1. Vision and the human eye. Rods and cones. History of camera and image processing.
 Greater sensitivity of human vision to grayscale, but greater resolution to color.
 Rods are sensitive to light intensity, cones respond to color (3 types of cones).
 Cones are mostly in fovea, central region of retina.

2. Digital image sensors. Sampling and quantization. Shot and thermal noise.
 Sampling is used here to refer to the lateral resolution -- how many pixels or sample points.
 Quantization refers to finite number of gray levels or colors used to represent the signal at each pixel.
 Shot noise results from quantum effects of light sources, usually manifest at low light levels.
 Thermal noise is a random variation in light emission due to thermal effects.

3. Simple Image metrics. Neighbors and distances; connectivity.
 4-neighbors are the four cells located orthogonally around a central cell (assuming rectangular grid).
 8-neighbors are the 4-neighbors plus the cells located diagonally around a central cell.
 Euclidean distance (De) is distance between two cells measured using Pythagoras' theorem.
 4-distance (D4) (or city-block distance) is the distance between two cells measured along 4-neighbors.
 8- distance (D8) is the distance between two cells measured along 8-neighbors.

 Two pixels p and q with values from a set V are 4-connected if q is in the set N4(p).
 Two pixels p and q with values from a set V are 8-connected if q is in the set N8(p).
 Two pixels p and q with values from V are m-connected if
 (i) q is in N4(p), or
 (ii) q is a diagonal neighbor of p and the intersection of N4(p) and N4(q) is empty.

4. Image processing software. The prototype of free software for image processing is Image, written at the National Institute for Health (NIH), and sometimes referred to as NIH-Image. Since up to a few years ago, only the Macintosh computer was easy to use for doing graphics work, NIH-Image was written for the Mac. In addition, the program has a strong bent toward image problems arising in microscopy. This excellent program has been maintained and augmented regularly, and is still available as a freeware program. However, with the rise of Windows, considerable interest has developed in producing a similar program for the PC. First a group at the University of Texas developed a program called ImageTool with similar capabilities to NIH-Image, then a company (Scion Corporation) which manufactures a line of image framegrabbers developed a Windows clone of NIH-Image called ScionImage. Both of these windows-based programs are quite useful for image processing, but there has not been much development recently for either of them. Currently, however, the programmer of the original NIH-Image routines has risen up and is writing a new image processing program, Image/J, in Java. In this way, he hopes to have a single program that will run on both Mac and Windows systems. These three programs for Windows: Image/J, ImageTool, and ScionImage, all have many common basic capabilities, but differ in some of their functions, e.g., some handle a wider range of image types (.GIF, .TIF, .JPEG, .BMP, etc.) than the others, some have FFT capability and others do not, some are extensible by plug-ins and others are not. In general, class work will assume Image/J.

 Noise
 Common types of noise found in images:
 1. Uniform (white) noise:

2. Gaussian noise:
[image: image1.png]g(XY*EEfX*U’* ehi
) (x—i jeh
i,j)

ijeH

where m is the mean and σ is the standard deviation.

3. Negative exponential noise:
[image: image2.png]g(XY*EEfX*U’* ehi
) (x—i jeh
i,j)

ijeH

4. Salt-and-Pepper noise:
[image: image3.png]g(XY*EEfX*U’* ehi
) (x—i jeh
i,j)

ijeH

SPATIAL FILTERING
 Filtering operations that are performed directly on the pixels of an image. We use the term Spatial Filtering.

 The process consists simply of moving the filter mask from point to point in an image. At each point(x, y), the response of the filter at that point is calculated using a predefined relationship. For linear spatial filtering the response is given by a sum of products of the filter coefficients and the corresponding image pixels in the area spanned by the filter mask. For the 3*3 mask the result R, of linear filtering with the filter mask at a point (x, y) in the image is
 R=w(-1, -1)f(x-1,y-1)+w(-1, 0)f(x-1, y)+…..

 +w(0,0)f(x, y)+…+w(1,0)f(x+1,y)+w(1,1)f(x+1,y+1),

 which we see is the sum of products of the mask coefficients with the corresponding pixels directly under the mask. In particular that the coefficient w(0,0) coincides with the image value f(x, y), indicating that the mask is centered at (x, y) when the computation of the sum of products takes place. For a mask of size m*n, we assume that m=2a+1 and n=2b+1, where a and b are nonnegative integers. All this says is that our focus in the following discussion will be on masks of odd sizes. With the smallest meaningful size being 3 * 3.

 The process of linear filtering is similar to a frequency domain concept called convolution. For this reason linear spatial filtering often is referred to as “convolving a mask with an image”. Similarly, filter masks are sometimes called convolution masks. The term convolution kernel also is in common use.

 In terms of images, consider the pixels under a 3x3 mask:
[image: image4.png]

SMOOTHING SPATIAL FILTERS

 Smoothing filters are used for blurring and for noise reduction. Blurring is used in preprocessing steps, such as removal of small details from an image prior to obhect extraction, and bridging of small gaps in lines or curves. Noise reduction can be accomplished by blurring with a linear filter and also by non-linear filtering

 Smoothing Linear Filters

 The response of smoothing, linear spatial filter is simply the average of the pixels contained in the neighborhood of the filter mask. These filters sometimes are called averaging filters. They are also referred to as lowpass filters.

 The idea behind smoothing filters is straightforward. By replacing the of every pixel in an image by the average of the gray levels in the neighborhood defined by the filter mask, this process results in an image with reduced “sharp” transitions in gray levels. Because random noise typically consists of sharp transitions in gray levels, the most obvious application of smoothing is noise reduction. However, edges also are characterized by sharp transitions in gray levels, so averaging filters have the undesirable side effect that they blur edges. Another application of this type of process includes the smoothing of false contours that result for using an insufficient number of gray levels.

A major use of averaging filters is in the reduction of “irrelevant” detail in an image. By “irrelevant” we mean pixel regions that are small with respect to the size of the filter mask.

 A spatial averaging filter in which all coefficients are equal is sometimes called a box filter.

Smoothing Non-Linear Spatial filters

 Non-linear Spatial filters are Order-statistics filters whose response is based on ordering(ranking) the pixels contained in the image area encompassed by the filter and then replacing the value of the center pixel with the value determined by the ranking result. The best known example in this category is the Median filter, which as its name implies replaces the value of a pixel by the median of the gray levels in the neighborhood of that pixel.

Sharpening Spatial Filters

 The principal objective of sharpening is to highlight fine detail in an image or to enhance detail that has been blurred, either in error or as a natural effect of a particular method of image acquisition. Uses of image sharpening vary and include applications ranging from electronic printing and medical imaging to industrial inspection and autonomous guidance in military systems.

 In last section, we saw that image blurring could be accomplished in spatioal domain by pixel averaging in a neighborhood. Since averaging is analogous to integration, it is logical to conclude that sharpening could be accomplished by spatial differentiation. This, in fact, is the case, and the discussion in this section deals with various ways of defining and implementing operators for sharpening by digital differentiation. Fundamentally, the strength of the response of a derivative operator is proportional to the degree of discontinuity of the image at the point at which the operator is applied. Thus, image differentiation enhances edges and other discontinuities and deemphasizes areas with slowly varying gray-level values.
 Derivative Filters
Averaging pixels blurs detail in an image, since averaging filters are basically low-pass filters. This averaging is similar to integration where everything is just summed up. On the other hand, if it is desired to enhance rapid change (high frequencies) rather than slow change (low frequencies), some sort of differentiation operation must be developed.
 The gradient function is used to determine the direction of change in a vector. For a two-dimensional image, this could be expressed in vector form as:
[image: image22.png]VE(,y) =

T

 The magnitude of the gradient is
[image: image5.png]oy (]
‘Vf(x,y)‘:{[&j +[5

In terms of images, consider the pixels under a 3x3 mask:
[image: image6.png]

To get derivatives in the x and y directions at z5, one simple method is to take differences
such as (z6 - z5), to ignore the squaring and root-taking of the definition of the magnitude of the gradient, and simply to approximate
[image: image7.png]

However, using masks of even size 2x2 is awkward, so more commonly a 3x3 neighborhood is used, giving
[image: image8.png]VI =[(z; + 25+ 25) = (2, + 2, + 2,)| + |25+ 24 + 2,) — (7, + 2, +2,)|

This approximation is expressed in the following two masks for the x and y directions, respectively, which are called Prewitt operators:
[image: image9.png]-1 -1
0
1

-1
0
1

J

-1 01
-1 01
-1 01

[

Another common approximation to the magnitude of the gradient is given by the Sobel operators for x and y directions, respectively:
[image: image10.png]-2 -1
0
2

-1
0
1

J

1
1

-1 0
-2 0 2
-1 0

|

All of these derivative operators accentuate rapid change (edges) in the image and attenuate large objects. They are frequently used as edge detectors.

Filtering in the frequency domain

Basics of filtering in the frequency domain

 Filtering in the frequency domain is straightforward. It consists of the following steps:

1. Multiply the input image by (-1)x+y to center the transform.

2. Compute F(u, v), the DFT of the image from(1).

3. Multiply F(u, v) by a filter function H(u, v).

4. Compute the inverse DFT of the result in (3).

5. Obtain the real part of the result in (4).

6. Multiply the result in (5) by (-1)x+y.
 The reason that H(u,v) is called a filter is because it suppresses certain frequencies in the transformations.
Instead of using filter mask, can work in the frequency space using the convolution theorem. Application of the mask to each pixel (x,y) is basically a convolution process, so can get same results by multiplying the Fourier transforms of the image and the mask and then inverse Fourier transforming the product. The reason for this approach is that it is sometimes much easier to specify the filter in frequency space, and for masks of modest size (e.g. 7x7 or larger) it is faster to work with the Fourier transforms.

In determining H(n,m) the transfer function which corresponds to h(x,y), the impulse function, the need to preserve phase requires that H(n,m) be real, i.e., no imaginary components. This implies that the inpulse function is symmetric: h(x,y) = h(-x,-y).

In the interest of simplicity, the discussion here will assume circular symmetry, that is, H(n,m) => H(ρ) where ρ2 = n2 + m2.

The ideal low-pass filter (ILPF) passes without attenuation all frequencies below some cutoff frequency(fc) and attenuates to zero all frequencies above fc. The problem with this is that it introduces a discontinuity into the frequency spectrum and thus causes ringing effects (artifacts) in image space.

A more realistic approach is to use a Butterworth low-pass filter (BLPF) which gives a continuous and monotonic response without discontinuity and without ripples in the frequency domain. The equation for a BLPF is given by:

[image: image11.png]

where N is the order of the filter (the larger the order, the sharper the cutoff with be; the order is determined by the number of reactors [capacitors and inductors] in the circuit).

The Butterworth high-pass filter is similar, the only difference is that the fraction in the denominator is inverted.

[image: image12.png]

If circularly symmetric filters are being used, the image data must be moved to the center of the two-dimensional Fourier NxM space by multiplying each element (x,y) in the image by (-1)x+y, and the zero of frequency space must be shifted by

[image: image13.png]

Smoothing Frequency Domain Filters
 As indicated earlier edges and other sharp transitions in the gray levels of an image contribute significantly to the high frequency content of its Fourier transform. Hence smoothing is achieved in the frequency domain by attenuating a specified range of high-frequency components in the transform of agiven image.

 Our basic model for filtering in the frequency domain is given by

 G(u, v) = H(u, v) F(u, v)

 Where F(u, v) is the fourier transform of the image to be smoothed. The objectives is to select a filter transfer function H(u, v) that yields G(u, v) by attenuating the high frequency components of F(u, v).

Three types of filters:

 Ideal filters

 Butter worth filters

 Gaussian filter

Sharpening Frequency Domain Filters

 Image sharpening can be achieved in the frequency domain by a high pass filtering process, which attenuates the low-frequency components without disturbing high frequency information in the Fourier transform.

The transfer function of the highpass filters are

 H hp (u, v) = 1- Hlp (u, v)

 Where Hlp (u, v) is the transfer function of the corresponding lowpass filter. That is when the lowpass filter attenuates frequencies, the highpass filter passes them and vice versa.

 Three types of filters

 Ideal high pass filters

 Butter worth high pass filter

 Gaussian high pass filter

Fourier Transformation:
The Fourier transform is linear and associative under addition, but is not associative under multiplication. Thus, Fourier methods are suitable for removing noise from images only when the noise can be modeled as as additive term to the original image.

However, if defects of the image, e.g., uneven lighting, have to be modeled as multiplicative rather than additive, direct application of Fourier methods is inappropriate.

In terms of the illuminance and reflectance of an object, an image of the object might be modeled as f(x,y) = i(x,y)·r(x,y). In this case, some way of converting multiplication into addition must be employed before trying to apply Fourier filtering. The obvious way to do this is to take logarithms of both sides:

q(x,y) = ln[r(x,y)·i(x,y) + 1] = ln[i(x,y)] + ln[r(x,y)]

where 1 has been added to the image values to avoid problems with ln[0].

Taking the FFT of both sides

Q(n,m) = I'(n,m) + R'(n,m)

where n and m are spatial frequencies in the x and y directions

Now apply a suitable Fourier filter function H(n,m)

S(n,m) = QH = I'H + R'H

where I'(n,m) is the Fourier transform of ln[i(x,y)].

Now take inverse FFT

s(x,y) = ln[r(x,y)] + ln[i(x,y)]

Finally, take the exponential of both sides, and subtract the extra 1 from each pixel:

g(x,y) = exp[s(x,y)] - 1 = r(x,y)

[image: image14.png]

Examples of poor illumination:

	
	Betsy shipwreck

	
	Ice crystals

Spatial Filters
Mean filters

 It is a noise-reduction linear spatial filters.

 Three types of Mean Filters:

 1. Arithmetic Mean Filter

 2. Geometric Mean Filter

 3. Harmonic Mean Filter

 4. Contraharmonic Mean Filter

 Arithmetic Mean Filter

 This is the simplest of the mean filters. Let Sx,y represent the set of coordinates in a rectangular subimage window of size m*n, centered at point(x, y). The arithmetic mean filtering process computes the average value of the corrupted image g(x, y) in the area defined by Sxy. The value of the restored image f^ at any point (x, y) is simply the arithmetic mean computed using the pixels in the region defined by Sxy.

 A mean filter simply smoothes local variations in an image. Noise is reduced as a result of blurring.

 Arithmetic filters are well suited for random noise like Gaussian or uniform noise.
Example:
Original image with sharp edge and one outlier:
[image: image17.png]|

009 9 9
009 9 9
009 18 9
009 9 9
009 9 9

|

Image after filtering with a mean filter:
[image: image18.png]

Ranking Filter:

 Order statistics filters are spatial filters whose response is based on ordering or Ranking the pixels contained in the image area encompassed by the filter. The response of the filter at any point is determined by the ranking result.

Median Filter

 The best know order statistics filter is the median filter, which as its name implies, replaces the value of a pixel by the median of the gray levels in the neighborhood of that pixel:

 F^(x, y) = median(s,t)eSx,y{g(s,t)}
 The original value of the pixel is included in the computation of the median. Median filters are quite popular because, for certain types of random noise, they provide excellent noise-reduction capabilities, with considerably less blurring than linear smoothing filters of similar size. Median filters are particularly effective in the presence of both bipolar nad unipolar impulse noise. In fact, the median filter yields excellent results for images corrupted by this type of noise.

 Median filters are quite popular because for certain types of random noise, they provide excellent noise reduction capabilities, with considerably less blurring than linear smoothing filters of similar size. Median filters are particularly effective in the presence of impulse noise, also called salt and pepper noise because of its appearance as white and black dots superimposed on an image.
Example:
Original image with sharp edge and one outlier:
[image: image19.png]|

009 9 9
009 9 9
009 18 9
009 9 9
009 9 9

|

Image after filtering with a median filter:
[image: image20.png]|

009 99
00999
00999
00999
009 99

|

 Although the median filter is by far the most useful order statistics filter in image processing, it is by no means the only one. The median represents the 50th percentile of a ranked set of numbers, but the reader will recall from basic statistics that ranking lends itself to may other possibilities. Using 100th percentile results in the max filter which is useful in finding brightest points in an image. 0th percentile filter is the min filter, used for opposite purpose.

Max and Min Filters

Although the median filter is by far the most useful order statistics filter in image processing, it is by no means the only one. The median represents the 50th percentile of a ranked set of numbers, but the reader will recall from basic statistics that ranking lends itself to may other possibilities. Using 100th percentile results in the max filter which is useful in finding brightest points in an image. 0th percentile filter is the min filter, used for opposite purpose.

 Max filter is given by

 f^ (x, y) = max(s,t)eSx,y{g(s,t)}.

 This filter is useful for finding the brightest points in an image. Also, because pepper noise has very low values, it is reduced by this filter as a result of the max selection process in the subimage area Sx,y.

 The 0th percentile filter is MinFilter:

 f^ (x, y) = min(s,t)eSx,y{g(s,t)}.

 This filter is useful for finding the darkest points in an image. Also, it reduces salt noise as a result of the min operations.

Minimum Mean Square Error (wiener) Filtering

Image Restoration:

If an image f(x,y) is degraded going through an optical system and the detected image g(x,y) represents the effect of the point function h(x,y) of the system, then in the frequency domain the process can be represented by G = HF, where it is assumed that there is no noise. If it is further assumed that H(w,z) is either known or can be determined, then it is possible to regain the original image by the process

[image: image21.png]

All of this work is done in the frequency domain and the result Fourier transformed back to real space. The idea is good, however, this process is very susceptible to noise (although a more complicated effort using Wiener filters might help if there is noise) and demands very accurate knowledge of the transfer function H.

 The method is founded on considering images and noise as random processes, and the objective is to find an estimate f^ of the uncorrupted image f such that the mean square error between them is minimized. This error measure is given by

 e2 = E { (f – f^)2 }

 where E{.} is the expected value of the argument. It is assumed that the noise and the image are uncorrelated; that one or the other has zero mean; and that the gray levels in the estimate are a linear function of the levels in the degraded image.
Frequency Filters

