the class. As in other object-oriented languages, classes are application components that hold executable code and data. Compiled Java classes are distributed in a universal binary format that contains Java byte-code and other class information. Classes can be maintained discretely and stored in files or archives on a local system or on a network server. Classes are located and loaded dynamically at runtime, as they are needed by an application.

The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do?, highlights what functionality some of the packages in the Java

API provides. The following figure depicts a program that's running on the Java platform. As the figure shows, the Java API and the virtual machine insulate the program from the hardware.

 [image: image4.png]
Native code is code that after you compile it, the compiled code runs on a specific hardware platform. As a platform-independent environment, the Java platform can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and just-in-time byte code compilers can bring performance close to that of native code without threatening portability.

What Can Java Technology Do?

The most common types of programs written in the Java programming language are applets and applications. If you've surfed the Web, you're probably already familiar with applets. An applet is a program that adheres to certain conventions that allow it to run within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining applets for the Web. The general-purpose, high-level Java programming language is also a powerful software platform. Using the generous API, you can write many types of programs.

An application is a standalone program that runs directly on the Java platform. A special kind of application known as a server serves and supports clients on a network. Examples of servers are Web servers, proxy servers, mail servers, and

Print servers. Another specialized program is a servlet. A servlet can almost be thought of as an applet that runs on the server side. Java Servlets are a popular choice for building interactive web applications, replacing the use of CGI scripts. Servlets are similar to applets in that they are runtime extensions of applications. Instead of working in browsers, though, servlets run within Java Web servers, configuring or tailoring the server.

How does the API support all these kinds of programs? It does so with packages of software components that provides a wide range of functionality. Every full implementation of the Java platform gives you the following features:

· The essentials: Objects, strings, threads, numbers, input and output, data structures, system properties, date and time, and so on.

· Applets: The set of conventions used by applets.

· Networking: URLs, TCP (Transmission Control Protocol), UDP (User Data gram Protocol) sockets, and IP (Internet Protocol) addresses.

· Internationalization: Help for writing programs that can be localized for users worldwide. Programs can automatically adapt to specific locales and be displayed in the appropriate language.

· Security: Both low level and high level, including electronic signatures, public and private key management, access control, and certificates.

· Software components: Known as JavaBeansTM, can plug into existing component architectures.

· Object serialization: Allows lightweight persistence and communication via Remote Method Invocation (RMI).

· Java Database Connectivity (JDBCTM): Provides uniform access to a wide range of relational databases.

The Java platform also has APIs for 2D and 3D graphics, accessibility, servers, collaboration, telephony, speech, animation, and more. The following figure depicts what is included in the Java 2 SDK.

[image: image5.png]
How Will Java Technology Change My Life?

We can't promise you fame, fortune, or even a job if you learn the Java programming language. Still, it is likely to make your programs better and requires less effort than other languages. We believe that Java technology will help you do the following:

· Get started quickly: Although the Java programming language is a powerful object-oriented language, it's easy to learn, especially for programmers already familiar with C or C++.

· Write less code: Comparisons of program metrics (class counts, method counts, and so on) suggest that a program written in the

Java programming language can be four times smaller than the same program in C++.

· Write better code: The Java programming language encourages good coding practices, and its garbage collection helps you avoid memory leaks. Its object orientation, its JavaBeans component architecture, and its wide-ranging, easily extendible API let you reuse other people's tested code and introduce fewer bugs.

· Develop programs more quickly: Your development time may be as much as twice as fast versus writing the same program in C++. Why? You write fewer lines of code and it is a simpler programming language than C++.

· Avoid platform dependencies with 100% Pure Java: You can keep your program portable by avoiding the use of libraries written in other languages. The 100% Pure JavaTM Product Certification Program has a repository of historical process manuals, white papers, brochures, and similar materials online.

· Write once, run anywhere: Because 100% Pure Java programs are compiled into machine-independent bytecodes, they run consistently on any Java platform.

· Distribute software more easily: You can upgrade applets easily from a central server. Applets take advantage of the feature of allowing new classes to be loaded "on the fly," without recompiling the entire program.

The java development team which included Patrick Naught on discovered that the existing language like C and C++ had limitations in terms of both reliability and portability. However, the language java on C and C++ but removed a number of features of C and C++ that were considered as sources of problems and thus made java a really simple, reliable, portable and powerful language.

Specifically, this overview will include a bit include a bit of the history of java platform, touch of the java programming language, and the ways in which people are using java applications and applets, now and in the likely future. After going a while down the path of consumer – electronics devices, they realized that they had something particularly cool in the java language and focused on it as a language for network computing. Sun formed the java soft group which in a little over three years has grown to over six hundred people working on java related technologies.

Features of JAVA:

Platform – Independent:

Changes and upgrades in operating systems, processors and system resources will not force any change in java programs. This is the reason why Java has become a popular language for programming on Internet.

Portable:

Java ensures portability in two ways. First, java compiler generates bytecode instructions that can be implemented on any machine. Secondly, the size of the primitive data types is machine independent.

Object oriented:

Java is a true objected oriented language. Almost everything in java is an object. All program code and data must reside within objects and classes. Java comes with an extensive set of classes arranged in packages that we can use in out programs by inheritance. The object model in java is simple and easy to extend.

Distributed:

Java is designed as a distributed language for creating applications on networks. It has the ability to share both date and programs.

Dynamic:

Java is a dynamic language. Java is capable of dynamically linking new class, libraries, methods and objects.

Secure:

Since java supports applets which are programs that are transferred through internet, there may arise a security threat. But java overcomes this problem by confining the applets to the runtime package or JVM and thus it prevents infections and malicious contents.

Robust:

Java is said to be robust in two ways

1. Java allocates and de-allocates its dynamic memory on its own.

2. Java provides exception.

Multithreaded:

Java supports multithreaded programs which allow you to write programs that do many things simultaneously. This is used in interactive network programs.

Interpreted:

The byte code is interpreted by JVM. Even though interpreted, Java provides high performance. The byte code generated by the Java compiler for translating to native machine code with high performance but the Just In Time (JIT) compiler in java.

JAVA Components:
· Swing

· J Frame

· J File Chooser

· J Scroll Pane

· Image

· Media Tracker

· String Tokenizer

· Buffered Image

· Container

Swing:

Swing is a set of classes that provides more powerful and flexible components that are possible with AWT and hence we adapted swing. In addition to normal components such as buttons, check box, labels swing includes tabbed panes, scroll panes, trees and tables. It provides extra facilities than the normal AWT components.

J Frame:

Like AWT’s frame class, the
J Frame class can generate events when things happen to the window, such as the window being closed, activated, iconified or opened. These events can be sent to a window Listener if one is registered with the frame.

J File Chooser:

 It provides a simple mechanism for the user to choose a file. Here it points the users default directory. It includes the following methods:

Show Dialog:

Pops a custom file chooser dialog with a custom approve button.

Set Dialog Type:

Sets the type of this dialog. Use open-dialog when we want to bring up a file chooser that the user can use to open file. Use save-dialog for letting the user choose a file for saving.

Set Dialog Title:

Set the given string as the title of the J File Chooser window.

J Scroll Pane:

Encapsulates a scrollable window. It is a component that represents a rectangle area in which a component may be viewed. It provides horizontal and vertical scrollbar if necessary.

Image:

The image class and the java.awt.image package, together provide the support for imaging both for the display and manipulation of web design. Images are objects of the image class, and they are manipulated using the classes found in the java.awt.image package.

Media Tracker:

Many early java developers found the image observer interface is far too difficult to understand and manage when there were multiple images to be loaded.

So the developer community was asked to provide a simpler solution that would allow programmers to load all of their images synchronously. In response to this, Sun Microsystems added a class to AWT called media tracker.

A media tracker is an object that will check the status of an arbitrary number of images in parallel. The add Image method of it is used to track the loading status of the image.

String Tokenizer:

The processing of text often consists of parsing a formatted input string. Parsing is the division of the text in to set of discrete parts or tokens, which in a certain sequence can convey can convey a semantic meaning.

The StringTokenizer provides first step in this parsing process, often called the lexer or scanner. StringTokenizer implements the Enumeration interface. Therefore given an input sting, we can enumerate the individual tokens contained in it using String Tokenizer.

Buffered Image:

In previous versions of Java, it was very difficult to manipulate images on a pixel-by-pixel basis. We have to either create an mage filter to modify the pixels as they came through the filter, or we have to make a pixel grabber to grab an image and then create a Memory Image Source to turn the array of pixels in to an image. The buffered Image class provides a quick, convenient shortcut by providing an image whose pixels can be manipulate directly.

2. REQUIREMENTS

Specification Principles:

Software Requirements Specification plays an important role in creating quality software solutions. Specification is basically a representation process. Requirements are represented in a manner that ultimately leads to successful software implementation.

 Requirements may be specified in a variety of ways. However there are some guidelines worth following: -

Representation format and content should be relevant to the problem

Information contained within the specification should be nested

Diagrams and other notational forms should be restricted in number and consistent in use.

Representations should be revisable.

Software Requirements Specifications:

The software requirements specification is produced at the culmination of the analysis task. The function and performance allocated to the software as a part of system engineering are refined by establishing a complete information description, a detailed functional and behavioral description, and indication of performance requirements and design constraints, appropriate validation criteria and other data pertinent to requirements.

Hardware Requirements

· Hard disk

:
20 GB and above

· RAM

:
256 MB and above

· Processor speed

: 1.6 GHz and above

Software Requirements

· Operating System
:
Windows 2000/XP

· Documentation Tool
:
Ms word 2000

· Java : Jdk1.6

· IDE : My Eclipse

FUNCTIONAL REQUIREMENTS
 As far as the project is developed the functionality is simple, the objective of the proposal is to strengthen the functioning of Audit Status Monitoring and make them effective and better. The entire scope has been classified into five streams knows as Admin Level, Member Level, User Level and State Web Level. The proposed software will cover the information needs with respect to each request of the user group viz. accepting the request, providing vulnerability document report and the current status of the audit.

WORKING OF THE SYSTEM

NONFUNCTIONAL REQUIREMENTS

 Nonfunctional Requirements describe aspects of the system that are not directly related to the functional behavior of the system. Nonfunctional requirements include a board variety of requirements that apply to many different aspects of the system. The main inputs, outputs and major functions of the system are as follows.

INPUTS:

· Head operator enters his or her user id and password.

· Members enter his or her user id and password.

· User requests the reports.

· User requests the search.

· Head operator can edits the personal details and so on.

 OUTPUTS:

· Head operator receives Event details.

· Members receive personal and News details.

· Users receive requested reports.

· Displays search result.

Usability is the with which a user can learn to operate , prepare inputs for, and interpret outputs of a system or component.

Reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time.

Performance requirements are concerned with quantifiable attributes of the system, such as response time, throughput availability and accuracy.

Supportability requirements are with the ease of changes to the system after deployment, including for example, adaptability, maintainability, internationalization and conventions.
3. DESIGN

3.1. MODULE DESCRIPTION
· Angel
· Angelization

· Datasets

· Data Storage

· Mining

Angel:

This module involves the development of a new tool which includes the following operations :
· Selection of a dataset

· Start mining

· Show Generalization

Angelization:

This is the working principle of Angel which is used to perform the operations on a particular dataset. The data sets are first imported on to the database and operations are performed on the database.

Datasets`:

A data set (or dataset) is a collection of data, usually presented in tabular form. Each column represents a particular variable. Each row corresponds to a given member of the data set in question. Its values for each of the variables, such as height and weight of an object or values of random numbers. Each value is known as a datum. The data set may comprise data for one or more members, corresponding to the number of rows.
The datasets in this projects are most important things because they contain the data in all the data formats.
Data Storage:

This module shows the location of data that is stored in terms of:
· Min.Support

· Generalization time

· Storage Location

· Nodes

Mining:

A data set (or dataset) is a collection of data, usually presented in tabular form. Each column represents a particular variable. Each row corresponds to a given member of the data set in question. Its values for each of the variables, such as height and weight of an object or values of random numbers. Each value is known as a datum. The data set may comprise data for one or more members, corresponding to the number of rows.

In our Project the mining concept is used to extract the data from the datasets.
DATA FLOW DIAGRAMS

The Data Flow Diagram is one of the most important modeling tools used by system analysts. These data flow analysis methods are developed and promoted simultaneously by the two organizations. Data flow diagrams are directed graphs in which the nodes specify processing activities and the arcs specify data items transmitted between processing nodes. Data flow diagram can be used to any desired level of abstraction.

Data flow diagram is a graphical tool used to describe and analysis the movement of data through a system manya or automated including the process, stores of data and delays in the system. Data flow diagram is the central tool and the basis from which other components are developed. The transformation of data from input to output through process may be descried logically.

A data flow diagram might represent data flow between individual statements or block of statements in a routine, data flow between sequential routines data flow between concurrent processes.

Data flow diagram does not indicate decision logic or condition under which various processing nodes in the diagram might be activated. Data flow diagrams are excellent mechanisms for communication with customers during requirements analysis; they are also widely used for representation of external and top – level internal design specifications.

Notations used in DFD S:

There are only four symbols which are frequently used to represent various activities in the data flow diagrams. The use of specific icons associated with each element depends on whether the Yourdon or Gane – Sarson approach is used.

system, but are out side its boundary:

1. Data flow:

Packers of data move in a specific direction from an origin to destination in the form of document or letter or any other medium.

[image: image20.png][image: image21.png]

Yourdan

Gane – sarson

2. Process:

Procedures or devices that use or transforms data. Since the physical components are not identified.

[image: image22.png][image: image23.png]

Yorudan

Gane – Sarson

3. Source or Destination of data :

External source or destination of data which may be people, programs, organizations or other entities, interacting with the system, but are out side its boundary:

[image: image24.png][image: image25.png]

Yourdan

Gane – Sarson

4. Data Store:

Here, the data is stored or referenced by the process in the system. The dat store may represent computerized or non-computerized devices.

[image: image26.jpg][image: image27.jpg][image: image28.jpg][image: image29.jpg]
[image: image30.jpg][image: image31.jpg]

Yourdan

Gane – Sarson

For the above notations, descriptive names are given. Process names are further identified with a number that will be used for identification purposes. The number assigned to a specific process does not represent the sequence of processes. It is strictly for identification and will take on added values when we study the components that make up a specific process.

[image: image32.jpg]
[image: image33.png]
UML DIAGRAMS
Unified Modeling Language Diagrams

· The unified modeling language allows the software engineer to express an analysis model using the modeling notation that is governed by a set of syntactic semantic and pragmatic rules.

· A UML system is represented using five different views that describe the system from distinctly different perspective. Each view is defined by a set of diagram, which is as follows.
User Model View
· This view represents the system from the users perspective.
· The analysis representation describes a usage scenario from the end-users perspective.

Structural model view

· In this model the data and functionality are arrived from inside the system.
· This model view models the static structures

Behavioral Model View
· It represents the dynamic of behavioral as parts of the system, depicting the interactions of collection between various structural elements described in the user model and structural model view.
Implementation Model View

· In this the structural and behavioral as parts of the system are represented as they are to be built.
Environmental Model View

In this the structural and behavioral aspects of the environment in which the system is to be implemented are represented.

UML is specifically constructed through two different domains they are

· UML Analysis modeling, this focuses on the user model and structural model views of the system.
· UML design modeling, which focuses on the behavioral modeling, implementation modeling and environmental model views.

Diagrams overview
[image: image34.emf]In UML has 14 types of diagrams divided into two categories. Seven diagram types represent structural information, and the other seven represent general types of behavior, including four that represent different aspects of interactions.

UML is a notation that resulted from the unification of Object Modeling Technique and Object Oriented Software Technology .UML has been designed for broad range of application.

CLASS DIAGRAM

Identification of analysis classes:

 A class is a set of objects that share a common structure and common behavior (the same attributes, operations, relationships and semantics). A class is an abstraction of real-world items.

There are 4 approaches for identifying classes:

1. Noun phrase approach:

2. Common class pattern approach.

3. Use case Driven Sequence or Collaboration approach.

4. Classes , Responsibilities and collaborators Approach
1. Noun Phrase Approach:

 The guidelines for identifying the classes:

a. Look for nouns and noun phrases in the use cases.

b. Some classes are implicit or taken from general knowledge.

c. All classes must make sense in the application domain; Avoid computer implementation classes – defer them to the design stage.

d. Carefully choose and define the class names.

 After identifying the classes we have to eliminate the following types of classes:

a. Redundant classes.

b. Adjective classes..

2. Common class pattern approach:

 The following are the patterns for finding the candidate classes:

a. Concept class.

b. Events class.

c. Organization class

d. Peoples class

e. Places class

f. Tangible things and devices class.

3. Use case driven approach:

 We have to draw the sequence diagram or collaboration diagram. If there is need for some classes to represent some functionality then add new classes which perform those functionalities.
4. CRC approach:

 The process consists of the following steps:

a. Identify classes’ responsibilities (and identify the classes)

b. Assign the responsibilities

c. Identify the collaborators.

Super-sub class relationships:

Super-sub class hierarchy is a relationship between classes where one class is the parent class of another class (derived class).This is based on inheritance.

Guidelines for identifying the super-sub relationship, a generalization are

1. Top-down: Look for noun phrases composed of various adjectives in a class name. Avoid excessive refinement. Specialize only when the sub classes have significant behavior.

2. Bottom-up: Look for classes with similar attributes or methods. Group them by moving the common attributes and methods to an abstract class. You may have to alter the definitions a bit.

3. Reusability: Move the attributes and methods as high as possible in the hierarchy.

4. Multiple inheritances:
 Avoid excessive use of multiple inheritances. One way of getting benefits of multiple inheritances is to inherit from the most appropriate class and add an object of another class as an attribute.
5. Aggregation or a-part-of relationship:

 It represents the situation where a class consists of several component classes. A class that is composed of other classes doesn’t behave like its parts. It behaves very difficultly. The major properties of this relationship are transitivity and anti symmetry.
There are three types of aggregation relationships. They are:
Assembly: It is constructed from its parts and an assembly-part situation physically exists.

Container: A physical whole encompasses but is not constructed from physical parts.

Collection member: A conceptual whole encompasses parts that may be physical or conceptual. The container and collection are represented by hollow diamonds but composition is represented by solid diamond.

[image: image35.png]
USECASE DIAGRAM

A use case in software engineering and systems engineering is a description of a system’s behavior as it responds to a request that originates from outside of that system. In other words, a use case describes "who" can do "what" with the system in question. The use case technique is used to capture a system's behavioral requirements by detailing scenario-driven threads through the functional requirements.

Use cases describe the system from the user's point of view.

Use cases describe the interaction between one or more actors (an actor that is the initiator of the interaction may be referred to as the 'primary actor') and the system itself, represented as a sequence of simple steps. Actors are something or someone which exists outside the system ('black box') under study, and that take part in a sequence of activities in a dialogue with the system to achieve some goal. Actors may be end users, other systems, or hardware devices. Each use case is a complete series of events, described from the point of view of the actor.

According to Bittner and Spence, "Use cases, stated simply, allow description of sequences of events that, taken together, lead to a system doing something useful." Each use case describes how the actor will interact with the system to achieve a specific goal. One or more scenarios may be generated from a use case, corresponding to the detail of each possible way of achieving that goal. Use cases typically avoid technical jargon, preferring instead the language of the end user or domain expert. Use cases are often co-authored by systems analysts and end users. The UML use case diagram can be used to graphically represent an overview of the use cases for a given system and a use-case analysis can be used to develop the diagram. Use cases are not normalized by any consortium, unlike the UML use case diagram by OMG.

Within systems engineering, use cases are used at a higher level than within software engineering, often representing missions or stakeholder goals. The detailed requirements may then be captured in SysML requirement diagrams or similar mechanisms.

Use case focus
"Each use case focuses on describing how to achieve a goal or task. For most software projects this means that multiple, perhaps dozens, of use cases are needed to define the scope of the new system. The degree of formality of a particular software project and the stage of the project will influence the level of detail required in each use case."

Use cases should not be confused with the features of the system under consideration. A use case may be related to one or more features, and a feature may be related to one or more use cases.

A use case defines the interactions between external actors and the system under consideration to accomplish a goal. An actor specifies a role played by a person or thing when interacting with the system. The same person using the system may be represented as different actors because they are playing different roles. For example, "Joe" could be playing the role of a Customer when using an Automated Teller Machine to withdraw cash, or playing the role of a Bank Teller when using the system to restock the cash drawer.

Use cases treat the system as a black box, and the interactions with the system, including system responses, are perceived as from outside the system. This is a deliberate policy, because it forces the author to focus on what the system must do, not how it is to be done, and avoids the trap of making assumptions about how the functionality will be accomplished.

Use cases may be described at the abstract level (business use case, sometimes called essential use case), or at the system level (system use case). The differences between these is the scope.

· A business use case is described in technology-free terminology which treats the business process as a black box and describes the business process that is used by its business actors (people or systems external to the business) to achieve their goals (e.g., manual payment processing, expense report approval, manage corporate real estate). The business use case will describe a process that provides value to the business actor, and it describes what the process does. Business Process Mapping is another method for this level of business description.

· A system use case is normally described at the system functionality level (for example, create voucher) and specifies the function or the service that the system provides for the user. A system use case will describe what the actor achieves interacting with the system. For this reason it is recommended that a system use case specification begin with a verb (e.g., create voucher, select payments, exclude payment, cancel voucher). Generally, the actor could be a human user or another system interacting with the system being defined.

A use case should:

· Describe what the system shall do for the actor to achieve a particular goal.

· Include no implementation-specific language.

· Be at the appropriate level of detail.

· Not include detail regarding user interfaces and screens. This is done in user-interface design.

Elements of a Use Case Diagram

A use case diagram is quite simple in nature and depicts two types of elements: one representing the business roles and the other representing the business processes. Let us take a closer look at use at what elements constitute a use case diagram.

· Actors: An actor portrays any entity (or entities) that perform certain roles in a given system. The different roles the actor represents are the actual business roles of users in a given system. An actor in a use case diagram interacts with a use case. For example, for modeling a banking application, a customer entity represents an actor in the application. Similarly, the person who provides service at the counter is also an actor. But it is up to you to consider what actors make an impact on the functionality that you want to model. If an entity does not affect a certain piece of functionality that you are modeling, it makes no sense to represent it as an actor.

[image: image6.png]
· Use case: A use case in a use case diagram is a visual representation of a distinct business functionality in a system. The key term here is "distinct business functionality." To choose a business process as a likely candidate for modeling as a use case, you need to ensure that the business process is discrete in nature. As the first step in identifying use cases, you should list the discrete business functions in your problem statement. Each of these business functions can be classified as a potential use case. Remember that identifying use cases is a discovery rather than a creation. As business functionality becomes clearer, the underlying use cases become more easily evident.

To draw use cases using ovals. Label with ovals with verbs that represent the system's functions.

[image: image7.png]
· System boundary: A system boundary defines the scope of what a system will be. A system cannot have infinite functionality. So, it follows that use cases also need to have definitive limits defined. A system boundary of a use case diagram defines the limits of the system. The system boundary is shown as a rectangle spanning all the use cases in the system.

To draw your system's boundaries using a rectangle that contains use cases. Place actors outside the system's boundaries.

[image: image8.png]
Relationships in Use Cases

Use cases share different kinds of relationships. A relationship between two use cases is basically a dependency between the two use cases. Defining a relationship between two use cases is the decision of the modeler of the use case diagram. This reuse of an existing use case using different types of relationships reduces the overall effort required in defining use cases in a system. A similar reuse established using relationships, will be apparent in the other UML diagrams as well.

[image: image9.png]
Use case relationships can be one of the following:

· Include: When a use case is depicted as using the functionality of another use case in a diagram, this relationship between the use cases is named as an include relationship. Literally speaking, in an include relationship; a use case includes the functionality described in the use case as a part of its business process flow. An include relationship is depicted with a directed arrow having a dotted shaft. The tip of the arrowhead points to the parent use case and the child use case is connected at the base of the arrow. The stereotype "<<include>>" identifies the relationship as an include relationship.

[image: image10.png]
An example of an include relationship
For example, in Figure show in above, you can see that the functionality defined by the "Validate patient records" use case is contained within the "Make appointment" use case. Hence, whenever the "Make appointment" use case executes, the business steps defined in the "Validate patient records" use case are also executed.

· Extend: In an extend relationship between two use cases, the child use case adds to the existing functionality and characteristics of the parent use case. An extend relationship is depicted with a directed arrow having a dotted shaft, similar to the include relationship. The tip of the arrowhead points to the parent use case and the child use case is connected at the base of the arrow. The stereotype "<<extend>>" identifies the relationship as an extend relationship, as shown in below Figure.

[image: image11.png]
An example of an extend relationship
In the above shows an example of an extend relationship between the "Perform medical tests" (parent) and "Perform Pathological Tests" (child) use cases. The "Perform Pathological Tests" use case enhances the functionality of the "Perform medical tests" use case. Essentially, the "Perform Pathological Tests" use case is a specialized version of the generic "Perform medical tests" use case.

· Generalizations: A generalization relationship is also a parent-child relationship between use cases. The child use case in the generalization relationship has the underlying business process meaning, but is an enhancement of the parent use case. In a use case diagram, generalization is shown as a directed arrow with a triangle arrowhead (see in below Figure). The child use case is connected at the base of the arrow. The tip of the arrow is connected to the parent use case.

[image: image12.png]
An example of a generalization relationship
On the face of it, both generalizations and extends appear to be more or less similar. But there is a subtle difference between a generalization relationship and an extend relationship. When you establish a generalization relationship between use cases, this implies that the parent use case can be replaced by the child use case without breaking the business flow. On the other hand, an extend relationship between use cases implies that the child use case enhances the functionality of the parent use case into a specialized functionality. The parent use case in an extend relationship cannot be replaced by the child use case.

Let us see if we understand things better with an example. From the diagram of a generalization relationship (refer to the above figure), you can see that "Store patient records (paper file)" (parent) use case is depicted as a generalized version of the "Store patient records (computerized file)" (child) use case. Defining a generalization relationship between the two implies that you can replace any occurrence of the "Store patient records (paper file)" use case in the business flow of your system with the "Store patient records (computerized file)" use case without impacting any business flow. This would mean that in future you might choose to store patient records in a computerized file instead of as paper documents without impacting other business actions.

Now, if we had defined this as an extend relationship between the two use cases, this would imply that the "Store patient records (computerized file)" use case is a specialized version of the "Store patient records (paper file)" use case. Hence, you would not be able to seamlessly replace the occurrence of the "Store patient records (paper file)" use case with the "Store patient records (computerized file)" use case.

[image: image36.png]
[image: image37.png]
SEQUENCE DIAGRAM

A sequence diagram is a graphical view of a scenario that shows object interaction in a time-based sequence what happens first, what happens next. Sequence diagrams establish the roles of objects and help provide essential information to determine class responsibilities and interfaces.
There are two main differences between sequence and collaboration diagrams: sequence diagrams show time-based object interaction while collaboration diagrams show how objects associate with each other.
A sequence diagram has two dimensions: typically, vertical placement represents time and horizontal placement represents different objects.

Object: An object has state, behavior, and identity. The structure and behavior of similar objects are defined in their common class. Each object in a diagram indicates some instance of a class. An object that is not named is referred to as a class instance.

The object icon is similar to a class icon except that the name is underlined:

An object's concurrency is defined by the concurrency of its class.

Message: A message is the communication carried between two objects that trigger an event. A message carries information from the source focus of control to the destination focus of control.

The synchronization of a message can be modified through the message specification.

Synchronization means a message where the sending object pauses to wait for results.

Link: A link should exist between two objects, including class utilities, only if there is a relationship between their corresponding classes. The existence of a relationship between two classes symbolizes a path of communication between instances of the classes: one object may send messages to another. The link is depicted as a straight line between objects or objects and class instances in a collaboration diagram. If an object links to itself, use the loop version of the icon.

[image: image38.jpg]
ACTIVITY DIAGRAM

 Activity diagrams provide a way to model the workflow of a business process, code-specific information such as a class operation. The transitions are implicitly triggered by completion of the actions in the source activities. The main difference between activity diagrams and state charts is activity diagrams are activity centric, while state charts are state centric. An activity diagram is typically used for modeling the sequence of activities in a process, whereas a state chart is better suited to model the discrete stages of an object’s lifetime.

 An activity represents the performance of task or duty in a workflow. It may also represent the execution of a statement in a procedure. You can share activities between state machines. However, transitions cannot be shared.

An action is described as a "task" that takes place while inside a state or activity.
Actions on activities can occur at one of four times:

· On entry: The "task" must be performed when the object enters the state or activity.
· On exit: The "task" must be performed when the object exits the state or activity.

· Do: The "task" must be performed while in the state or activity and must continue until exiting the state.

· On event: The "task" triggers an action only if a specific event is received.

· An end state represents a final or terminal state on an activity diagram or state chart diagram.

· A start state (also called an "initial state") explicitly shows the beginning of a workflow on an activity diagram.

· Swim lanes can represent organizational units or roles within a business model. They are very similar to an object. They are used to determine which unit is responsible for carrying out the specific activity. They show ownership or responsibility. Transitions cross swim lanes

· Synchronizations enable you to see a simultaneous workflow in an activity diagram Synchronizations visually define forks and joins representing parallel workflow.
· A fork construct is used to model a single flow of control that divides into two or more separate, but simultaneous flows. A corresponding join should ideally accompany every fork that appears on an activity diagram. A join consists of two of more flows of control that unite into a single flow of control. All model elements (such as activities and states) that appear between a fork and join must complete before the flow of controls can unite into one.
· An object flow on an activity diagram represents the relationship between an activity and the object that creates it (as an output) or uses it (as an input).

[image: image39.jpg]
COMPONENT DIAGRAM

The different high-level reusable parts of a system are represented in a Component diagram. A component is one such constituent part of a system. In addition to representing the high-level parts, the Component diagram also captures the inter-relationships between these parts.

So, how are component diagrams different from the previous UML diagrams that we have seen? The primary difference is that Component diagrams represent the implementation perspective of a system. Hence, components in a Component diagram reflect grouping of the different design elements of a system, for example, classes of the system.

Let us briefly understand what criteria to apply to model a component. First and foremost, a component should be substitutable as is. Secondly, a component must provide an interface to enable other components to interact and use the services provided by the component. So, why would not a design element like an interface suffice? An interface provides only the service but not the implementation. Implementation is normally provided by a class that implements the interface. In complex systems, the physical implementation of a defined service is provided by a group of classes rather than a single class. A component is an easy way to represent the grouping together of such implementation classes.

You can model different types of components based on their use and applicability in a system. Components that you can model in a system can be simple executable components or library components that represent system and application libraries used in a system. You also can have file components that represent the source code files of an application or document files that represent, for example, the user interface files such as HTML or JSP files. Finally, you can use components to represent even the database tables of a system as well!

Now that we understand the concepts of a component in a Component diagram, let us see what notations to use to draw a Component diagram.

Elements of a Component Diagram

A Component diagram consists of the following elements:

	Element and its description
	Symbol

	Component: The objects interacting with each other in the system. Depicted by a rectangle with the name of the object in it, preceded by a colon and underlined.
	[image: image13.png]

	Class/Interface/Object: Similar to the notations used in class and object diagrams
	[image: image14.png]

	Relation/Association: Similar to the relation/association used in class diagrams
	[image: image15.png]

DEPLOYMENT DIAGRAM

Deployment Diagram

Deployment diagrams depict the physical resources in a system including nodes, components, and connections. Basic Deployment Diagram Symbols and Notations

Component

A node is a physical resource that executes code components. Learn how to resize grouped objects like nodes.

[image: image16.png]
Association

Association refers to a physical connection between nodes, such as Ethernet.
Learn how to connect two nodes.

[image: image17.png]
Components and Nodes

Place components inside the node that deploys them.

[image: image18.png]

4.CODING

Package com.angel;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.LineNumberReader;

import java.util.Collection;

import java.util.HashSet;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.Set;

import java.util.StringTokenizer;

/**

 * This class represents the whole dataset of all supermarket transactions. A

 * transaction is an itemset of items bought by a supermarket client in a single

 * transaction. The class includes functions for loading the dataset from the

 * file, computing support and confidence etc. The <code> main() </code>

 * function of the class loads the dataset from the default file, runs the

 * apriori algorithm and dumps the results to the console.

 *

 *

 */

public class Dataset {

private LinkedList transactionList = new LinkedList();

/**

 * Creates and initializes the dataset with the data from a file

 *

 * @param filename

 * the name of the file to be loaded

 * @throws IOException

 */

public Dataset(String filename) throws IOException {

LineNumberReader lineReader = new LineNumberReader(

new InputStreamReader(new FileInputStream(filename)));

String line = null;

while ((line = lineReader.readLine()) != null) {

Itemset newItemset = new Itemset();

StringTokenizer tokenizer = new StringTokenizer(line, " ,\t");

while (tokenizer.hasMoreTokens()) {

newItemset.addItem(new Item(tokenizer.nextToken()));

}

// ignore all empty itemsets

if (newItemset.size() != 0) {

transactionList.add(newItemset);

}

}

}

public void dumpItemsets() {

Iterator itItemset = getTransactionIterator();

while (itItemset.hasNext()) {

Itemset itemset = (Itemset) itItemset.next();

System.out.println(itemset.toString());

}

}

/**

 *

 * @return the iterator that allows to go over all the transactions in the

 * dataset The transactions are <code> Itemset </code> objects

 */

public Iterator getTransactionIterator() {

return transactionList.iterator();

}

/**

 *

 * @return the number of transactions in the dataset

 */

public int getNumTransactions() {

return transactionList.size();

}

/**

 *

 * @param itemset

 * @return the support value for a given itemset in the context of the

 * current dataset

 */

public double computeSupportForItemset(Itemset itemset) {

int occurrenceCount = 0;

Iterator itItemset = getTransactionIterator();

while (itItemset.hasNext()) {

Itemset shoppingList = (Itemset) itItemset.next();

if (shoppingList.intersectWith(itemset).size() == itemset.size()) {

occurrenceCount++;

}

}

return ((double) occurrenceCount) / getNumTransactions();

}

/**

 *

 * @param associationRule

 * @return the confidence value for a given association rule in the context

 * of the current dataset

 */

public double computeConfidenceForAssociationRule(

Rule associationRule) {

Itemset union = associationRule.getItemsetA().unionWith(

associationRule.getItemsetB());

return computeSupportForItemset(union)

/ computeSupportForItemset(associationRule.getItemsetA());

}

/**

 *

 * @return all possible itemsets of size one based on the current dataset

 */

public Set getAllItemsetsOfSizeOne() {

Iterator itItemset = getTransactionIterator();

Itemset bigUnion = new Itemset();

while (itItemset.hasNext()) {

Itemset itemset = (Itemset) itItemset.next();

bigUnion = bigUnion.unionWith(itemset);

}

// break up the big unioned itemset into one element itemsets

HashSet allItemsets = new HashSet();

Iterator itItem = bigUnion.getItemIterator();

while (itItem.hasNext()) {

Item item = (Item) itItem.next();

Itemset itemset = new Itemset();

itemset.addItem(item);

allItemsets.add(itemset);

}

return allItemsets;

}

/**

 * The core of the association rule mining algorithm. This is what needs to

 * be implemented. This is the only piece of code that you need to modify to

 * complete the exercise.

 *

 * @param minSupport

 * minimal support value below which itemsets should not be

 * considered when generating candidate itemsets

 * @param minConfidence

 * minimal support value for the association rules output by the

 * algorithm

 * @return a collection of <code> AssociationRule </code> instances

 */

public Collection runApriori(double minSupport, double minConfidence) {

Collection discoveredAssociationRules = new LinkedList();

4. TESTING

Software Testing is a critical element of software quality assurance and represents the ultimate review of specification, design and coding, Testing presents an interesting anomaly for the software engineer.

Testing Objectives include:
1. Testing is a process of executing a program with the intent of finding an error

2. A good test case is one that has a probability of finding an as yet undiscovered error

3. A successful test is one that uncovers an undiscovered error

Testing Principles:

· All tests should be traceable to end user requirements

· Tests should be planned long before testing begins

· Testing should begin on a small scale and progress towards testing in large

· Exhaustive testing is not possible

· To be most effective testing should be conducted by a independent third party

TESTING STRATEGIES

A Strategy for software testing integrates software test cases into a series of well planned steps that result in the successful construction of software. Software testing is a broader topic for what is referred to as Verification and Validation. Verification refers to the set of activities that ensure that the software correctly implements a specific function. Validation refers he set of activities that ensure that the software that has been built is traceable to customer’s requirements

Unit Testing:

Unit testing focuses verification effort on the smallest unit of software design that is the module. Using procedural design description as a guide, important control paths are tested to uncover errors within the boundaries of the module. The unit test is normally white box testing oriented and the step can be conducted in parallel for multiple modules
.

Integration Testing:
 Integration testing is a systematic technique for constructing the program structure, while conducting test to uncover errors associated with the interface. The objective is to take unit tested methods and build a program structure that has been dictated by design.
Top-down Integration:

Top down integrations is an incremental approach for construction of program structure. Modules are integrated by moving downward through the control hierarchy, beginning with the main control program. Modules subordinate to the main program are incorporated in the structure either in the breath-first or depth-first manner.

Bottom-up Integration:

This method as the name suggests, begins construction and testing with atomic modules i.e., modules at the lowest level. Because the modules are integrated in the bottom up manner the processing required for the modules subordinate to a given level is always available and the need for stubs is eliminated.

Validation Testing:

At the end of integration testing software is completely assembled as a package. Validation testing is the next stage, which can be defined as successful when the software functions in the manner reasonably expected by the customer. Reasonable expectations are those defined in the software requirements specifications. Information contained in those sections form a basis for validation testing approach.

System Testing:

System testing is actually a series of different tests whose primary purpose is to fully exercise the computer-based system. Although each test has a different purpose, all work to verify that all system elements have been properly integrated to perform allocated functions.

Security Testing:

Attempts to verify the protection mechanisms built into the system.

Performance Testing:

This method is designed to test runtime performance of software within the context of an integrated system.

IMPLEMENTATION
Implementation includes all those activities that take place to convert from the old system to the new. The new system may be totally new; replacing an existing manual or automated system, or it may be a major modification to an existing system. Proper implementation is essential to provide reliable system to meet the organizational requirements. Successful implementation may not guarantee improvement in the organizational using the new system, as well as, improper installation will prevent any improvement.

The implementation phase involves the following tasks:

· Careful Planning

· Investigation of system and constraints

· Design of methods to achieve the changeover

· Training of staff in the changeover phase

· Evaluation of changeover.

Test cases in our system are as follows:

	Test Case# : 1
	Priority(H,L): High

	Test Objective: selecting the Database

	Test Description: select a file

	Requirements Verified: Relation

	Test Environment: form

	Test setup or Pre-conditions: user selects the dataset from the local Database.

	 Actions
	 Expected Results

	Incorrect Selection

Show Relation
	If the user selects the invalid Dataset, prompt for an error message.

Shows the contents of the Relation.

	Test: Passed

	Problems or issues: Nil

Table 5.1 Test Case 1

	Test Case# : 2
	Priority(H,L): High

	Test Objective: Data Storage

	Test Description: Min. Support, Gen.Time, Storage, nodes

	Requirements Verified: All the necessary fields should be generated

	Test Environment: form

	Test setup or Pre-conditions: Selecting a database from the local Disk

	 Actions
	 Expected Results

	Incomplete Necessary fields

	If the dataset is selected , the necessary fields are automatically generated.

	Test: Passed

	Problems or issues: Nil

 Table 5.2 Test Case 2

	Test Case# : 3
	Priority(H,L): High

	Test Objective: Mining

	Test Description: Accessing permissions

	Requirements Verified: yes or No

	Test Environment: form

	Test setup or Pre-conditions: user clicks on Yes Option.

	 Actions
	 Expected Results

	In Mining status

If not in the Mining status
	Extracts knowledge from the databbase.

All services are not activated.

	Test: Passed

	 Problems or issues: Nil

Table 5.3 Test Case 3

	Test Case# : 4
	Priority(H,L): High

	Test Objective: Show Angelization

	Test Description: Data Sets are verified.

	Requirements Verified: selection of Data set.

	Test Environment: form

	Test setup or Pre-conditions: user has to select the Generalization time.

	 Actions
	 Expected Results

	Generalized tables

	The generalized tables are shown

	Test: Passed

	Problems or issues: Nil

Table 5.4 Test Case 4

5. SCREEN SHOTS

Screen Showing the ANGEL Tool:

Screen Showing the Selection of a Dataset in to the Angel:

Screen Showing the Data Storage:

Screen Angelization (Working Principle of Angel)

Screen showing the generalized Tables :

Result Analysis:

ANGEL is that it lends itself very nicely to marginal publication. It easily supports the publication of any set of marginals, thus settling a problem known to be very difficult with generalization. Furthermore, ANGEL supports all monotonic principles in exactly the same manner. As a result, no adaptation effort is necessary when a publisher decides to adopt a different principle. This is a significant advantage over the previous solutions to marginal publication (which are “hard-wired” to specific principles).

6. CONCLUSION

The “ANGEL: Enhancing the Utility of Generalization For Privacy Preserving Publication ” completed. The goal of the system is achieved and problems are solved. The package is developed in a manner that it is user friendly and required help is provided at different levels.

The project can be easily used in the process of decision making. Different types of reports can be generated which help the management to take correct decision and reduce the time delay which automatically increases the company’s work standards as well as the economical state of the company.

This system never decreases the manpower but helps the development of available manpower and optimizes the manpower by which company’s standards and capabilities can be scaled to higher dimensions.

7. REFERENCES

[1] C.C. Aggarwal, “On k-Anonymity and the Curse of Dimensionality,” Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 901-909, 2005.

[2] C.C. Aggarwal and P.S. Yu, “A Condensation Approach to Privacy Preserving Data Mining,” Proc. Int’l Conf. Extending

Database Technology (EDBT), pp. 183-199, 2004.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and A. Zhu, “Achieving Anonymity via Clustering,”

Proc. ACM Symp. Principles of Database Systems (PODS), pp. 153-162, 2006.

[4] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu, “Anonymizing Tables,” Proc. Int’l Conf. Database Theory (ICDT), pp. 246-258, 2005.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic Databases,” Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 143- 154, 2002.

TEXT BOOKS:

1. Herrbert Schildt, “The Complete Reference JAVA 2”,7th Edition Tata McGraw Hills,2001.

2. Sommerville, “ Sofware engineering”, 7th Edition, Pearson Education.

3. Grady Booch, ames Rumbaugh, IvarJacobson: “Unified Modelling Language User Guide”, Pearson education.

WEB SITES:

1. www.google.com
2. http://en.wikipedia.org
Angel

Dataset

Angelization

Generalization

Mining Time

