CREATE DATABASES WATERMARKING

ABSTRACT:
We present a mechanism for proof of ownership based on the secure embedding of a robust imperceptible watermark in relational data. We formulate the watermarking of relational databases as a constrained optimization problem and discuss efficient techniques to solve the optimization problem and to handle the constraints. Watermark decoding is based on a threshold-based technique characterized by an optimal threshold that minimizes the probability of decoding errors. We implemented a proof of concept implementation of our watermarking technique and showed by experimental results that our technique is resilient to tuple deletion, alteration, and insertion attacks.
INTRODUCTION:

THE rapid growth of the Internet and related technologies has offered an unprecedented ability to access and redistribute digital contents. In such a context, enforcing data ownership is an important requirement, which requires articulated solutions, encompassing technical, organizational, and legal aspects. Although we are still far from such comprehensive solutions, in the last years, watermarking techniques have emerged as an important building block that plays a crucial role in addressing the ownership problem. Such techniques allow the owner of the data to embed an imperceptible watermark into the data.
A watermark describes information that can be used to prove the ownership of data such as the owner, origin, or recipient of the content. Secure embedding requires that the embedded watermark must not be easily tampered with, forged, or removed from the watermarked data. Imperceptible embedding means that the presence of the watermark is unnoticeable in the data. Furthermore, the watermark detection is blinded, that is, it neither requires the knowledge of the original data nor the watermark. Watermarking techniques have been developed for video, images, audio, and text data and also for software and natural language text. By contrast, the problem of watermarking relational data has not been given appropriate attention. There are, however, many application contexts for which data represent an important asset, the ownership of which must thus be carefully enforced. This is the case, for example, of weather data, stock market data, power consumption, consumer behavior data, and medical and scientific data.
Watermark embedding for relational data is made possible by the fact that real data can very often tolerate a small amount of error without any significant degradation with respect to their usability. For example, when dealing with weather data, changing some daily temperatures of 1 or2 degrees is a modification that leaves the data still usable. To date, only a few approaches to the problem of watermarking relational data have been proposed. These techniques, however, are not very resilient to watermark attacks. In this paper, we present a watermarking technique for relational data that is highly resilient compared to these techniques. In particular, our proposed technique is resilient to tuple deletion, alteration, and insertion attacks.
We formulate the watermarking of relational databases as a constrained optimization problem and discuss efficient techniques to handle the constraints. We present two techniques to solve the formulated optimization problem based on genetic algorithms (GAs) and pattern search (PS) techniques. We present a data partitioning technique that does not depend on marker tuples to locate the partitions and, thus, it is resilient to watermark synchronization errors.. We develop an efficient technique for watermark detection that is based on an optimal threshold. The optimal threshold is selected by minimizing the probability of decoding error.

SYSTEM STUDY

2. SYSTEM STUDY

2.1 EXISTING SYSTEM:

Existing System:

Watermarking in least significant bits(LSB).This technique embeds the watermark bits in the least significant bits of selected attributes of a selected subset of tuple’s. It uses secret key in watermarking. For each tuple’s a secure message, authenticated code is computed using the secret key and tuple’s primary key. The computed MAC is used select candidate tuple’s attributes and the LSB positions in the selected attributes.

2.2 PROPOSED SYSTEM:

Proposed System:

Watermarking embeds ownership information in digital content. Watermark describes information tat can be used to prove the ownership of relational database. Here the embedding is hidden tat the presence of watermarking is invisible to the user.

2.3 FEASIBILITY STUDY

 All projects are feasible given unlimited resources and infinite time. It is both necessary and prudent to evaluate the feasibility of the project at the earliest possible time. Feasibility and risk analysis is related in many ways. If project risk is great , the feasibility listed below is equally important.

 The following feasibility techniques has been used in this project

· Operational Feasibility

· Technical Feasibility

· Economic Feasibility

Operational Feasibility:

 Proposed system is beneficial since it turned into information system analyzing the traffic that will meet the organizations operating requirements.

IN security, the file is transferred to the destination and the acknowledgement is given to the server. Bulk of data transfer is sent without traffic.

Technical Feasibility:

 Technical feasibility centers on the existing computer system (hardware , software, etc..) and to what extent it can support the proposed addition. For example, if the current computer is operating at 80% capacity. This involves, additional hardware (RAM and PROCESSOR) will increase the speed of the process. In software, Open Source language that is JAVA and JMF is used. We can also use in Linux operating system.

 The technical requirement for this project are Java tool kit and Swing component as software and normal hardware configuration is enough , so the system is more feasible on this criteria.

 Economic Feasibility:

 Economic feasibility is the most frequently used method for evaluating the effectiveness of a candidate system. More commonly known as cost / benefit analysis, the procedure is to determine the benefits and saving that are expected from a candidate and compare them with the costs. If the benefits outweigh cost. Then the decision is made to design and implement the system. Otherwise drop the system.

 This system has been implemented such that it can be used to analysis the traffic. So it does not requires any extra equipment or hardware to implement. So it is economically feasible to use.

.

 SYSTEM

 SPECIFICATION

. SYSTEM SPECIFICATION

3.1 HARDWARE SPECIFICATION:

 Processor
: Pentium-III

 Speed

: 1.1GHz

 RAM

: 512MB

 Hard Disk
: 40GB

 General : KeyBoard, Monitor , Mouse

3.2 SOFTWARE SPECIFICATION:

 Operating System : Windows XP

 Software : visual studio 5.0

 Back End

 :sql server

 LANGUAGE

 DESCRIPTION

4. LANGUAGE DESCRIPTION

Overview of the .NET Framework

The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET Framework is designed to fulfill the following objectives:

· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely.

· To provide a code-execution environment that minimizes software deployment and versioning conflicts.

· To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party.

· To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments.

· To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications.

· To build all communication on industry standards to ensure that code based on the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime and the .NET Framework class library. The common language runtime is the foundation of the .NET Framework. You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code. The class library, the other main component of the .NET Framework, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET Framework not only provides several runtime hosts, but also supports the development of third-party runtime hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side environment for managed code. ASP.NET works directly with the runtime to enable Web Forms applications and XML Web services, both of which are discussed later in this topic.

Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime enables you to embed managed components or Windows Forms controls in HTML documents. Hosting the runtime in this way makes managed mobile code (similar to Microsoft® ActiveX® controls) possible, but with significant improvements that only managed code can offer, such as semi-trusted execution and secure isolated file storage.

The following illustration shows the relationship of the common language runtime and the class library to your applications and to the overall system. The illustration also shows how managed code operates within a larger architecture.

[image: image30.png]
The following sections describe the main components and features of the .NET Framework in greater detail.

Features of the Common Language Runtime

The common language runtime manages memory, thread execution, code execution, code safety verification, compilation, and other system services. These features are intrinsic to the managed code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of trust, depending on a number of factors that include their origin (such as the Internet, enterprise network, or local computer). This means that a managed component might or might not be able to perform file-access operations, registry-access operations, or other sensitive functions, even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an executable embedded in a Web page can play an animation on screen or sing a song, but cannot access their personal data, file system, or network. The security features of the runtime thus enable legitimate Internet-deployed software to be exceptionally feature rich.

The runtime also enforces code robustness by implementing a strict type- and code-verification infrastructure called the common type system (CTS). The CTS ensures that all managed code is self-describing. The various Microsoft and third-party language compilers generate managed code that conforms to the CTS. This means that managed code can consume other managed types and instances, while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many common software issues. For example, the runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. This automatic memory management resolves the two most common application errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example, programmers can write applications in their development language of choice, yet take full advantage of the runtime, the class library, and components written in other languages by other developers. Any compiler vendor who chooses to target the runtime can do so. Language compilers that target the .NET Framework make the features of the .NET Framework available to existing code written in that language, greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports software of today and yesterday. Interoperability between managed and unmanaged code enables developers to continue to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it is executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and increases memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side applications, such as Microsoft® SQL Server™ and Internet Information Services (IIS). This infrastructure enables you to use managed code to write your business logic, while still enjoying the superior performance of the industry's best enterprise servers that support runtime hosting.

.NET Framework Class Library

The .NET Framework class library is a collection of reusable types that tightly integrate with the common language runtime. The class library is object oriented, providing types from which your own managed code can derive functionality. This not only makes the .NET Framework types easy to use, but also reduces the time associated with learning new features of the .NET Framework. In addition, third-party components can integrate seamlessly with classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of interfaces that you can use to develop your own collection classes. Your collection classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET Framework types enable you to accomplish a range of common programming tasks, including tasks such as string management, data collection, database connectivity, and file access. In addition to these common tasks, the class library includes types that support a variety of specialized development scenarios. For example, you can use the .NET Framework to develop the following types of applications and services:

· Console applications.

· Scripted or hosted applications.

· Windows GUI applications (Windows Forms).

· ASP.NET applications.

· XML Web services.

· Windows services.

For example, the Windows Forms classes are a comprehensive set of reusable types that vastly simplify Windows GUI development. If you write an ASP.NET Web Form application, you can use the Web Forms classes.

Client Application Development

Client applications are the closest to a traditional style of application in Windows-based programming. These are the types of applications that display windows or forms on the desktop, enabling a user to perform a task. Client applications include applications such as word processors and spreadsheets, as well as custom business applications such as data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus, buttons, and other GUI elements, and they likely access local resources such as the file system and peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now replaced by the managed Windows Forms control) deployed over the Internet as a Web page. This application is much like other client applications: it is executed natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C/C++ in conjunction with the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment such as Microsoft® Visual Basic®. The .NET Framework incorporates aspects of these existing products into a single, consistent development environment that drastically simplifies the development of client applications.

The Windows Forms classes contained in the .NET Framework are designed to be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and other screen elements with the flexibility necessary to accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual attributes associated with forms. In some cases the underlying operating system does not support changing these attributes directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many ways in which the .NET Framework integrates the developer interface, making coding simpler and more consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's computer. This means that binary or natively executing code can access some of the resources on the user's system (such as GUI elements and limited file access) without being able to access or compromise other resources. Because of code access security, many applications that once needed to be installed on a user's system can now be safely deployed through the Web. Your applications can implement the features of a local application while being deployed like a Web page.

Server Application Development

Server-side applications in the managed world are implemented through runtime hosts. Unmanaged applications host the common language runtime, which allows your custom managed code to control the behavior of the server. This model provides you with all the features of the common language runtime and class library while gaining the performance and scalability of the host server.

The following illustration shows a basic network schema with managed code running in different server environments. Servers such as IIS and SQL Server can perform standard operations while your application logic executes through the managed code.

Server-side managed code
[image: image2.png]
ASP.NET is the hosting environment that enables developers to use the .NET Framework to target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete architecture for developing Web sites and Internet-distributed objects using managed code. Both Web Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for applications, and both have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are distributed, server-side application components similar to common Web sites. However, unlike Web-based applications, XML Web services components have no UI and are not targeted for browsers such as Internet Explorer and Netscape Navigator. Instead, XML Web services consist of reusable software components designed to be consumed by other applications, such as traditional client applications, Web-based applications, or even other XML Web services. As a result, XML Web services technology is rapidly moving application development and deployment into the highly distributed environment of the Internet.

If you have used earlier versions of ASP technology, you will immediately notice the improvements that ASP.NET and Web Forms offers. For example, you can develop Web Forms pages in any language that supports the .NET Framework. In addition, your code no longer needs to share the same file with your HTTP text (although it can continue to do so if you prefer). Web Forms pages execute in native machine language because, like any other managed application, they take full advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and interpreted. ASP.NET pages are faster, more functional, and easier to develop than unmanaged ASP pages because they interact with the runtime like any managed application.

The .NET Framework also provides a collection of classes and tools to aid in development and consumption of XML Web services applications. XML Web services are built on standards such as SOAP (a remote procedure-call protocol), XML (an extensible data format), and WSDL (the Web Services Description Language). The .NET Framework is built on these standards to promote interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the .NET Framework SDK can query an XML Web service published on the Web, parse its WSDL description, and produce C# or Visual Basic source code that your application can use to become a client of the XML Web service. The source code can create classes derived from classes in the class library that handle all the underlying communication using SOAP and XML parsing. Although you can use the class library to consume XML Web services directly, the Web Services Description Language tool and the other tools contained in the SDK facilitate your development efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework provides a set of classes that conform to all the underlying communication standards, such as SOAP, WSDL, and XML. Using those classes enables you to focus on the logic of your service, without concerning yourself with the communications infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web service will run with the speed of native machine language using the scalable communication of IIS.

Namespaces

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple namespaces, which can in turn contain other namespaces. Namespaces prevent ambiguity and simplify references when using large groups of objects such as class libraries.

For example, Visual Studio .NET defines the ListBox class in the System.Windows.Forms namespace. The following code fragment shows how to declare a variable using the fully qualified name for this class:

Dim LBox As System.Windows.Forms.ListBox

Visual Studio .NET namespaces address a problem sometimes known as namespace pollution, in which the developer of a class library is hampered by the use of similar names in another library. These conflicts with existing components are sometimes called name collisions.

For example, if you create a new class named ListBox, you can use it inside your project without qualification. However, if you want to use the Visual Studio .NET ListBox class in the same project, you must use a fully qualified reference to make the reference unique. If the reference is not unique, Visual Basic .NET produces an error stating that the name is ambiguous. The following code snippet demonstrates how to declare these objects:

' Define a new object based on your ListBox class.

Dim LBC as New ListBox

' Define a new Windows.Forms ListBox control.

Dim MyLB as New System.Windows.Forms.ListBox

The following illustration shows two namespace hierarchies, both containing an object named ListBox.

[image: image3.png]
By default, every executable file you create with Visual Basic .NET contains a namespace with the same name as your project. For example, if you define an object within a project named ListBoxProject, the executable file, ListBoxProject.exe, contains a namespace called ListBoxProject.

Multiple assemblies can use the same namespace. Visual Basic .NET treats them as a single set of names. For example, you can define classes for a namespace called SomeNameSpace in an assembly named Assemb1, and define additional classes for the same namespace from an assembly named Assemb2.

Fully Qualified Names

Fully qualified names are object references that are prefixed with the name of the namespace where the object is defined. You can use objects defined in other projects if you create a reference to the class (by choosing Add Reference from the Project menu) and then use the fully qualified name for the object in your code. The following code fragment shows how to

to use the fully qualified name for an object from another project's namespace:

Dim LBC As New ListBoxProject.Form1.ListBox()

Fully qualified names prevent naming conflicts because the compiler can always determine which object is being used. However, the names themselves can get long and cumbersome. To get around this, you can use the Imports statement to define an alias — an abbreviated name you can use in place of a fully qualified name. For example, the following code snippet creates aliases for two fully qualified names, and uses these aliases to define two objects:

Imports LBControl = System.Windows.Forms.ListBox

Imports MyListBox = ListBoxProject.Form1.ListBox

Dim LBC As LBControl

Dim MyLB As MyListBox

If you use the Imports statement without an alias, you can use all the names in that namespace without qualification provided they are unique to the project. If your project contains Imports statements for namespaces that contain items with the same name, you must fully qualify that name when you use it. Suppose, for example, your project contained the following two Imports statements:

Imports MyProj1 ' This namespace contains a class called Class1.

Imports MyProj2 ' This namespace also contains a class called Class1.

If you attempt to use Class1 without fully qualifying it, Visual Basic .NET produces an error stating that the name Class1 is ambiguous.

Namespace Level Statements

Within a namespace, you can define items such as modules, interfaces, classes, delegates, enumerations, structures, and other namespaces. You cannot define items such as properties, procedures, variables and events at the namespace level, these items must be declared within containers such as modules, structures, or classes.

Multithreaded Applications

With Visual Basic .NET, you can write applications that perform multiple tasks simultaneously. Tasks with the potential of holding up other tasks can execute on separate threads, a process known as multithreading or free threading. Applications that use multithreading are more responsive to user input because the user interface stays active while processor-intensive tasks execute on separate threads. Multithreading is also useful when creating scalable applications, because you can add threads as the workload increases.

Creating and Using Threads

You create a new thread in Visual Basic .NET by declaring a variable of type System.Threading.Thread and calling the constructor with the AddressOf statement and the name of the procedure or method you want to execute on the new thread. The following code provides an example:

Dim MyThread As New System.Threading.Thread(AddressOf MySub)

Starting and Stopping Threads

To start the execution of a new thread, use the Start method, as in the following code:

MyThread.Start()

To stop the execution of a thread, use the Abort method, as in the following code:

MyThread.Abort()

Besides starting and stopping threads, you can also pause threads by calling the Sleep or Suspend methods, resume a suspended thread with the Resume method, and destroy a thread using the Abort method, as in the following code:

MyThread.Sleep ()

MyThread.Suspend ()

MyThread.Abort ()

See Thread States <vaconthreadstates.htm> for more information on thread states and methods.

Thread Priorities

Every thread has a priority property — that determines how large of a time slice it gets to execute. The operating system allocates longer time slices to high-priority threads than it does to low-priority threads. New threads are created with the value of Normal, but you can adjust the Priority property to any of the other values in the System.Threading.ThreadPriority

enumeration.

See ThreadPriority Enumeration for a detailed description of the various thread priorities.

Foreground and Background Threads

A foreground thread runs indefinitely, while a background thread terminates once the last foreground thread has stopped. You can use the IsBackground property to determine or change the background status of a thread

Changing Thread States

Once a thread has started, you can call its methods to change its state. For example, you can cause a thread to pause for a fixed number of milliseconds by calling Thread.Sleep. The Sleep method takes as a parameter a timeout, which is the number of milliseconds that the thread remains blocked. Calling Thread.Sleep(System.Threading.Timeout.Infinite) causes a thread to sleep until it is interrupted by another thread that calls Thread.Interrupt. The Thread.Interrupt method wakes the destination thread out of any wait it may be in and causes an exception to be raised.

You can also pause a thread by calling Thread.Suspend. When a thread calls Thread.Suspend on itself, the call blocks until another thread resumes it by calling Thread.Resume. When a thread calls Thread.Suspend on another thread, the call is non-blocking and causes the other thread to pause. Calling Thread.Resume breaks another thread out of its suspended state and causes it to resume execution. Unlike Thread.Sleep, Thread.Suspend does not immediately stop a thread; the suspended thread does not pause until the common language runtime determines that it has reached a safe point.

The Thread.Abort method stops a running thread by raising a ThreadAbortException exception that causes the thread to die.

See Thread Methods for detailed information about these methods

Overview of ADO.NET

ADO.NET provides consistent access to data sources such as Microsoft SQL Server, as well as data sources exposed via OLE DB and XML. Data-sharing consumer applications can use ADO.NET to connect to these data sources and retrieve, manipulate, and update data.

ADO.NET cleanly factors data access from data manipulation into discrete components that can be used separately or in tandem. ADO.NET includes .NET data providers for connecting to a database, executing commands, and retrieving results. Those results are either processed directly, or placed in an ADO.NET DataSet object in order to be exposed to the user in an ad-hoc manner, combined with data from multiple sources, or remoted between tiers. The ADO.NET DataSet object can also be used independently of a .NET data provider to manage data local to the application or sourced from XML.

The ADO.NET classes are found in System.Data.dll, and are integrated with the XML classes found in System.Xml.dll. When compiling code that uses the System.Data namespace, reference both System.Data.dll and System.Xml.dll. For an example of compiling an ADO.NET application using a command line compiler, see ADO.NET Sample Application <cpconsampleapplication.htm>.

ADO.NET provides functionality to developers writing managed code similar to the functionality provided to native COM developers by ADO. For a discussion of the differences between ADO and ADO.NET, see "ADO.NET for the ADO Programmer" at http://msdn.microsoft.com/library/en-us/dndotnet/html/ADONETProg.asp.

Design Goals for ADO.NET

As application development has evolved, new applications have become loosely coupled based on the Web application model. More and more of today's applications use XML to encode data to be passed over network connections. Web applications use HTTP as the fabric for communication between tiers, and therefore must explicitly handle maintaining state between requests. This new model is very different from the connected, tightly coupled style of programming that characterized the client/server era, where a connection was held open for the duration of the program's lifetime and no special handling of state was required.

In designing tools and technologies to meet the needs of today's developer, Microsoft recognized that an entirely new programming model for data access was needed, one that is built upon the .NET Framework. Building on the .NET Framework ensures that the data access technology would be uniform — components would share a common type system, design patterns, and naming conventions.

ADO.NET was designed to meet the needs of this new programming model: disconnected data architecture, tight integration with XML, common data representation with the ability to combine data from multiple and varied data sources, and optimized facilities for interacting with a database, all native to the .NET Framework.

In creating ADO.NET, Microsoft embraced the following design goals.

Leverage Current ADO Knowledge

The design for ADO.NET addresses many of the requirements of today's application development model. At the same time, the programming model stays as similar as possible to ADO, so current ADO developers do not have to start from the beginning in learning a brand new data access technology. ADO.NET is an intrinsic part of the .NET Framework without seeming completely foreign to the ADO programmer.

ADO.NET coexists with ADO. While most new .NET-based applications will be written using ADO.NET, ADO remains available to the .NET programmer through .NET COM interoperability services.

For a discussion of the differences between ADO and ADO.NET, see "ADO.NET for the ADO Programmer" at http://msdn.microsoft.com/library/en-us/dndotnet/html/ADONETProg.asp.

Support the N-Tier Programming Model

ADO.NET provides first-class support for the disconnected, n-tier programming environment for which many new applications are written. The concept of working with a disconnected set of data has become a focal point in the programming model. The ADO.NET solution for n-tier programming is the DataSet.

Integrate XML Support

XML and data access are intimately tied — XML is all about encoding data, and data access is increasingly becoming all about XML. The .NET Framework does not just support Web standards — it is built entirely on top of them.

XML support is built into ADO.NET at a very fundamental level. The XML classes in the .NET Framework and ADO.NET are part of the same architecture — they integrate at many different levels. You no longer have to choose between the data access set of services and their XML counterparts; the ability to cross over from one to the other is inherent in the design of both.

ADO.NET Architecture

Data processing has traditionally relied primarily on a connection-based, two-tier model. As data processing increasingly uses multi-tier architectures, programmers are switching to a disconnected approach to provide better scalability for their applications.

XML and ADO.NET

ADO.NET leverages the power of XML to provide disconnected access to data. ADO.NET was designed hand-in-hand with the XML classes in the .NET Framework — both are components of a single architecture.

ADO.NET and the XML classes in the .NET Framework converge in the DataSet object. The DataSet can be populated with data from an XML source, whether it is a file or an XML stream. The DataSet can be written as World Wide Web Consortium (W3C) compliant XML, including its schema as XML Schema definition language (XSD) schema, regardless of the source of the data in the DataSet. Because the native serialization format of the DataSet is XML, it is an excellent medium for moving data between tiers making the DataSet an optimal choice for remoting data and schema context to and from an XML Web service.

The DataSet can also be synchronized with an XmlDataDocument to provide relational and hierarchical access to data in real time. For more information, see Synchronizing a DataSet with an XmlDataDocument <cpconsynchronizingdatasetwithxmldatadocument.htm>.

ADO.NET Components

The ADO.NET components have been designed to factor data access from data manipulation. There are two central components of ADO.NET that accomplish this: the DataSet, and the .NET data provider, which is a set of components including the Connection, Command, DataReader, and DataAdapter objects.

The ADO.NET DataSet <cpcontheadonetdataset.htm> is the core component of the disconnected architecture of ADO.NET. The DataSet is explicitly designed for data access independent of any data source. As a result it can be used with multiple and differing data sources, used with XML data, or used to manage data local to the application. The DataSet

contains a collection of one or more DataTable objects made up of rows and columns of data, as well as primary key, foreign key, constraint, and relation information about the data in the DataTable objects.

The other core element of the ADO.NET architecture is the .NET data provider <cpconadonetproviders.htm>, whose components are explicitly designed for data manipulation and fast, forward-only, read-only access to data. The Connection object provides connectivity to a data source. The Command object enables access to database commands to return data, modify data, run stored procedures, and send or retrieve parameter information. The DataReader provides a high-performance stream of data from the data source. Finally, the DataAdapter provides the bridge between the DataSet object and the data source. The DataAdapter uses Command objects to execute SQL commands at the data source to both load the DataSet with data, and reconcile changes made to the data in the DataSet back to the data source.

You can write .NET data providers for any data source. The .NET Framework ships with two .NET data providers

the SQL Server .NET Data Provider and the OLE DB .NET Data Provider.

The following diagram illustrates the components of ADO.NET architecture

the SQL Server .NET Data Provider and the OLE DB .NET Data Provider.

The following diagram illustrates the components of ADO.NET architecture

ADO.NET architecture
[image: image4.png]
Remoting or Marshaling Data between Tiers and Clients

The design of the DataSet enables you to easily transport data to clients over the Web using XML Web services, as well as allowing you to marshal data between .NET components using .NET Remoting services. You can also remote a strongly typed DataSet in this fashion. For an overview of XML Web services, see XML Web Services Overview <cpconwebservicesoverview.htm>. For an example of consuming a DataSet from an XML Web service, see Consuming a DataSet from an XML Web Service <cpconconsumingdatasetfromwebservice.htm>.

An overview of remoting services can be found in the .NET Remoting Overview <cpconnetremotingoverview.htm>. Note that DataTable objects can also be used with remoting services, but cannot be transported via an XML Web service.

ADO.NET Platform Requirements

The Microsoft .NET Framework SDK (including ADO.NET) is supported on Microsoft® Windows® 2000, Microsoft® Windows NT® 4 with Service Pack 6a, Microsoft® Windows® Millennium Edition, Microsoft® Windows® 98, and Microsoft® Windows® SE. Use of the SQL Server .NET Data Provider or OLE DB .NET Data Provider requires the installation of Microsoft Data Access Components version 2.6 or later.

The following code example shows how to include the System.Data namespace in your applications, in order to use ADO.NET.

[Visual Basic]

Imports System.Data

[C#]

using System.Data;

 SYSTEM DESIGN

 AND

 DEVELOPMENT

5. SYSTEM DESIGN AND DEVELOPMENT:

5.1 DESCRIPTION OF A SYSTEM:

 Network:

 A Network is a set of devices (often referred to as nodes) connected by media links. A node can be a computer ,Printer, or any other device capable of sending and/or receiving data generated by other nodes on thenetwork. The links connecting the devices are often called communication Channels.

Distributed Processing:

 Network use distributed Processing , in which a task is divided among multiple computers.

 Advantages of distributed processing included the following.

· Security/encapsulation.

· Distributed databases.

· Faster problem solving.

· Security through redundancy.

OSI Model :

 An ISO standard that covers all aspects of network communications is Open Systems Interconnection model. The Open systems Interconnection model is a layered framework for the design of network system that allows for communication across all type of computer systems. It consists of seven ordered layers , each of which defines a segment of the process of moving information across a network.

The seven layers are:

· Physical Layer

· Data Link Layer

· Network Layer

· Transport Layer

· Session Layer

· Presentation Layer

· Application Layer

Functions of the Layers :

Physical Layer:

 The physical layer coordinates the functions required to transmit a bit stream over a physical medium. It deals with the mechanical and electrical specifications of the interface and transmission medium. It also defines the procedures and functions that physical devices and interfaces have to perform for transmission to occur.

Data Link Layer:

 The data link layer transforms the physical layer, a raw transmission facility, to a reliable link and is responsible for node-to-node delivery . It makes the physical layer appear error free to the network layer. The data link

layer divides the stream of bits received from the network layer into manageable data units called frames. The data link layer adds a header to the frame to define the physical address of the sender or receiver of the frame.

Network Layer:

 The network layer is responsible for the source-to-destination delivery of a packet possibly across multiple networks. The network layer ensures that each packet gets from its point of origin to its final destination.

The network layer includes the logical addresses of the sender and receiver.

Transport Layer:

 The transport layer is responsible for source –to-destination delivery of the entire message. The network layer oversees end-end delivery of individual packets; it does not recognize any relationship between those packets . It treats each one independently. The transport layer creates a connection between the two end ports . A connection is a single logical path between the source and destination that is associated with all packets in a message . In this layer the message is divided into transmittable segment containing a sequence number.

Session Layer:

 The Session layer is the network dialog controller. It establishes, maintains, and synchronizes the interaction between communicating systems. The session layer allows a process to add checkpoints into a stream of data.

Presentation Layer:

 The Presentation layer is concerned with the syntax and semantics of the information exchange between two systems. The processes in two systems are usually exchanging information in the form of character strings, numbers and so on. The information should be changed to bit streams before being transmitted. The presentation layer is responsible for interoperability between these different encoding method. The presentation layer at the sender changes the information from its sender-dependent format into a common format.

Application Layer:

 The Application layer enables the user, whether human or software, to access the network. A network virtual terminal is a software version of a physical terminal and allows a user to log on to a remote host.

 A client is defined as a requester of services and a server is defined as the provider of services. A single machine can be both a client and a server depending on the software configuration.

 NETWORK MANAGEMENT

[image: image5.png]
MODULE DESCRIPTION:

Watermark Encoding:

1) Data Partitioning

By using secret key the data set is partitioned into several non overlapping partitions.

2) Watermark Embedding

A watermark bit is embedded in each partitions by Single Bit Encoding algorithm.

3) Optimal Threshold Evaluation.

The bit embedding statistics are used to compute the optimal threshold tat minimizes the probability of decoding error.

Watermark Decoding:
4.Dataset Partitioning:

By using the data partitioning algorithm, the data partitions are generated from watermarked dataset.

5.Threshold Based Decoding:

The statistics of each partition are evaluated, and the embedded is decoded using a threshold based scheme based on the optimal threshold.

6.Majority Voting:

The watermark bits are decoded using majority voting technique.

.

 .
5.2

[image: image6]
[image: image1.png]
[image: image7]
:

5.3 PROCESS DIAGRAM:

 ACTIVITY DIAGRAM:

ASSIGN TIPULES TO PARTITIONS

USING HASH FUNCTION

ASSIGN TIPULES TO PARTITIONS

USING HASH FUNCTION

WATERMARKING RELATIONAL DTABASES USING OPTIMIZATION BASED TECHNIQUES

[image: image18.png][image: image19.png][image: image20.png][image: image21.png][image: image22.png][image: image23.png]
[image: image24.png][image: image25.png]
[image: image26.png]
[image: image27.png]
[image: image28.png][image: image29.png]

[image: image8]
5.3 SCREEN DESIGN:

 LOGIN

5.4 SAMPLE CODING:

namespace watermarkingRDBMS

{

 partial class MainForm

 {

 /// <summary>

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.IContainer components = null;

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>

 protected override void Dispose(bool disposing)

 {

 if (disposing && (components != null))

 {

 components.Dispose();

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.button1 = new System.Windows.Forms.Button();

 this.button2 = new System.Windows.Forms.Button();

 this.comboTablename = new System.Windows.Forms.ComboBox();

 this.label2 = new System.Windows.Forms.Label();

 this.textBox1 = new System.Windows.Forms.TextBox();

 this.label1 = new System.Windows.Forms.Label();

 this.SuspendLayout();

 //

 // button1

 //

 this.button1.Font = new System.Drawing.Font("Verdana", 10F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.button1.Location = new System.Drawing.Point(327, 78);

 this.button1.Name = "button1";

 this.button1.Size = new System.Drawing.Size(90, 23);

 this.button1.TabIndex = 4;

 this.button1.Text = "SUBMIT";

 this.button1.UseVisualStyleBackColor = true;

 this.button1.Click += new System.EventHandler(this.button1_Click);

 //

 // button2

 //

 this.button2.Font = new System.Drawing.Font("Verdana", 9.75F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.button2.Location = new System.Drawing.Point(169, 175);

 this.button2.Name = "button2";

 this.button2.Size = new System.Drawing.Size(75, 23);

 this.button2.TabIndex = 5;

 this.button2.Text = "EXIT";

 this.button2.UseVisualStyleBackColor = true;

 this.button2.Click += new System.EventHandler(this.button2_Click);

 //

 // comboTablename

 //

 this.comboTablename.FormattingEnabled = true;

 this.comboTablename.Location = new System.Drawing.Point(134, 51);

 this.comboTablename.Name = "comboTablename";

 this.comboTablename.Size = new System.Drawing.Size(121, 21);

 this.comboTablename.TabIndex = 6;

 //

 // label2

 //

 this.label2.AutoSize = true;

 this.label2.Font = new System.Drawing.Font("Verdana", 10F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.label2.Location = new System.Drawing.Point(17, 51);

 this.label2.Name = "label2";

 this.label2.Size = new System.Drawing.Size(104, 17);

 this.label2.TabIndex = 7;

 this.label2.Text = "TABLENAME";

 //

 // textBox1

 //

 this.textBox1.Location = new System.Drawing.Point(134, 116);

 this.textBox1.Name = "textBox1";

 this.textBox1.Size = new System.Drawing.Size(121, 20);

 this.textBox1.TabIndex = 8;

 this.textBox1.TextChanged += new System.EventHandler(this.textBox1_TextChanged);

 //

 // label1

 //

 this.label1.AutoSize = true;

 this.label1.Font = new System.Drawing.Font("Tahoma", 10F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.label1.Location = new System.Drawing.Point(17, 117);

 this.label1.Name = "label1";

 this.label1.Size = new System.Drawing.Size(111, 17);

 this.label1.TabIndex = 9;

 this.label1.Text = "DESTINATION";

 this.label1.TextAlign = System.Drawing.ContentAlignment.TopRight;

 this.label1.Click += new System.EventHandler(this.label1_Click);

 //

 // MainForm

 //

 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);

 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;

 this.ClientSize = new System.Drawing.Size(570, 314);

 this.Controls.Add(this.label1);

 this.Controls.Add(this.textBox1);

 this.Controls.Add(this.label2);

 this.Controls.Add(this.comboTablename);

 this.Controls.Add(this.button2);

 this.Controls.Add(this.button1);

 this.Name = "MainForm";

 this.Text = "Form1";

 this.Load += new System.EventHandler(this.Form1_Load);

 this.ResumeLayout(false);

 this.PerformLayout();

 }

 #endregion

 private System.Windows.Forms.Button button1;

 private System.Windows.Forms.Button button2;

 private System.Windows.Forms.ComboBox comboTablename;

 private System.Windows.Forms.Label label2;

 private System.Windows.Forms.TextBox textBox1;

 private System.Windows.Forms.Label label1;

 }

}

using System;

using System.Collections.Generic;

using System.Text;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Windows.Forms;

using System.Data.SqlClient;

using System.Runtime.Serialization.Formatters.Binary;

using System.Security;

using System.Security.Cryptography;

using System.Security.Permissions;

using System.Runtime.InteropServices;

using System.Text.RegularExpressions;

using System.IO;

using System.Threading;

using System.Net.Sockets;

using System.Net;

using Bufferd;

namespace watermarkingRDBMS

{

 public class Encryption

 {

 string dirname = Application.ExecutablePath.Substring(0, Application.StartupPath.LastIndexOf("\\"));

 string key = GenerateKey();

 string filename, filename1, Keyname, sOutputFilename, SerializedOutputFile;

 DirectoryInfo dir;

 Hashtable hash = new Hashtable();

 //TO ENCRYPT THE WATERMARK SERIALIZED FILE WITH KEY VALIDATION CONTROL

 public void encryption(string sInputFilename,object Buffer)

 {

 Key objkey = new Key();

 BufferdTranfer objBuffer = new BufferdTranfer();

 objBuffer = (BufferdTranfer)Buffer;

 sOutputFilename = dirname + "\\Encrypt\\Data\\ToSend\\EncryptWithkey.bin";

 Keyname = dirname + "\\Encrypt\\Data\\ToSend\\key.bin";

 FileStream fsInput = new FileStream(sInputFilename, FileMode.Open, FileAccess.Read);

 FileStream fsEncrypted = new FileStream(sOutputFilename, FileMode.Create, FileAccess.Write);

 DESCryptoServiceProvider DES = new DESCryptoServiceProvider();

 DES.Key = ASCIIEncoding.ASCII.GetBytes(key);

 DES.IV = ASCIIEncoding.ASCII.GetBytes(key);

 ICryptoTransform desencrypt = DES.CreateEncryptor();

 CryptoStream cryptostream = new CryptoStream(fsEncrypted, desencrypt, CryptoStreamMode.Write);

 byte[] bytearrayinput = new byte[fsInput.Length];

 fsInput.Read(bytearrayinput, 0, bytearrayinput.Length);

 cryptostream.Write(bytearrayinput, 0, bytearrayinput.Length);

 cryptostream.Close();

 //AGAIN SERIALIZING THE WATERMARK SERIALIZED FILE

 SerializedOutputFile = dirname + "\\Encrypt\\Data\\Serialized.bin";

 Stream filestream1 = File.OpenRead(sOutputFilename);

 byte[] filebuffer1 = new byte[filestream1.Length];

 filestream1.Read(filebuffer1, 0, (int)filestream1.Length);

 filestream1.Close();

 SerializedOutputFile = dirname + "\\Encrypt\\Data\\Serialized.bin";

 Stream s = File.Open(SerializedOutputFile, FileMode.Create, FileAccess.ReadWrite);

 BinaryFormatter b = new BinaryFormatter();

 objBuffer.buffer = filebuffer1;

 objBuffer.key = key;

 b.Serialize(s, objBuffer);

 s.Close();

 Stream filestream2 = File.OpenRead(SerializedOutputFile);

 byte[] filebuffer2 = new byte[filestream2.Length];

 filestream2.Read(filebuffer2, 0, (int)filestream2.Length);

 filestream2.Close();

 TcpClient clientsocket = new TcpClient(MainForm.Destination, 8080);

 NetworkStream networkstream = clientsocket.GetStream();

 networkstream.Write(filebuffer2, 0, filebuffer2.GetLength(0));

 networkstream.Close();

 MessageBox.Show("Encrypted");

 }

 //METHOD TO GENERATE THE KEY AT RUNTIME

 static string GenerateKey()

 {

 // Create an instance of Symetric Algorithm. Key and IV is generated automatically.

 DESCryptoServiceProvider desCrypto = (DESCryptoServiceProvider)DESCryptoServiceProvider.Create();

 // Use the Automatically generated key for Encryption.

 return ASCIIEncoding.ASCII.GetString(desCrypto.Key);

 }

 }

}

namespace watermarkingRDBMSreciever

{

 partial class Form1

 {

 /// <summary>

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.IContainer components = null;

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 /// <param name="disposing">true if managed resources should be disposed; otherwise, false.</param>

 protected override void Dispose(bool disposing)

 {

 if (disposing && (components != null))

 {

 components.Dispose();

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.label1 = new System.Windows.Forms.Label();

 this.SuspendLayout();

 //

 // label1

 //

 this.label1.AutoSize = true;

 this.label1.Font = new System.Drawing.Font("Sylfaen", 12F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.label1.Location = new System.Drawing.Point(271, 179);

 this.label1.MaximumSize = new System.Drawing.Size(266, 169);

 this.label1.Name = "label1";

 this.label1.Size = new System.Drawing.Size(134, 22);

 this.label1.TabIndex = 0;

 this.label1.Text = "FILE RECIEVED";

 this.label1.Click += new System.EventHandler(this.label1_Click);

 //

 // Form1

 //

 this.AutoScaleDimensions = new System.Drawing.SizeF(8F, 22F);

 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;

 this.ClientSize = new System.Drawing.Size(808, 450);

 this.Controls.Add(this.label1);

 this.Font = new System.Drawing.Font("Raavi", 10F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.ForeColor = System.Drawing.SystemColors.WindowFrame;

 this.Margin = new System.Windows.Forms.Padding(3, 5, 3, 5);

 this.Name = "Form1";

 this.Text = "Form1";

 this.Load += new System.EventHandler(this.Form1_Load);

 this.ResumeLayout(false);

 this.PerformLayout();

 }

 #endregion

 private System.Windows.Forms.Label label1;

 }

}

using System;

using System.Collections.Generic;

using System.Text;

using System.Runtime.Serialization.Formatters.Binary;

using System.IO;

using System.Collections;

using System.Security.Cryptography;

using System.Security;

using System.Windows.Forms;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Net;

using System.Net.Sockets;

using System.Runtime.Remoting.Messaging;

using System.Runtime.Versioning;

using Bufferd;

namespace watermarkingRDBMSreciever

{

 class watermarkDeserialize

 {

 //VARIABLE DECLARATIONS

 string destination, file, fileWrite,key;

 byte[] array;

 Hashtable boolhash = new Hashtable();

 Decryption objDec = new Decryption();

 reversepartision objRev = new reversepartision();

 //METHOD TO DESERIALIZE THE RECEIVED FILE THROUGH HANDLER METHOD WITH THE SPECIFIED KEY TO DECODE

 public void Deserialize(string filename1)

 {

 BufferdTranfer objBuffer = new BufferdTranfer();

 string dirname = Application.ExecutablePath.Substring(0, Application.StartupPath.LastIndexOf("\\"));

 FileStream s1 = File.OpenRead(filename1);

 //byte[] filebuff = new byte[s1.Length];

 BinaryFormatter b1 = new BinaryFormatter();

 objBuffer =(BufferdTranfer)b1.Deserialize(s1);

 array = objBuffer.buffer;

 key = objBuffer.key;

 boolhash = objBuffer.boolHash;

 s1.Close();

 fileWrite = dirname + "\\Decrypt\\2 Deserializedfile\\Deserialized.bin";

 Stream filestream = File.OpenWrite(fileWrite);

 filestream.Write(array, 0, array.Length);

 filestream.Close();

 objDec.decryption(fileWrite, key, boolhash);

 }

 //public void Deserial(string EncryptFile)

 //{

 // hash objhash = new hash();

 // FileStream s1 = File.OpenRead(EncryptFile);

 // BinaryFormatter b1 = new BinaryFormatter();

 // objhash = (hash)b1.Deserialize(s1);

 // s1.Close();

 //}

 }

}
5.6 SAMPLE INPUT AND OUTPUT:

This is source window

[image: image9.png]
THE SELECTED FILE WILL OPEN A WINDOW WITH THE CODE OR DESIGN AS SHOWN BELOW.

[image: image10.png]
· THE DESIGN PAGE OF THE SOURCE APPLICATION.

[image: image11.png]
· OPEN THE RECEIVER APPLICATION AS SUCH SHOWN FOR THE SOURCE APPLICATION.

[image: image12.png]
· TO RUN THE APPLICATION SELECT THE TABLE NAME FROM THE COMBOBOX AND THE DESTINATION PATH AND CLICK SUBMIT.

[image: image13.png]
· THE SELECTED TABLE FROM THE COMBO BOX IS DUMPED FROM SQL SERVER ENTERPRISE MANAGER AND THE TABLE RESEMBLES AS SUCH SHOWN BELOW.

[image: image14.png]
· THE TABLE SELECTED IS ENCRYPTED AND THE MESSAGE IS DELIVERED THROUGH THE MESSAGE BOX.
[image: image15.png]
· THE FILE IS RECEIVED IN THE RECEIVER APPLICATION AND DECRYPTED, WHICH IS DELIVERED THROUGH A MESSAGE BOX.

[image: image16.png]
· THE FILE SENT FROM SOURCE APPLICATION IS DECRYPTED AND SAVED BACK AGAIN AS A TABLE IN THE RECEIVER APPLICATION AS THE TABLE IS SHOWN BELOW.

[image: image17.png]
THE END

THANK YOU MR.PALANI

6 .TESTING AND IMPLEMENTATION

6.1 TESTING:

· Testing is a process of executing a program with a intent of finding an error.

· Testing presents an interesting anomaly for the software engineering.

· The goal of the software testing is to convince system developer and customers that the software is good enough for operational use. Testing is a process intended to build confidence in the software.

· Testing is a set of activities that can be planned in advance and conducted

 systematically.

· Testing is a set of activities that can be planned in advance and conducted

 systematically.

· Software testing is often referred to as verification & validation.

 TYPE OF TESTING:

 The various types of testing are

· White Box Testing

· Black Box Testing

· Alpha Testing

· Beta Testing

· Win Runner And Load Runner

· Load Runner

 WHITE BOX TESTING:
· It is also called as glass-box testing. It is a test case design method that uses the control structure of the procedural design to derive test cases.

· Using white box testing methods, the software engineer can derive test cases that

1. Guarantee that all independent parts within a module have been exercised at least once,

2. Exercise all logical decisions on their true and false sides.

 BLACK BOX TESTING:

· Its also called as behavioral testing . It focuses on the

functional requirements of the software.

· It is complementary approach that is likely to uncover a .

different class of errors than white box errors.

· A black box testing enables a software engineering to derive a
sets of input conditions that will fully exercise all functional
requirements for a program.

 ALPHA TESTING:

Alpha testing is the software prototype stage when the software is first able to run. It will not have all the intended functionality, but it will have core functions and will be able to accept inputs and generate outputs. An alpha test usually takes place in the developer's offices on a separate system.

 BETA TESTING:

The beta test is a “ live “ application of the software in an environment that cannot be controlled by the developer. The beta test is conducted at one or more customer sites by the end user of the software.

WIN RUNNER & LOAD RUNNER:

We use Win Runner as a load testing tool operating at the GUI layer as it allows us to record and playback user actions from a vast variety of user applications as if a real user had manually executed those actions.

 LOAD RUNNER TESTING:

With Load Runner , you can Obtain an accurate picture of end-to-end system performance. Verify that new or upgraded applications meet specified performance requirements.

6.1.1 TESTING USED IN THIS PROJECT:

6.1.2 SYSTEM TESTING :

 Testing of the debugging programs is one of the most critical aspects of the computer programming triggers, without programs that works, the system would never produce the output for which it was designed. Testing is best performed when user development are asked to assist in identifying all errors and bugs. The sample data are used for testing . It is not quantity but quality of the data used the matters of testing. Testing is aimed at ensuring that the system was accurately an efficiently before live operation commands.

6.1.3 UNIT TESTING:

 In this testing we test each module individually and integrate with the overall system. Unit testing focuses verification efforts on the smallest unit of software design in the module. This is also known as module testing. The module of the system is tested separately . This testing is carried out during programming stage itself . In this testing step each module is found to working satisfactorily as regard to the expected output from the module. There are some validation checks for fields also. It is very easy to find error debut in the system.

6.1.4 VALIDATION TESTING:
 At the culmination of the black box testing, software is completely assembled as a package, interfacing error have been uncovered and corrected and a final series of software tests. That is, validation tests begin, validation testing can be defined many ways but a simple definition is that validation succeeds when the software functions in manner that can be reasonably expected be the customer. After validation tests has been conducted one of the two possible conditions exists.

	TEST CASE NO
	EXPECTED OUTPUT
	OBTAINED OUTPUT
	 REMARKS

	 1.
	Displays File Size ,

Number Of Frames ,

Transmission Time

And Frame latency

Based on input data given.
	Displays File Size, Transmission Time but not reception time and frame latency.
	Error occurs in transmission of files.

 FUTURE

 ENHANCEMENT

7. FUTURE ENHANCEMENT:
Media files can be transferred with secure and less packet loss.Bi –Directional process can be performed. Audio files are encrypted and divided into packets. Video files are separated into frames then into pixels.

One Server can act as a multiple clients.Transformation time for frames can be reduced.Even if power fails, there is no data loss and stored in data base. TheARMS system architecture witha focus on the extensions to the ISMA security standard to enableadaptative streaming of encrypted MPEG-4 content. The systemis designed to address the requirements of typical enterprise media streaming systems. Although we have addressed many challenges in building this system, there are many more problems yet to be solved. We are investigating various optimizations in the coding and streaming to improve the bandwidth utilization while minimizing the distortion experienced by the clients in wired and wireless networks.

Advances in compression and an increase in affordable bandwidth will allow for the streaming of higher resolution video and crisper audio.Developing better speech to text software and more adaptive technologies in streaming will offer greater accessibility.

8. CONCLUSION:

We have presented a resilient watermarking technique for relational data that embeds watermark bits in the data statistics. The watermarking problem was formulated as a constrained optimization problem that maximizes or minimizes a hiding function based on the bit to be embedded. GA and PS techniques were employed to solve the proposed optimization problem and to handle the constraints.
We presented a data partitioning technique that does not depend on special marker tuples to locate the partitions and proved its resilience to watermark synchronization errors. We developed an efficient threshold-based technique for watermark detection that is based on an optimal threshold that minimizes the probability of decoding error. The watermark resilience was improved by the repeated embedding of the watermark and using majority voting technique in the watermark decoding phase. Moreover, the watermark resilience was improved by using multiple attributes. A proof of concept implementation of our watermarking technique was used to conduct experiments using both synthetic and real-world data. A comparison our watermarking technique with previously posed techniques shows the superiority of our technique to deletion, alteration, and insertion attacks.

Server

Login

SEND THE TABLE

ENCRYPT TABLE FOR SECURITY

MERGE THE PARTITIONS TO

SINGLE TALE

ADD WATERMARK DATA TO THE

TIPULES IN THE PARTITION

ASSIGN TIPULES TO PARTITIONS

USING HASH FUNCTION

CREATE PATITINS

SELECT TABLE FROM DATABASE

PROJECT CONCEPT DIAGRAM (ENCODING)

MERGE THE PARTITIONS TO FORM

THE ORIGINAL TABLE

CHECK THE WATERMARK DATA

FOR AUTHORIZATION

 REMOVE WATERMARK DATA

FROM PARTITION

SPLIT TABLE TO PARTITIONS

DECRYPT THE TABLE

RECEIVE THE TABLE

DECODING

Database

Client

Authenticated

SELECT TABLE FROM DATABASE

ADD WATERMARK DATA TO THETIPULES IN THE PARTITION

MERGE THE PARTITIONS TO

SINGLE TALE

MERGE THE PARTITIONS

ENCRYPT TABLE FOR SECURITY

If Valid

A

Error

message

if Invalid

A

D

E

S

T

I

N

A

T

I

O

N

M

O

D

U

L

E

S

O

U

R

C

E

M

O

D

U

L

E

