Localized Sensor Area Coverage with Low Communication Overhead
 Scope of the project
Localized sensor area coverage with low communication overhead, is for the maximum utilization of network resources (sensors) and to reduce communication overheads.
 Introduction
When the sensor is used, the battery power of sensors cannot be easily replaced or refilled. Energy is therefore the system’s most important resource. Most often, too many nodes are deployed, and only some of them are really needed for monitoring. This redundancy conveniently allows nodes that are not required for the local monitoring task to turn into sleep mode, in order to increase their own life span and the lifetime of the created network. The problem considered in this project is about sensors making decisions whether or not to turn off so that the whole area remains fully covered and the subset of active nodes remains connected. Therefore, the sensor area coverage problem is to determine a small number of active and connected sensors that still cover the same area as the fully deployed set. This enables active sensors to detect any event in the covered area and report it to a monitoring center.

 Modules
 1. Login

 2. Communication Range

 3. Sensing Range

 3. Device

 4. Dual Sharing

 5. Full Sharing

 Module Description
Login

Admin can login by this module. All the registered users can login and they can use this software. They can access both
Communication Range and Sensing Range
Communication range is the behavior of sensor, with how many neighbor sensors can be in contact. Sensing range is the sensing behavior, where in what range sensor can sense devices.
Device

In this module, get the number of sensors and devices (nodes), and time out period of the sensors as input. All the nodes and sensors will takes their space as per given.
Dual Sharing
In dual sharing, the nearest two sensors only will communicate each other. In the particular network, every sensor is linked with only one neighbor sensor and these pair will share the time and devices.
Full Sharing

In full sharing, all the sensors in a network have the connection between each other. Here every sensor of the network will be in contact between each other sensors; this will lead to sharing of all the devices in a particular network.
 Module I/O

Device
Given Input- Number of sensors and nodes. Time-out period of sensors.
Expected Output- Creation of all the sensors and nodes
Dual Sharing
Given Input- Communication between paired sensors.

Expected Output- Sharing of devices and time with paired sensors.
Full Sharing
Given Input- Communication between whole network sensors.

Expected Output- Sharing of devices and time with entire sensors of network.

 Module diagram

 UML Diagrams

 Use case diagram

 Class diagram

 Object diagram

 State diagram

 Activity diagram

 Sequence diagram
[image: image1.emf]Register NodesTimeout Of

Sensor

Dual ShareFull Share

Number of nodes

Time Out of Sensor

Nodes

Nodes

Sensor

Sensor

 Collaboration Diagram
[image: image2.emf]Register

 Nodes

Timeout Of

Sensor

Dual

Share

Full

Share

2: Time Out of Sensor

1: Number of nodes

3: Nodes

4: Nodes

5: Sensor

6: Sensor

 Component Diagram

 Dataflow diagram

 Project Flow Diagram

 E-R Diagram

 System Architecture

 Literature review

Hexagonal and Square Grid Coverage

Zhang and Hou described an efficient algorithm for selecting covering sensors in a time-synchronized network.Sensors periodically make new decisions about their active or sleeping status. In each round, a single sensor starts the decision process, which then propagates to the whole network. New sensors are selected so that the priority is given to sensors located near the optimal hexagonal area coverage, obtained when the area is ideally divided into equal regular hexagons. The coverage is indeed quite good, given the distributed nature of the decisions. However, the need for a single sensor to start the process may cause problems in applying it, including increased latency. If several sensors start the process then the decisions at meeting points would be suboptimal. Another problem is that the original sensing area coverage may not be preserved (as shown by experimental results). In this article, we consider only protocols that preserve the full

coverage of the originally covered area.

The algorithm presented in divides the area into small grids and then covers each grid with a sensor. Each sensor that can cover a grid maintains a list of other sensors that can also cover it, in a priority order. All sensors covering the same grid can communicate with each other. When the sensor density is significant, sensors need a lot of memory and processing time to maintain priority lists, plus the communication overhead for making covering decisions in a cooperative manner is nontrivial.

Coordinated Area Coverage

Hsin and Liu investigated random and coordinated area coverage algorithms. Each sensor covers a circle of radius R. In their coordinated coverage scheme, a sensor may decide to sleep after receiving permission from sponsoring neighbors, for the time such permission is given. A node that sponsors another node must be active. The decisions are not synchronized, since each sensor can negotiate with its sponsors independently, and the scheme allows for several variants with (sophisticated) protocol details. The authors suggest that nodes collect information about residual energy from neighboring sensors. Sensors with low residual energy are more likely to enter the sleep state than sensors with high residual energy. Each sensor maintains its own delay counter, which is used for role alteration. Coordinated schemes performed better in their experiments. Although the coordinated scheme of Hsin and Liu has some desirable properties, such as localized behavior, it may select too many sponsor nodes to be active, since there is no coordination between nodes for the selection of as many as possible common sponsor nodes.
Sheu propose the following protocol. First, each sensor A sends or routes its priority to all sensing neighbors. Then, it considers the perimeter of its sensing circle and portions of perimeters of sensing neighbors with higher priority that are inside its own sensing circle. If all these perimeters are fully covered by other sensing neighbors with higher priorities, then A may sleep. To decide about some neighboring active sensors, each of the considered perimeters is subdivided into segments, based on the intersections with other considered circles. For each such segment, the sensor with the highest priority, among nodes covering this segment, is active. Note that some neighboring active sensors may not be discovered. However, those discovered suffice to construct a connected query tree for reporting from A to the sink. This elegant localized protocol requires one message per node for CR > 2SR, but for other ratios CR=SR, the routing overhead and complexity (for example, if greedy routing fails) may become excessive.

Carle proposed a localized scheme based on a relay selection phase. Every node selects a set of relays among its one-hop neighbors. The relays cover an area as large as the area covered by the whole neighborhood. Then, an activity decision is made based on a unique key. Any node that has the smallest priority in its neighborhood or that has been selected as a relay by its neighbor with the smallest priority will decide to remain active. This decision allows connectivity to be preserved along with full area coverage. However, the algorithm involves sending hello messages to learn one-hop neighbors and sending messages informing neighbors about relays (the latter

messages are even of extended size), which is a considerably higher communication overhead than that of the methods studied and proposed in this article.

Low-Communication-Overhead Schemes

Tian and Georganas proposed a solution for sensor area coverage in synchronous homogeneous networks where the sensing range is equal to the transmission range. It requires that every node knows the positions of all its neighbors before making its monitoring decision. At the beginning of each round, each node selects a time-out interval. At the end of the interval, if a node sees that neighbors (that have not yet sent a retreat message) together cover its monitoring area, the node transmits a retreat message to all its neighbors and moves into the sleep mode. Otherwise, the node remains active but does not transmit any message. The process repeats periodically to allow for changes in the monitoring status. There are several problems in this protocol. Neighboring active sensors may fail without notice, and neighboring sensors may not activate, believing that the sensor is alive and monitoring. This problem can be resolved if neighboring information is exchanged at the beginning of each round. The other problem is that

covering sensors may not be connected; thus, reporting to a monitoring station may not succeed. The authors also discuss the case of different sensing radii at each sensor.

Jiang and Dou describe several improvements to the algorithm. They assume that CR >= 2SR and apply the criterion that a circle C is covered completely if the perimeters of the other circles covering it (only portions that are inside C) are fully covered by other covering circles. Nodes apply a random backoff before making decisions. In the algorithm presented, at the beginning of each round, each node sends a hello message to inform about its position. The algorithm is then applied (which relies on node retreat messages).

This algorithm is the closest competitor to our new protocols. For fairness, we modify it in several ways. First, the perimeter coverage criterion was replaced here by a computationally more efficient criterion about covering

intersection points of two circles inside a given circle. This does not change any activity decision. Next, we consider the protocol for general ratio CR=SR by adding a similar connectivity criterion when CR < 2SR. The experimental data show that this algorithm outperforms PEAS with respect to the number of nodes needed in the coverage while completely preserving the sensing coverage of the original network. This modified protocol will be referred to as the TGJD protocol.

Coverage Evaluation

In the rest of the article, we will assume that each node is able to evaluate the coverage provided by its communication neighbors. Several mechanisms have already been used in protocols such as TGJD. Each node can decide to enter the passive mode if its sensing area is fully covered by the set of neighbors. Let us now discuss how to decide whether or not the monitoring area of a sensor is fully covered.

Different evaluation schemes have already been proposed in literature. The perimeter-based scheme used cannot be applied for heterogeneous networks or when CR > SR. We decided to apply a well-known geometric theorem, which is generally applicable. Moreover, it is applicable to any shape of monitored region by a sensor, which was used by us to deal with border issues.

The covering criterion has been already applied. It efficiently confirms whether or not a sensing region is fully covered by other sensing regions. It

is applied on the borders of the sensing areas of each sensor. In our case, these borders are normally circles, and we will express the theorem first in circle terminology. This criterion, expressed in the following theorem, is fast

to compute and works for any CR=SR ratio and for heterogeneous networks.

If there are at least two covering circles and any intersection point of the two covering circles inside the sensing area is covered by a third covering circle, then the sensing area is fully covered.

In other words, a disk d is fully covered by other disks if and only if every intersection point of two disks d1 and d2 inside d is covered by another disk d3. In addition, the intersection points of any other disk d1 with d must also be fully covered (be inside) a third circle d2. Note that circles are not required to have the same radii. Note that a complete proof was given. This theorem was also used in the protocol given.

This criterion can be modified to avoid the problem of border node effects. The nodes located near the borders of the monitored area may be active in each round since they are the only ones able to monitor certain parts of their own sensing coverage, which could be outside the area to be monitored. We therefore intersect the original joint sensing coverage and the monitored area. The monitored area is a geometrical figure such as a rectangle, inside which sensors are deployed. To remedy the problem, we assume that nodes are aware of the field they have to monitor and can adjust the covering criterion in order to consider the portions of sensing regions located inside the deployment area. Nodes simply find the intersections of sensing and monitoring areas and revise their sensing areas.

 Techniques and Algorithm Used

The distributed algorithms community has never been shy of models. We study message passing and shared memory systems, synchronous and asynchronous algorithms, Byzantine and selfish nodes, self-stabilization and failure-detection, to only name a few of the most typical modeling facets. In fact, what is (im) possible and/or (in) efficient in which model of distributed computation often outranks the importance of solving this or that problem in a specific model. Still, when it comes to sensor networks it seems that our abundance of models is not enough.
Most algorithms for sensor networks proposed in literature are meant to be executed by the sensor nodes during the system’s operation. For example, when a node receives a message, it performs some (simple and local) computation, and—depending on the computation’s results—sends a new message to its neighbors. A node a priori only knows its own state. In order to learn more about the other nodes in the network, it has to communicate with its neighbors. By collaboration of the nodes, global operations such as (multi-hop) routing can be achieved. Since the activity is distributed among the nodes, these algorithms are called distributed algorithms. Distributed algorithms raise many interesting research questions. For example: What can be computed in a distributed fashion, and what not? How efficient is a distributed algorithm compared to a corresponding global algorithm? Every (global) algorithm can easily be turned into a distributed algorithm: Simply centrally collect the distributed state, compute a global solution, and distribute this solution. However, this simple routine is often unreasonably pricey. Since sending and receiving messages are expensive operations in wireless networks (e.g., medium access control, energy consumption), a reasonable distributed algorithm should minimize communication. This motivates the introduction of localized algorithms. A localized algorithm is a special case of a distributed algorithm.
Localized Algorithm
In a k-localized algorithm, for some parameter k, each node is allowed to communicate at most k times with its neighbors. A node can decide to retard its right to communicate; for example, a node can wait to send messages until all its neighbors having larger identifiers have reached a certain state of their execution. In spite of the restricted communication model, localized algorithms can be slow. A node u might have to wait for a neighbor v, while node v in turn has to wait for its neighbor w, etc. Thus, as a matter of fact there can be a linear chain of causality, with only one node being active at any time. This yields a worst-case execution time of Θ (n), where n is the number of nodes.
 Advantages

1. Reducing communication overheads like collisions etc.

2. Reliable on no data loss.

3. Maximum utilization of network resources (sensors).
 Applications
All the applications using sensors in a network.

 NETWORK

Node

ADMIN

 NODE

 node_no,cur_sen

 node ()

SENSOR

NODES

USER

 SENSOR

 Sen_no,sen_time,Sen_maxdev

sensor ()

NODE

Login

USER

Dual share

NETWORK

 ADMIN

Sensors

Nodes

Full Share

SENSOR

NETWORK

ADMIN

Register

Time-out

Network

No.Node,Time Sensor

Full_share ()

Dual_share ()

Sensor

Timeout

Get_timeout()

Node

Number

Get_node ()

Login

Password

Check_user ()

Registration

Sensor

Node

Full Share

 Network

 User

Send to Network

Login

Nodes

Sensor

Dual Share

NODE

 FULLSHARE

SENSOR

DUAL SHARING NETWORK

FULL SHARING NETWORK

DUALSHARE

 USER

 ADMIN

NODE

Login

SENSOR

Register

 LOGIN

 ADMIN

 USER

STOP

DUAL SHARE

FULL SHARE

SENSOR

NODES

 LOGIN

 START

No.NODES

DUAL SHARE

TIME OUT

SENSOR

 HAS

FULL SHARE

NODE

SENSOR

 HAS

USER

USER DETAILS

No.NODES

TIME OUT

SENSOR

ADMIN

