
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Advanced authentication in Java

applications using Kerberos protocol

MASTER’S THESIS

Bc. Tomáš Král

Brno, spring 2011

Declaration

Hereby I declare, that this paper is my original authorial work, which I have worked on
myself. All sources, references and literature used or excerpted during elaboration of this
work are properly cited and listed in complete reference to the due source.

Advisor: Mgr. Pavel Tuček

ii

Acknowledgement

I would like to thank my supervisor Mgr. Pavel Tuček for his guidance and support during
writing of this thesis, especially for commenting and suggesting improvements of the text.
I would also like to thank him for encouraging me to write the text in English and for solving
related formal issues.

Also I would like to thank RNDr. Petr Švenda, Ph.D. for his support and answering of
my Java Cards related questions.

I also would like to thank the company Y Soft for publishing this topic of master’s thesis,
which gave me opportunity to learn something more about authentication protocols and
Java Card technology.

Last but not least, I would like to thank my family, especially my mother, for support
during all the years of my studies.

iii

Abstract

This thesis deals with authentication and authorization in Java applications using Kerberos
protocol. Especially with the possibility of saving a service ticket on a flash drive or on
a smart card and later using it on another machine to make an authorized service request to
a third party application.

Demonstration applications showing a working solution for both — saving of a ticket
and using of a previously saved ticket through a negotiation mechanism SPNEGO, were
created and are also described on the end of the thesis.

iv

Keywords

Java, authentication, authorization, JAAS, GSS–API, Kerberos, SPNEGO

v

Contents

1 Introduction . 1
2 Analysis . 3

2.1 Requirements analysis . 3
2.2 Options of authentication and authorization in Java 4

2.2.1 Java Authentication and Authorization Service 4
2.2.2 Generic Security Service Application Program Interface 8

2.3 Usable protocols . 12
2.3.1 The Kerberos protocol . 13
2.3.2 Simple and Protected Negotiation Mechanism 16

2.4 Java Card . 18
3 Design . 22

3.1 Service Ticket Authorization Library . 22
3.2 Applet for a smart card . 30
3.3 Service Ticket Saver . 31
3.4 Card Terminal Demo . 32

4 Solving the task . 33
4.1 Configuration of systems . 33

4.1.1 Windows server . 33
4.1.2 Windows client . 34
4.1.3 Linux machine . 35

4.2 Work process . 36
4.3 Arisen problems . 37

5 Created applications . 42
5.1 Applications . 42

5.1.1 Service Ticket Saver . 42
5.1.2 SPNEGO Client Demo Application . 43
5.1.3 Card Terminal Demo Application . 43

5.2 Library . 43
5.2.1 StorageApplet . 43

6 Conclusion . 45
Bibliography . 47
A Browsers with SPNEGO support . 50
B Print screens of created applications . 52
C Licence . 56

vi

D Contents of the attached CD . 57

vii

Chapter 1

Introduction

Information technologies are widely used in our society. Companies store important busi-
ness data in various kinds of information systems. To protect information stored in these
systems, only authorized employees should have access to them. Many companies also
use more than one information system, so an employee may need to work with several
applications during the workday. Therefore a requirement of common authentication to
these systems has appeared, so that employees do not have to remember as many passwords
as many applications they are using. In these days, there are many Single Sign–On1 (SSO in
short) solutions out there solving this problem. They allow users to log-in once, when they
come to work, and then work with all the applications they need, without being prompted
for other authentication.

Companies do not have only applications and information systems, they need to protect.
They have also other resources they need to protect from being misused by unauthorized
people, or employees for their personal use. Printers/scanners or any other equipment can
serve as an example. Only certain employees should have access to those devices. There are
solutions for this purpose too, but they usually require some kind of it’s own infrastructure
to be working. Many companies already have some infrastructure that could be used for
this purpose, so the cost of the solution might be lower if their infrastructure could be used.

Why not to combine all these requirements together and have an environment, where
a user comes to work, logs-in once and obtains all the authorizations he/she needs at once?
So when he/she needs to use some application, system or even a device, he/she has access
to it, because authorization has already took place.

To perform all the possible authorizations at once would neither be practical, nor safe,
but users actually do not care when the authorization takes place. They only perceive how
many times, they have to enter their password to be able to do their job. So when they log-in,
only an authentication can take place and they might obtain some kind of a token, and the
authorization can be performed when needed. The authentication token can be used for the
authorization request to authenticate the user, instead of prompting for user’s password.
Also an authorization token may be retrieved for the requested service and then used all
day to authorize user’s access to the service.

1. Single Sign–On <http://en.wikipedia.org/wiki/Single_sign-on>

1

http://en.wikipedia.org/wiki/Single_sign-on

1. INTRODUCTION

Company Y Soft2 is one of the leading companies in printing solutions with their SafeQ.
Their customers often run Windows Server3 with Active Directory4 (AD in short), which is
used for centralized management of users and computers. AD also supports the Kerberos5

authentication protocol. The Kerberos protocol can be used for authentication to third party
applications and will be described later in the text.

Clients of Y Soft raised a question, whether it could be possible to use the infrastructure,
they already have, for authorization of printing or access to some other devices. Such a so-
lution would be cheaper, because it would use the infrastructure, companies have already
invested into. Y Soft has therefore published a topic of master’s thesis Advanced authenti-
cation in Java applications using the Kerberos protocol.

The goal of the thesis is to elaborate the possibility and difficulty of such a solution,
where a user logs-in to his/her workstation and in case he/she needs, a ticket for some
service is saved on a flash drive. The ticket can be later used for authorization for this service
on another PC or device. For example when printing a document, user’s ticket for the printer
would be saved on a flash drive and then used by the printer to grant access to it. Two
applications or utilities should be created to demonstrate the solution, that can be used. One
application, which will allow saving of the ticket for some service and second, which will
demonstrate usage of the ticket to access the service.

In the first part, the requirements of Y Soft and their expectations will be discussed. Then
possibilities of authentication and authorization in Java applications will be shown. Possible
approaches to this issue will be presented together with their advantages and limitations.
Then the protocols which can be used to accomplish the task, will be presented. The next
chapter will be focused on the design of the solution. It will be followed by a chapter
focusing on the process of the work and eventual pitfalls, which showed up. The fifth
chapter deals with the applications which were created for the purpose of this thesis. The
last chapter then summarises whole thesis.

2. Y Soft, Ltd. <http://www.ysoft.com/>
3. Windows Server 2008: Overview <http://www.microsoft.com/windowsserver2008/en/us/
overview.aspx>
4. Active Directory Architecture <http://technet.microsoft.com/en-us/library/bb727030.
aspx>
5. Kerberos: The Network Authentication Protocol <http://web.mit.edu/Kerberos/>

2

http://www.ysoft.com/
http://www.microsoft.com/windowsserver2008/en/us/overview.aspx
http://www.microsoft.com/windowsserver2008/en/us/overview.aspx
http://technet.microsoft.com/en-us/library/bb727030.aspx
http://technet.microsoft.com/en-us/library/bb727030.aspx
http://web.mit.edu/Kerberos/

Chapter 2

Analysis

This chapter deals with the requirements of Y Soft and how they evolved. Then possible ap-
proaches to authentication and authorization in Java applications will be presented. Namely
Java Authentication and Authorization Service and Generic Security Service Application
Program Interface, that can be used in the solution, will be introduced. Their properties will
be described together with their advantages and limitations. Some sample codes will also
be provided to give a better picture of how they can be used. Finally protocols that might be
useful and could be used in the solution will be described. Especially the Kerberos protocol,
which is the base for this thesis.

2.1 Requirements analysis

At first the assignment was focussing on saving of a ticket for the requested service and the
intended use of the saved ticket was not clearly specified. It was required to use the Kerberos
protocol, which is supported in Active Directory in Windows Servers from Microsoft. This
support in AD allows to request a ticket for a logged-in user without prompting the user for
his/her password, because the user has already been authenticated in AD. It was required
to have an application or utility which could be used to save user’s ticket for the requested
service on a flash drive or a smart card. After the ticket would be saved, the second appli-
cation should be able to validate the ticket (check whether the ticket is valid).

After a discussion with Y Soft, the intention of using the ticket for authentication to
third party applications has appeared. So instead of an application that validates the ticket,
an application demonstrating how can be the saved ticket used to authorize a request to
a third party application, is required. As an example of a third party application, Internet
Information Services1 (IIS in short) shipped with Windows Servers was selected, because
it is widely used by customers. Also it should be possible to store more than one ticket for
a user on a flash drive or a smart card.

In the end, two applications should be created. The first one should allow a user to save
a Kerberos ticket for the selected service on a flash drive or a smart card, if a smart card
reader is attached. That means also an applet for smart cards needs to be created to allow
saving of tickets on smart cards. And the second application that will demonstrate using of
the saved ticket for authorizing user’s request to IIS.

1. Overview: The Official Microsoft IIS Site <http://www.iis.net/overview>

3

http://www.iis.net/overview

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

Later, last two requirements appeared. The first one was to support saving of a Kerberos
ticket on a contactless smart cards. And the second one was to create a library, that will
provide the core functionality of ticket loading and saving.

To accomplish the task, authentication and authorization support in Java should be used.
Otherwise, all already existing functionality would have to be implemented again. It would
be very unwise trying to implement all the Kerberos related communications, if it is already
implemented well and provided for free with Java. To have a picture of possible alterna-
tives of using existing libraries, options of authentication and authorization in Java will be
presented in the following section.

2.2 Options of authentication and authorization in Java applications

Of course it would be possible to implement all the protocol communications from scratch.
But it would be too time-consuming and unnecessary, because there is already implementa-
tion of the Kerberos protocol available in the standard edition of Java. It is not even necessary
to work with the protocol itself, there is also an authentication and authorization service
encapsulating protocol specifics, available in Java. The service is called Java Authentication
and Authorization Service (JAAS) and will be described in this section. Also a generic
application program interface providing generic access to security protocols is available in
Java. The interface is referred to as a Generic Security Service Application Program Interface
(GSS–API) and will be also introduced in this section.

2.2.1 Java Authentication and Authorization Service

Java Authentication and Authorization Service (JAAS in short) is a package, which can
be used to reliably and securely determine who is executing the Java code and ensure
only users with proper permissions can execute it. It has been available in JavaTM 2 SDK
since version 1.3 (J2SDK v. 1.3) as an optional extension package. Since version 1.4 it has
been available as a standard package in Java Standard Edition. This section is based on the
information from the JavaTM Authentication and Authorization Service (JAAS) Reference
Guide [1].

Subject

The most important class in JAAS is the class javax.security.auth.Subject, which
encapsulates information about a single entity (e.g. a user or a service). It groups together
entity’s Principals, private credentials and public credentials. An entity may have more
than one Principal, which identifies the entity, for example a student may have a name
Principal("John Doe") and a faculty login Principal("doe2").

Credentials are security related attributes, that might be contained in the Subject. They
are divided into two groups, private credentials and public credentials. Private creden-
tials are treated in more secure way because they contain sensitive data that needs to be

4

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

protected, such as private cryptographic keys of the entity. Public credentials represents
publicly available informations, such as public cryptographic keys of the entity.

A Principal is represented through the interface java.security.Principal, both
private and public credentials may be any Java object. However it is recommended for
classes representing credentials to implement javax.security.auth.Refreshable and
javax.security.auth.Destroyable interfaces.

There are two constructors for Subject class:

public S u b j e c t () ;

The first constructor creates an instance of Subject with empty sets of principals, public
and private credentials. This constructor can be used to construct an instance, when princi-
pals and credentials are not known yet. It is used for example to initialize a login context in
javax.security.auth.login.LoginContext for unknown Subject. LoginContext
internally instantiates a new empty Subject, if no Subject instance is passed to it.

public S u b j e c t (boolean readOnly , Set p r i n c i p a l s ,
Se t pubCredentials , Se t p r i v C r e d e n t i a l s) ;

The second constructor creates an instance of Subject with preset principals and creden-
tials. It can also construct an instance of Subjectwith immutable principals and credentials
sets, when readOnly parameter is true. It can be used when all the information about the
entity should be already known and we want to prevent any modifications of them in the
future.

To run a thread as a Subject and to ensure the thread will only be run by authorized
Subjects, the class Subject has two static methods: doAs and doAsPrivileged. Both
methods come in two variations — with and without throwing a checked exception.

The first method doAs has the following two forms:

public s t a t i c Object doAs (f i n a l S u b j e c t s u b j e c t ,
f i n a l Pr iv i legedAct ion a c t i o n) ;

public s t a t i c Object doAs (f i n a l S u b j e c t s u b j e c t ,
f i n a l Pr iv i legedExcept ionAct ion a c t i o n)

throws Pr iv i legedAct ionExcept ion ;

The method doAS associates the Subject with the current thread’s access control context
and then execute the action. The action can return any Java object, that is then returned by
the doAsmethod to the caller. During the execution of the action an exception may be raised.
The first method allows only runtime exceptions to be thrown in the action, the second
one allows to throw any exception from the action code. The exception will be wrapped as
PrivilegedActionException.

5

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

The second method doAsPrivileged has the following two forms:

public s t a t i c Object doAsPrivileged (
f i n a l S u b j e c t s u b j e c t ,
f i n a l Pr iv i legedAct ion act ion ,
f i n a l AccessControlContext acc) ;

public s t a t i c Object doAsPrivileged (
f i n a l S u b j e c t s u b j e c t ,
f i n a l Pr iv i legedExcept ionAct ion act ion ,
f i n a l AccessControlContext acc)

throws Pr iv i legedAct ionExcept ion ;

The method doAsPrivileged is same as the doAsmethod except it associates the Subject
with the access control context passed as a parameter and not the current thread’s access
control context.

When the doAs or doAsPrivileged method is invoked, the Subject is associated
with the access control context and parameterless method run() of the action is called.
Whatever the method returns is returned by the calling method doAs or doAsPrivileged.

LoginContext

The class javax.security.auth.login.LoginContext is used to authenticate a sub-
ject in the application. All the LoginContext constructors require a name as an index into
configuration represented by the class javax.security.auth.login.Configuration.
After instantiating a LoginContext, the LoginContext loads all the configured login
modules, which implement javax.security.auth.spi.LoginModule interface. When
login() method is invoked, all LoginModules attempt to authenticate the subject and
associate Principals and credentials with the Subject, if the authentication is successful.
The authentication status is then returned to the application and Subject may be retrieved
by the application from the LoginContext.

/ / i n s t a n t i a t e a~L o g i n C o n t e x t
LoginContext l c = new LoginContext (" conf igurat ionKey ") ;

t r y {
/ / t r y t o a u t h e n t i c a t e t h e S u b j e c t
l c . log in () ;

/ / g e t t h e a u t h e n t i c a t e d S u b j e c t
S u b j e c t s u b j e c t = l c . g e t S u b j e c t () ;

/ / use t h e S u b j e c t and do t h e work
. . .

6

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

/ / l o g o u t when done
l c . logout () ;

} catch (LoginException l e) {
/ / r e p o r t an e r r o r
System . e r r . p r i n t l n (" Authent icat ion f a i l e d : " + l e . getMessage ()) ;

}

An example usage of a LoginContext

Configuration options

Which LoginModules should be used to authenticate the subject is based on the configura-
tion file. Path to the file is set through a system property, so it can be changed when running
a Java program by a command line parameter:

j ava −Djava . s e c u r i t y . auth . log in . conf ig== j a a s . conf ig . . .

This is very useful, when an application should be running with various configurations.
The only thing that needs to be changed is the value of the parameter in the command
launching the application. Other option is to set the system property in the application itself
by invoking:

System . se tProper ty (" java . s e c u r i t y . auth . log in . conf ig " ,
" ./ j a a s . conf ") ;

This approach is useful when the application will be always executed with the same config-
uration file, so there is no need to specify it when launching the application.

The configuration file may contain configuration for more applications, each application
uses different name in the configuration file. For every application multiple login modules
can be configured with a different flag and module options. The flag determines whether
authentication by the module is required/requisite/sufficient or optional. Module options
are different for every LoginModule and can be found in the documentation of each mod-
ule. For example for Krb5LoginModule2, there are options that specify whether a ticket
cache should be used to obtain tickets, what file should be used as a ticket cache and what
principal should be used as the default one. Such a configuration file may look like this:

S e r v i c e T i c k e t S a v e r {
com . sun . s e c u r i t y . auth . module . Krb5LoginModule

required
useTicketCache= t rue ;

} ;

2. Krb5LoginModule (Java Authentication and Authorization Service) <http://download.oracle.
com/javase/6/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/
Krb5LoginModule.html>

7

http://download.oracle.com/javase/6/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html
http://download.oracle.com/javase/6/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html
http://download.oracle.com/javase/6/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

AnotherApp1 {
sample . SampleLoginModule required ;
com . sun . s e c u r i t y . auth . module . NTLoginModule required ;

} ;

AnotherApp2 {
sample . SampleLoginModule s u f f i c i e n t ;
com . sun . s e c u r i t y . auth . module . NTLoginModule s u f f i c i e n t ;

} ;

Such a configuration file would configure the application using the key "ServiceTicketSaver"
to require authentication using the module Krb5LoginModule and allowing to retrieve cre-
dentials from the default cache of the system. The difference between configuration entries
for "AnotherApp1" and "AnotherApp2" is that in case of "AnotherApp1", both of the mod-
ules need to succeed to authenticate the user, while in case of "AnotherApp2" just one of the
modules needs to succeed to authenticate the user. Actually, if the SampleLoginModule
succeeds, the following module (NTLoginModule) does not even try to perform user au-
thentication.

Summary

JAAS is suitable for authentication of the user who is running the application and to en-
sure some parts of the code will be run only by users with proper permissions (e.g. only
by authenticated users). On the other hand, JAAS is not designed for authentication of
the communicating parties or for secure exchange of messages. For that purpose Generic
Security Service Application Program Interface has been designed. It will be presented in
the following section.

2.2.2 Generic Security Service Application Program Interface

The other very important package that allows to work with security protocols in a uniform
way in Java is com.sun.security.jgss, that brings Generic Security Service Application
Program Interface (GSS–API in short) to Java. GSS–API was designed in Common
Authentication Technology working group of the IETF 3 and firstly published in September
1993 in RFC 15084. Its last revision is GSS–API Version 2, Update 1, as defined in RFC 2743[4].

The main benefit of using it, is that the applications can be written independently on
the underlying security mechanism and therefore the security mechanism can be easily
changed. The application code is also simpler, because all the protocol specific communica-
tions are handled by the GSS–API implementation. Security mechanism to be used is speci-
fied by the Object Identifier (OID in short) when creating a security context. Every security

3. Internet Engineering Task Force <http://www.ietf.org/>
4. RFC 1508 <http://www.ietf.org/rfc/rfc1508.txt>

8

http://www.ietf.org/
http://www.ietf.org/rfc/rfc1508.txt

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

mechanism has a unique OID assigned to it by Internet Assigned Numbers Authority5.
The GSS–API allows to authenticate a client to a server and when mutual authentication is
required, even the server to the client. It ensures authenticity of the messages sent between
the peers and it also supports integrity and confidentiality of exchanged messages.

The GSS–API divides the initialization of a security context among the peers between
two functions. The initiator has to call GSS_Init_sec_context(), which initializes a se-
curity context. And send the returned GSS–API token to the second peer. The second peer
then has to call GSS_Accept_sec_context() providing it with the received GSS–API
token as a parameter, to accept the initiated security context. If mutual authentication was
required, the second peer then has to send the returned token back to the first peer, which
will use it in the successor call of GSS_Init_sec_context() to authenticate the second
peer. After this, both peers are authenticated and a security context is established.

After a security context has been established, messages between the peers can be trans-
ferred securely. To prepare a message for sending, sender passes it to the GSS_Wrap() func-
tion. The function GSS_Wrap() ensures message authentication, integrity and confiden-
tiality (if it was requested during establishing the security context) and returns an encapsu-
lated message, that can be sent to the second peer. After receiving the encapsulated message,
the receiver has to pass it to the function GSS_Unwrap(). The function GSS_Unwrap()
reverts the encapsulation done by the function GSS_Wrap(), deciphers the message (if
confidentiality was applied), checks the message integrity and validates its authenticity (that
it was sent by the other peer).

After message exchange is done, security context should be destroyed. To flush all the
context–level information, server calls GSS_Delete_sec_context(). Server can also call
it with optional token buffer to retrieve a GSS–API token that can be sent to the client. When
client receives the token, it passes it to GSS_Process_context_token(), which deletes
all the context–level information in the client system.

The Java bindings for GSS–API has been defined in RFC 28536. The GSS–API in Java
is described in the paper Single Sign–on Using Kerberos in Java [2], sample codes and
configuration examples can be found in the lab series Advanced JGSS Security Programming
[3].

The specification allows to use a system-wide GSS–API implementation as well as a cus-
tom implementation, which can support types of security mechanisms not supported in
the system-wide implementation. The API also provides a flexible framework to manage
GSS–API mechanisms. To support pluggability of mechanisms, GSS–API uses Java
Cryptography Architecture (JCA in short). JCA is a framework for developing and accessing
cryptographic functionality in the Java platform. It contains part of the Java Security API
related to cryptography along with a set of conventions. The main benefit of it is that it
has a provider–based architecture, that allows using of cryptography independently on the
implementation used. Also more providers can support the same cryptographic operation,

5. IANA — Internet Assigned Numbers Authority <http://www.iana.org/>
6. RFC 2853 <http://www.ietf.org/rfc/rfc2853.txt>

9

http://www.iana.org/
http://www.ietf.org/rfc/rfc2853.txt

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

but using different algorithms. Such an architecture allows to replace an algorithm with
a new one absolutely transparently to the application. It can be handy if a new faster or
more secure algorithm is developed. [5] A GSS–API mechanism can be added on the sys-
tem level (available to all users of the framework), or per instance of the GSS–API. There
are two standard security mechanisms defined for the GSS–API: The Kerberos Version 5
GSS–API Mechanism7 and The Simple Public-Key GSS–API Mechanism (SPKM) 8. Support
of the Kerberos V5 mechanism is mandatory for all Java GSS–API implementations in J2SE.

Figure 2.1: Use of multiple mechanisms in the GSS–API

The Java GSS–API framework consists of few components — GSSManager, GSSName,
GSSCredential, GSSContext and GSSException. All security related functionality is
delegated to the components from the security mechanisms.

GSSManager

GSSManager is the main class in the GSS–API. It can be used to list available mechanisms or
to configure new providers. It also serves as a factory class for implementations of GSSName,
GSSCredential and GSSContext interfaces. The default instance of the manager can be
obtained by calling a factory method as follows:

GSSManager manager = GSSManager . g e t I n s t a n c e () ;

GSSName

The GSSName interface represents an entity in Java GSS–API. It is a multi-mechanism con-
tainer that lazily asks individual providers to perform the mapping when their mechanism
is used. An implementation of the interface for a selected mechanism can be obtained by
a factory method of the GSSManager as follows:

7. RFC 1964 <http://www.ietf.org/rfc/rfc1964.txt>
8. RFC 2025 <http://www.ietf.org/rfc/rfc2025.txt>

10

http://www.ietf.org/rfc/rfc1964.txt
http://www.ietf.org/rfc/rfc2025.txt

2.2. OPTIONS OF AUTHENTICATION AND AUTHORIZATION IN JAVA

GSSName GSSManager . createName (S t r i n g name , Oid nameType)
throws GSSException ;

The returned GSSName is mechanism independent, but the implementation should inter-
nally map it to a more mechanism specific form.

For example:

GSSName serverName = manager . createName (" nfs@bar . foo . com" ,
GSSName . NT_HOSTBASED_SERVICE) ;

The Kerberos V5 mechanism would internally map it to nfs/bar.foo.com@FOO.COM,
where FOO.COM is the default realm, bar.foo.com is the name of the host machine and
nfs is the name of the service.

GSSCredential

The GSSCredential interface is also multi-mechanism container as the GSSName inter-
face. It represents the credentials of the entity. The implementation is obtained by a factory
method of the GSSManager as follows:

GSSCredential GSSManager . c r e a t e C r e d e n t i a l (GSSName name ,
i n t l i f e t i m e , Oid mech , i n t usage)

throws GSSException ;

The type of the stored credentials depends on the specified mechanism and the requested
usage. For example when the Kerberos V5 mechanism Oid is specified and requested usage
is GSSCredential.INITIATE_ONLY, the mechanism would store an instance of a sub-
class of javax.security.auth.kerberos.KerberosTicket containing a TGT. On the
other hand, if the requested usage is GSSCredential.ACCEPT_ONLY, the stored object
would be an instance of a subclass of javax.security.auth.kerberos.KerberosKey
containing the secret key.

GSSContext

The GSSContext interface is the one, which implementation provides services to the com-
municating parties. There are three factory methods of the GSSManager instantiating the
context, one for the initiator, one for the acceptor and one for creating a previously exported
context.

The initiator (the client) can obtain the implementation and then initialize the context as
follows:

GSSContext GSSManager . c rea teContext (GSSName peer , Oid mech ,
GSSCredential c l i entCreds ,
i n t l i f e t i m e)

throws GSSException ;

11

2.3. USABLE PROTOCOLS

byte [] GSSContext . i n i t S e c C o n t e x t (byte [] inToken , i n t o f f s e t ,
i n t len)

throws GSSException ;

The initiator has to specify the target peer. Desired mechanism and its credentials can be
null to use the default ones.

The acceptor (the server) can obtain the implementation and then accept the context by
the following API calls:

GSSContext GSSManager . c rea teContext (GSSCredential serverCreds)
throws GSSException ;

byte [] GSSContext . acceptSecContext (byte [] inToken , i n t o f f s e t ,
i n t len)

throws GSSException ;

The acceptor may specify only its own credentials or pass null to use the default ones.
All the other parameters are specified by the initiator of the context and the acceptor only
accepts them.

GSSException

The GSSException is thrown by most methods in the framework. It encapsulates the
original exception occurred within the GSS–API framework or mechanism providers.

Summary

The Java GSS–API is suitable for authentication of the communicating parties and for se-
cured message exchange. It can be also configured to use the credentials of the logged-
in user, if the authentication mechanism supports the credential cache of the system. The
Kerberos V5 mechanism supports it, so it can be used with Kerberos without JAAS. On the
other hand the Java GSS–API can not guarantee that an action will be executed only by an
authorized user. So in some cases, combination of JAAS and GSS–API is needed.

2.3 Usable protocols

The thesis is focused on using the Kerberos protocol, so it will be described in short in
the following section. Especially its concept and basic architecture. Also the concept of the
names used in the protocol will be described. To use a previously saved Kerberos ticket,
the Kerberos protocol may be used directly, but also some negotiation protocol may be
useful to achieve that. Therefore Simple and Protected Negotiation Mechanism will be also
introduced in this section as such a mechanism, that can be used along with Kerberos.

12

2.3. USABLE PROTOCOLS

2.3.1 The Kerberos protocol

Networks in these days can be easily eavesdropped by insiders and sometimes even out-
siders, so sending a plain password over such networks would be very dangerous. There-
fore authentication mechanisms that do not transport password in a plain form has been
developed. Also sometimes two peers need to authenticate each other, but should not know
each other’s passwords. To satisfy these requirements, the Kerberos protocol was developed
in mid eighties. The Kerberos protocol is a distributed authentication service designed to
provide reliable prove of client’s identity to a verifier (typically a service) over an insecure
network that can be eavesdropped. Kerberos was developed as part of Project Athena9 on
Massachusetts Institute of Technology (MIT).

The main idea is to use tickets with limited lifetime issued by trustworthy third party
to prove client’s identity to a service. Every user and service shares a secret key with the
Authentication Service (AS in short). The shared key is usually a hash of the client’s pass-
word (potentially concatenated with a salt). Clients can request from AS ticket-granting
ticket (TGT) or ticket for any other service. Under the term TGT a ticket with a Service Prin-
cipal Name "krbtgt/REALM@REALM" (where REALM is a Kerberos realm) is meant. TGT
can be later used to obtain tickets for other services from the Ticket Granting Service (TGS
in short). The AS and the TGS are usually implemented as one application, sometimes called
Key Distribution Center (KDC in short) with two entry points. One for the authentication
component and one for the ticket granting component.

There are two important terms in the Kerberos protocol that still need to be clarified.
The first is the term realm. A realm is a designation of a virtual space, which is adminis-
trated by a certain Kerberos authentication server (or KDC). A realm is an upper-case string
usually derived from the domain name. So a domain domain.localhost would probably
use a Kerberos realm DOMAIN.LOCALHOST. The second one is the term Service Principal
Name. A Service Principal Name (SPN in short) is a unique designation of a service. An SPN
composes of three parts — a service type, a machine name and a Kerberos realm. The service
type can be for example a protocol name (e.g. LDAP, HTTP). The machine name can be
a name of the computer (e.g. server1), or a full domain name (e.g. server1.domain.localhost).
The realm is a Kerberos realm the service is located under.

If clients want to communicate with a service, they need to prove their identity to the
service. To do that using the Kerberos protocol, they have to send a Kerberos service ticket
along with the request. If they do not have a service ticket for the requested service yet, they
need to retrieve it first from a TGS. To retrieve a service ticket from the TGS, they need to
prove their identity to the TGS using the TGT. If they do not have even a TGT, they need
to retrieve it first from the AS and follow the steps in the reverse order. Or they can request
a service ticket for the desired service directly from the AS, if they do not wish to receive
a TGT, they could use for further service ticket requests.

9. Athena at MIT | IS&T <http://ist.mit.edu/services/athena>

13

http://ist.mit.edu/services/athena

2.3. USABLE PROTOCOLS

Figure 2.2: The protocol Kerberos steps

All the steps from authentication to application request are depicted on Figure 2.2 and
are as follow:

1) Authentication Server Request (AS_REQ)
To authenticate himself/herself, the client has to send a plain text request to the AS.
The request consists of client’s principal name, principal name of the desired service,
list of client’s IP addresses and desired lifetime.

AS_REQ = (PrincipalClient, P rincipalService, IP_list, Lifetime)

PrincipalService is usually in a form "krbtgt/REALM@REALM" to receive a TGT that
can be used in further requests for service tickets. But it can also be the principal name
of the service, if client wants to use only that service.

2) Authentication Server Reply (AS_REP)
The AS sends the client a reply containing session key SKTGS encrypted by client’s
secret key KClient and a TGT encrypted by the secret key of the Service (usually TGS)
KTGS .

14

2.3. USABLE PROTOCOLS

TGT = (PrincipalClient, krbtgt/REALM@REALM, IP_list, T imestamp, Lifetime,

SKTGS)

AS_REP = ({PrincipalService, T imestamp,Lifetime, SKTGS}KClient
, {TGT}KTGS

)

From the reply, the client can obtain SKTGS , but can not decrypt the TGT encrypted
by KTGS . That means the client is not able to change the TGT, but can obtain SKTGS ,
which is also stored in the TGT.

3) Ticket Granting Server Request (TGS_REQ)
To obtain a service ticket for the desired service, the client has to send a request to the
TGS.

Authenticator = {PrincipalClient, T imestamp}SKTGS

TGS_REQ = (PrincipalService, Lifetime, Authenticator, {TGT}KTGS
)

The request composes of Authenticator, which proves client’s knowledge of SKTGS

to the service, and a TGT which the client obtained from the AS.

4) Ticket Granting Server Reply (TGS_REP)
After validating the TGS_REQ, TGS generates a reply TGS_REP containing a session
key SKService encrypted by SKTGS and a service ticket TService encrypted by a service
secret key KService.

TService = (PrincipalClient, P rincipalService, IP_list, T imestamp, Lifetime,

SKService)

TGS_REP = ({PrincipalService, T imestamp,Lifetime, SKService}SKTGS
,

{TService}KService
)

From the reply, the client can obtain SKService, but can not decrypt the service ticket
encrypted by KService. That means the client is not able to change the service ticket,
but can obtain SKService also stored in the service ticket.

5) Application Request (AP_REQ)
Finally the client can use the received service ticket and send a request to the service.

Authenticator = {PrincipalClient, T imestamp}SKService

AP_REQ = (Authenticator, {TService}KService
)

15

2.3. USABLE PROTOCOLS

The request composes of Authenticator, which proves client’s knowledge of the
SKService to the service, and the service ticket encrypted by KService obtained from
the TGS.

6) Application Reply (AP_REP)
An optional step, in which the requested service proves its identity to the client, if
mutual authentication has been requested.

If a service ticket is requested directly from the AS, steps 3 and 4 (Ticket Granting Server
Request and Ticket Granting Server Reply) are skipped during the communication.
[6]

In the version 5 of the Kerberos protocol (Kerberos V5), support for cross–realm op-
erations was added. Cross–realm operations allow a user from one organization (realm)
to be authenticated to a service in another organization (realm). To support cross-realm
authentication, the two TGS have to exchange inter–realm keys. Also a realm hierarchy can
be created, so even if two TGS do not share an inter–realm key, they will still be able to
authenticate each other’s users, because there exists a path through some higher common
realm.
[7]

2.3.2 Simple and Protected Negotiation Mechanism

Simple and Protected GSS–API Negotiation Mechanism (often referred as SPNEGO) is, as
the name suggests, a negotiation mechanism designed for GSS–API. The GSS–API itself
allows one of the communicating peers to authenticate itself to the other one, or both of
the peers to be authenticated mutually. However it does not prescribe how should the
peers agree on a common security mechanism supported by both of them to be able to do
that. Therefore SPNEGO was later designed. It was defined in October 2005 in RFC 417810.
SPNEGO is a pseudo mechanism that can be chosen as a security mechanism for GSS–API
by the initiator. It allows to negotiate a common security mechanism with the second peer,
that will be used for authentication itself.

The following text is based on the specification of SPNEGO – RFC 4178 [8].
SPNEGO uses the following model:

• The initiator proposes a list of supported security mechanisms to the second peer
(acceptor).

• The acceptor looks up the proposed list for mechanisms supported also by it and
choose the first common mechanism in the list, or rejects the proposed values, if none
is supported.

• The acceptor then informs the initiator about its choice.

10. RFC 2025 <http://www.ietf.org/rfc/rfc4178.txt>

16

http://www.ietf.org/rfc/rfc4178.txt

2.3. USABLE PROTOCOLS

The initiator starts a negotiation by sending an ordered list of available security mechan-
isms in the first negotiation token. Supported security mechanisms are listed in descending
order of preference (the preferred one is the first). Thanks to this, peers can easily choose
the most preferred security mechanism supported by both of them just by going through
the list and selecting the first common mechanism. The initiator may also send an initial
mechanism token for the preferred mechanism within the negotiation token, thus speeding
up the authentication process, if the second peer accepts the preferred mechanism. If the
preferred mechanism is accepted by the acceptor of the negotiation token, the contained
initial mechanism token can be used to start the authentication process. Such a solution saves
one message exchange because otherwise the acceptor would have to send a confirmation of
the preferred mechanism and the initiator could only after that send the initial mechanism
token for the selected mechanism.

Because SPNEGO is a pseudo mechanism for GSS–API, it uses methods defined for
GSS–API to accomplish the negotiation. When the initiator wishes to use SPNEGO, the
application invokes GSS_Init_sec_context() as normal and specifies that it wants to
use the SPNEGO mechanism. Based on the credentials provided during this context es-
tablishment, the GSS–API implementation generates a negotiation token containing a list
of one or more available security mechanisms. The initiator application then sends the
generated token to the second peer. When the second peer receives the token, it passes it
to GSS_Accept_sec_context() as any other GSS–API initialization token.

One of the following states may be returned by the GSS–API implementation:

I) GSS_S_BAD_MECH
If none of the proposed mechanisms is acceptable.

II) GSS_S_CONTINUE_NEEDED
If MIC token exchange is required or at least one additional negotiation token from
the initiator is needed to establish the context. For example if the initiator did not
send an initial mechanism token for the preferred mechanism, or the acceptor selected
some other mechanism than the one preferred by the initiator.

III) GSS_S_COMPLETE
If the initiator’s preferred mechanism was selected and authentication based on the
received initial mechanism token was successful.

SPNEGO is also used for Single Sign–On solutions for Intranet applications. IIS supports
it, there is module for Apache web server and there is also a Servlet, which can be used for
Single Sign–On in any Java EE application. Users use web browsers to access Intranet ap-
plications, so they are more interested in whether they can use their favourite web browser
than what technology is used to achieve it. A list of browsers with SPNEGO support can be
found in Appendix A.

17

2.4. JAVA CARD

2.4 Java Card

Java Card is a technology that allows small applications (called applets) written in Java to
be run on devices with very limited memory and computing power, such as smart cards or
USB tokens. It is widely used in SIM (Subscriber Identity Module) cards in cell phones and
ATM (Automated Teller Machine) cards. Java Card Platform specification was developed
by Sun Microsystems (now part of Oracle) and development still continues. The current
version of the specification is Java Card Platform Specification 3.0.1 11. The API is compatible
with smart cards related international standards such as ISO 781612 (which specifies cards
from their physical characteristics, such as sizes of cards and positions of contacts on them,
up to interindustry data elements that can be used for communication with the card) and
EMV13 (stands for Europay, MasterCard and VISA), which defines the standard for credit
and debit payment cards. Applets run in a secure environment in Java Virtual Machine (JVM
in short) on the device (on the card). [9] That gives an opportunity to work with sensitive
data (such as private keys) in a secure environment. The JVM also contains an applet firewall
which prevents applets to access data of other applets. [10] So even if a malicious applet is
uploaded to the card, it is guaranteed that data of other applets are not in any danger.

There can be several applets on the card. To distinguish them, every applet has its unique
application identifier (AID in short). An AID is a sequence of bytes up to sixteen bytes long,
where first four bits determine a category of the AID according to Table 2.1.

Table 2.1: Categories of application identifiers [11]
Value Category Meaning

’0’ to ’9’ — Reserved for backward compatibility with ISO/IEC 7812-1
’A’ International International registration of application providers (ISO/IEC

7816-5)
’B’, ’C’ — Reserved for future use by ISO/IEC JTC 1/SC 17

’D’ National National registration of application providers (ISO/IEC 7816-5)
’E’ Standard Identification of a standard by an object identifier (ISO/IEC

8825-1)
’F’ Proprietary No registration of application providers (free to use)

AIDs for International and National categories are the most common, because such AIDs
allow providers to ensure that their applets will have a unique AIDs. In opposite there
can be many applets with the same AID from category F, because there is no regulation.
AIDs for categories A and D consists of five bytes long Registered Application Provider
Identifier (RID in short) and up to eleven bytes long Proprietary Application Identifier

11. Java Card 3.0.1 Platform Specification <http://www.oracle.com/technetwork/java/javacard/
specs-jsp-136430.html>
12. ISO 7816 Smart Card Standard, links to ISO7816 parts 7816 1-5 <http://www.cardwerk.com/
smartcards/smartcard_standard_ISO7816.aspx>
13. EMVCo <http://www.emvco.com/>

18

http://www.oracle.com/technetwork/java/javacard/specs-jsp-136430.html
http://www.oracle.com/technetwork/java/javacard/specs-jsp-136430.html
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816.aspx
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816.aspx
http://www.emvco.com/

2.4. JAVA CARD

Extension (PIX in short). Each application provider offering international applications needs
an international RID, which is issued by the ISO/IEC 7816-5 Registration Authority (TDC
Services A/S). [12]

19

2.4. JAVA CARD

For international RIDs, the first quartet is set to the hexadecimal number ’A’. Whilst
each application provider offering national applications needs a national RID, issued by
a national registration authority.

For national RIDs, the first quartet is set to the hexadecimal number ’D’, followed by
three quartets specifying the Country Code according to the ISO 3166 (203 for Czech
Republic). Registration authority issuing national RIDs in Czech Republic is CZECH
OFFICE FOR STANDARDS, METROLOGY AND TESTING. [13, 14] A typical application
identifier for national and international formats is described in Table 2.2.

Table 2.2: A typical application identifier (AID) format
Registered Application Proprietary Application

Provider Identifier (RID) Identifier Extension (PIX)
5 bytes 0 to 11 bytes

When a card is inserted into a card acceptance device, an applet located on the card
has to be selected by specifying its AID, before any communication with the applet may
occur. Also PIN verification or some other authentication may be required before an applet
accepts any other commands. An application communicates with an applet by exchanging
small blocks of data — application data units (APDUs in short). APDU is usually up to 261
bytes long (4 bytes in header, 2 body bytes Lc and Le and up to 255 bytes in body data field).
However newer cards support a feature called Extended APDU, which allows to transfer
up to 32,767 bytes in APDU body data field. [15] An application sends a Command APDU
to an applet and as a response receives a Response APDU. The Command APDU composes
of a mandatory header and an optional body. The header contains following bytes: instruc-
tion class, instruction code and two instruction parameters. The optional body contains an
additional data bytes whose meaning is applet specific. The body usually contains up to
255 bytes of data, unless an extended APDU is used. The Command APDU is depicted in
Table 2.3.

Table 2.3: Command APDU format
Mandatory header Optional body

CLA INS P1 P2 Lc Data field Le
Fields description:
CLA Instruction class — indicates the structure and format

of the command and the response APDU
INS Instruction code — specifies the instruction to be

executed
P1, P2 Parameters of the instruction
Lc Number of bytes sent as the data field of the command
Data field A sequence of bytes sent as data to the applet
Le Maximal expected size of the response data field

20

2.4. JAVA CARD

The Response APDU composes of an optional body and a mandatory trailer. The op-
tional body contains an additional data byte array. The trailer contains two status words.
The Command APDU is depicted in Table 2.4.

Table 2.4: Response APDU format
Optional body Mandatory trailer

Data field SW1 SW2
Fields description:
Data field A sequence of bytes sent as data from the

applet
SW1, SW2 Status words — denote the processing state

More details and an example applet can be found in the article How to write a Java Card
applet: A developer’s guide. [16]

An application communicates with the selected applet according to the following sce-
nario:

1. The application sends an application data unit (APDU) to the applet.

2. The applet processes the command and replies by sending a response APDU which
contains status words (SW1 and SW2) indicating the result of the operation.

3. The applet may also send some data back to the application in the response APDU.

4. The application should check the status words and eventually process the data sent
back in the response APDU.

When writing a Java Card Applet, card hardware limitations and memory model needs
to be taken into account. Especially all data stored in persistent memory should be allo-
cated in the applet constructor and transient arrays which will be stored in RAM should
be allocated by JCSystem.makeTransientByteArray() or corresponding alternatives
for other data types. Also writes to persistent memory are very slow and memory can only
stand a limited number of writes, so writing to persistent memory should be avoided if
possible.

21

Chapter 3

Design

This chapter deals with the initial design of the applications and its development. Division
to packages and structure of important classes will be presented. Because two demonstra-
tion applications should be created, the core functionality should be provided in common
packages and used by the applications. To support storing of tickets on a smart card, an
applet for a smart card needs to be created as well. Later a requirement of creating a library
encapsulating the core functionality has appeared. Therefore common packages should be
packed in the library and some reasonable interface should be created for it. At first the
design of the library and the applet will be presented and then the design of the applications
will be shortly presented.

3.1 Service Ticket Authorization Library

The library should provide methods for saving of Kerberos tickets to a storage, for loading
of a previously saved tickets from the storage and for generating an SPNEGO token that
can be used in a service request for authorization. Because several types of storage may be
used, all storage related functionality should be encapsulated in a separate package. On top
of that, a package providing the core functionality should be created.

Figure 3.1: Packages of the Service Ticket Authorization Library

22

3.1. SERVICE TICKET AUTHORIZATION LIBRARY

These two packages might be packed as a library, which would provide the required
functionality to any application. The library packages are depicted on Figure 3.1, where the
main package is cz.muni.fi.xkral5.sta and cz.muni.fi.xkral5.sta.storage
provides the storage functionality for it.

Package cz.muni.fi.xkral5.sta

The package cz.muni.fi.xkral5.sta provides the core functionality — loading/sav-
ing of service tickets and generating of SPNEGO tokens from a previously saved service
tickets. All the functionality is provided through methods of the only public class located
within this package, the ServiceTicketAuthorization class. Methods of the class in-
ternally use other protected classes of the package and storage functionality from the sub–
package cz.muni.fi.xkral5.sta.storage. The only exception thrown by the meth-
ods of the class is AuthorizationException, which wraps the cause of the exception.
The ServiceTicketAuthorization class provides the following methods:

setLoginCallbackHandler(javax.security.auth.callback.CallbackHandler handler)
Sets a login callback handler that should be used to retrieve credentials from the user,
if valid credentials are not found in the system credential cache. If a login callback
handler is not set and no valid credentials are found in the cache, the user is not
authenticated and the invoked saving operation is terminated.

loadServiceTicket(java.security.Principal spn, Storage storage)
Loads a previously saved Kerberos ticket from the given storage.

loadServiceTicket(java.security.Principal spn, ProtectedStorage storage, char[] pin)
Loads a previously saved Kerberos ticket from the given storage locked via the given
PIN.

saveServiceTicket(java.security.Principal spn, Storage storage)
Retrieves and saves a Kerberos service ticket for the authenticated user for service
specified by the spn to the given storage.

saveServiceTicket(java.security.Principal spn, ProtectedStorage storage, char[] pin)
Retrieves and saves a Kerberos service ticket for the authenticated user for service
specified by the spn to the given storage, which is/will be locked with the given PIN.

generateToken(java.security.Principal spn, Storage storage)
Generates an SPNEGO token from a previously saved Kerberos ticket stored in the
storage.

generateToken(java.security.Principal spn, ProtectedStorage storage, char[] pin)
Generates an SPNEGO token from a previously saved Kerberos ticket stored in the
storage locked via the PIN.

23

3.1. SERVICE TICKET AUTHORIZATION LIBRARY

Package cz.muni.fi.xkral5.sta.storage

The package cz.muni.fi.xkral5.sta.storage provides the storage functionality for
the library. Its initial class diagram is depicted on Figure 3.2.

Figure 3.2: The initial class diagram of the cz.muni.fi.xkral5.sta.storage package

The package contains two interfaces: Storage and ProtectedStorage. The Storage
interface prescribes basic functionality, whilst the ProtectedStorage interface extends
the Storage interface and prescribes other methods for loading and saving of tickets using
a PIN. The Storage interface is partially implemented by AbstractStorage abstract
class, which provides the basic functionality. All implementations of the storage inherits
the AbstractStorage and implements methods of the Storage or ProtectedStorage
interface.

24

3.1. SERVICE TICKET AUTHORIZATION LIBRARY

There are three implementations available in the package:

FileStorage
Implements the Storage interface and allows to save tickets to a file and later load
them from the file.

EncryptedFileStorage
Implements the ProtectedStorage interface and allows to save tickets to an en-
crypted file and later load them from the file. A cipher and a key size can be set for
encryption of the storage to provide required level of security. However it should be
pointed out, that the key is generated from a PIN, so all possibilities can be tried to
unlock the storage.

SmartCardStorage
Implements the ProtectedStorage interface and allows to save tickets to a smart
card containing a StorageApplet and later load them from the card. The applet
can be protected via a PIN, with a limited number of tries, after which the applet
becomes locked and can not be unlocked any more. This is the most secure way of
storing tickets, because they can not be retrieved from the card even by trying out all
possible combinations for the PIN.

The initial design was focused on the support for file storages, which was implemented
first. Therefore there were methods load() and save(), that loaded/saved the whole
storage. Such solution is however not so good for smart cards, which showed up during
adding of a smart card support to the library. There is no reason why to load or save
all tickets from/to smart card at once. Tickets stored on a smart card are stored securely,
however once loaded to a computer, they can be compromised. Also loading of all stored
tickets from a smart card to a computer would be quite time consuming. Loading/saving
of a single ticked is therefore the only reasonable approach to using a smart card as a ticket
storage. Methods load() and save() are then not necessary, because loading and saving
of a ticket from/to a smart card can be invoked from methods working with a ticket —
getTicket() and addTicket(). In fact, file storages can load the storage to memory with
the first getTicket() call, thus method load() is not necessary for them either. The only
usage which is left is using of a method save() with a file storage to save several added
tickets at once. It is not a requested functionality, but if it was, it could be easily supported
without the method save() just by introducing a method addTickets(), which would
add a collection of tickets to the storage.

The re-factored class diagram of the package is depicted on Figure 3.3. The final de-
sign of the package is more transparent — its interface abstracts from the way how the
data are actually stored and allows more straightforward using. It is not necessary any
more to load the storage before a ticket can be requested, or save a storage after a ticket
is added. Method addTicket() just needs to be called to add a ticket to the storage and
getTicket() to load a ticket from the storage. For ProtectedStorages also a PIN ver-
ification method verifyPIN() was introduced, which showed to be very useful for more

25

3.1. SERVICE TICKET AUTHORIZATION LIBRARY

natural using of storages in the applications. Without this method, verifying of a PIN was
not very straightforward. An application needed to attempt to load a ticket from the storage
to detect, whether the storage can be unlocked by the provided PIN. The package stayed
internally intact, so tickets are encoded and saved in the same way as they were before re-
factorization. Used encoding of tickets is described in the following section.

Figure 3.3: The re-factored class diagram of the cz.muni.fi.xkral5.sta.storage
package

26

3.1. SERVICE TICKET AUTHORIZATION LIBRARY

Encoding of tickets in a storage

Tickets are stored in the memory of a computer as Java objects. To be stored to a storage,
they need to be somehow encoded. Otherwise later it would not be possible to load them
back from the storage. While encoding an object for storing, the only things that need to be
stored are object’s attributes. If object’s attributes are stored and it is known what class is the
object, the object can be restored by instantiating a new object and filling its attributes with
the stored values.

Several different common methods of encoding come to mind:

Serialization
Using of serialization is the simplest way. Java language provides an output stream
ObjectOutputStream for serializing of objects with writeObject() method,
which serializes the object passed as a parameter and write it to the output stream.
And an input stream ObjectInputStream with readObject() method for re-
trieving of a previously serialized object. [17] Serialization is however language de-
pendent and also the serialized data are quite large, so it is not convenient when an
exchangeable format for different languages is needed, or when a size of data matters.

Extensible Markup Language
The Extensible Markup Language (XML in short) is a text format designed for large-
scale electronic publishing. [18] The format is nowadays widely used as an exchange
format between various applications and is also very common on the Internet. This
format, can be used for message exchange between applications written in different
languages. It is also human readable and easy to generate and process. However XML
data are pretty large (even more that serialized) because of the human readability of
the format. Therefore the XML format is not convenient when the data size matters.

Distinguished Encoding Rules
The last of the common formats, which comes to mind is Abstract Syntax Notation
One (ASN.1 in short). ASN.1 is a flexible abstract notation, which allows to specify the
structure of the data for representing, encoding, transmitting and decoding. However
it does not specify a concrete way the information should be encoded. To address this,
several encoding rules has been developed for ASN.1.

List of encoding rules for ASN.1:

• X.6901: Basic Encoding Rules (BER)
• X.690: Canonical Encoding Rules (CER)
• X.690: Distinguished Encoding Rules (DER)
• X.6912: Packed Encoding Rules (PER)

1. ITU–T Rec. X.690 <http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.
pdf>
2. ITU–T Rec. X.691 <http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.
pdf>

27

http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf

3.1. SERVICE TICKET AUTHORIZATION LIBRARY

• X.6923: Encoding Control Notation (ECN)

• X.6934: XML Encoding Rules (XER)

• RFC-36415: Generic String Encoding Rules (GSER)

[19]

Distinguished Encoding Rules is a constrained version of Basic Encoding Rules same
as Canonical Encoding Rules but it uses definitive lengths form. It is widely used in
cryptography, especially in X.509 digital certificates.

Because it is a standard format, which is space saving, this format has been chosen
for encoding of tickets in storages.

For proper working, not all attributes of KerberosTicket class need to be stored. If
only the required attributes are stored, the size of the data may be reduced. Ticket authenti-
cation time, start of validity time and renew until time are not necessary and can be opt out.
Correct values are also stored in the encrypted ticket for the service, so opting out does not
pose any security risk. Also client addresses where the ticket can be used are not necessary
for correct working of authorization. If the ticket can not be used from some addresses, the
requested service rejects the request. Because the user has no other way how to authenticate
himself/herself on such devices, rejecting of the service is the only correct result of such
a request. Also tickets retrieved from KDC in AD do not limit the addresses by default. Last
elements that do not need to be explicitly saved are a service realm and a service principal
name, because those elements are already contained within the ticket element in a plain
text format.

To hold the required data, the following format for a Kerberos ticket has been chosen:

Kerberos−T i c k e t : : = SEQUENCE {
c l i e n t [0] PrincipalName ,
endTime [1] KerberosTime ,
keyType [2] UInt32 ,
sessionKey [3] OCTET STRING ,
f l a g s [4] KerberosFlags ,
t i c k e t [5] T i c k e t

}

ASN.1 representation of a truncated Kerberos ticket

3. ITU–T Rec. X.692 <http://www.itu.int/ITU-T/studygroups/com17/languages/X.692-0203.
pdf>
4. ITU–T Rec. X.693 <http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.
pdf>
5. Generic String Encoding Rules (GSER) for ASN.1 Types <http://www.ietf.org/rfc/rfc3641.txt>

28

http://www.itu.int/ITU-T/studygroups/com17/languages/X.692-0203.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.692-0203.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.pdf
http://www.ietf.org/rfc/rfc3641.txt

3.1. SERVICE TICKET AUTHORIZATION LIBRARY

Description of Kerberos-Ticket elements:

client
The principal name of the client requesting the ticket. The PrincipalName class
provides asn1Encode() method to get an ASN.1 representation of the principal
name.

endTime
The expiration time of the ticket. The KerberosTime class provides asn1Encode()
method to get an ASN.1 representation of the time.

keyType
The key type of the session key. It is an integer value, which can be put to the
DerOutputStream directly by putInteger() method.

sessionKey
The session key shared by the client and the service. The session key is represented
by a SecretKey class, which provides getEncoded() method to get an encoded
representation of the key in its primary format, which is returned as a byte array.

flags
Flags of the Kerberos ticket. It is an array of boolean values, which can be converted
to BitArray and put to the DerOutputStream by putUnalignedBitString()
method.

ticket
The ticket for the service containing an encrypted part, which only the service can
decrypt. The KerberosTicket class provides getEncoded() method to get an
ASN.1 representation of the ticket according to the Kerberos protocol specification:

T i c k e t : : = SEQUENCE {
tkt−vno [0] INTEGER (5) ,
realm [1] Realm ,
sname [2] PrincipalName ,
enc−part [3] EncryptedData −− EncTicketPart

}

It contains a ticket version number, a service realm, a service principal name, and an
encrypted ticket part for the service.
[20]

Because storing of tickets to a file is required and more than one ticket should be stored
in a storage, an ASN.1 representation of a whole storage has been designed. All the required
information about a single ticket can be retrieved from the Kerberos-Ticket, so the
ASN.1 representation of the storage can be just a sequence of tickets.

29

3.2. APPLET FOR A SMART CARD

Storage : : = SEQUENCE OF Kerberos−T i c k e t

ASN.1 representation of the storage

3.2 Applet for a smart card

The applet StorageApplet should support saving of service tickets to a smart card and
loading tickets from the card. It should be possible to store more than one ticket on the
card, so it should be also possible to look up the desired ticket on the card. Because the
card would belong to a certain user, it is sufficient to look up tickets on the card just by the
Service Principal Name (SPN in short) of the service. To save space and have an easy logic
of looking up tickets, when saving a ticket with an SPN for which a ticket is already stored
on the card, the stored ticket should be replaced with the new one. Also because a card can
hold only a limited number of tickets, some kind of replacing of tickets with new ones needs
to be implemented.

Saving of a ticket

To support saving of multiple tickets on a card, several slots (ticket storages) needs to be
used in the applet. When using multiple ticket storages, one needs to be selected to hold the
ticket which is being saved. To ensure replacing of a ticket with the new one, ticket with the
same SPN needs to be looked up between currently stored tickets. If no ticket with matching
SPN is found, the least recently used ticket storage should be used. That means a slot that
has not been used yet, or the slot which has not been read from or written to for the longest
time.

It is also important to ensure that a ticket, which is being saved is not marked as valid
until it is completely saved. Otherwise a corrupted ticket would be later retrieved from the
card and used for authorization. To ensure that without degradation of performance, the
size of the uploaded ticket has to be compared with the real one before the ticket can be
considered as successfully stored.

To support the required functionality, saving of the ticket is divided between the follow-
ing three commands:

INS_SAVE_START
This command initializes the saving process. If a ticket storage index is 0x00, it tries
to find a storage containing a ticket with the given SPN. If there is no ticket with the
given SPN already stored, the least recently used ticket storage is selected for storing
the ticket. If some other ticket storage index is used, the specified storage is used.

INS_SAVE_UPLOAD
This command appends next data block to the ticket which is being saved. The saving
process had to be started by INS_SAVE_START command.

30

3.3. SERVICE TICKET SAVER

INS_SAVE_COMPLETE
This command finishes the saving process. It is there to guarantee, that the ticket was
saved completely. Until this command is successfully finished, the ticket is considered
to be corrupted (even if all its bytes were transferred).

Loading of a ticket

Loading of a ticket is much simpler than saving. The ticket just needs to be looked up
between stored tickets and then transferred from the card in several data blocks. To support
this functionality, only one command is sufficient:

INS_LOAD
This command allows to load a previously saved ticket. If the ticket storage index is
0x00, it tries to find a storage containing a ticket with the given SPN. The ticket is
obtained in multiple blocks (chunks) and remaining ticket size is always indicated in
the returned data. Also the ticket storage index is indicated in the response, so that
the ticket needs to be looked up only once.

3.3 Service Ticket Saver

The application should allow a user to retrieve and save a Kerberos ticket for the requested
service. It can be a simple GUI application, that will just allow to select a storage and then
use the Service Ticket Authorization Library to save the ticket to the selected storage.

The user should be able to choose whether to store the ticket on a smart card, or in an
encrypted file located on a flash drive selected from a list of connected flash drives. To get an
accurate list of flash drives, a library written in other language than Java, which can access
system API, would have to be used. But for this demonstration application, it is sufficient
to list file system roots and filter out roots of network drives on Windows systems and list
mount points from certain directory on *nix systems.

Graphical User Interface

The Graphical User Interface (GUI) of the application should be simple. There is no need
for any configuration, so the user should be able just to select whether to store the ticket on
a smart card, or on a flash drive. In case of a flash drive, select the flash drive from a list
of connected flash drives and in both cases enter a PIN. Therefore the application can be
composed from two tabs, one for storing of a ticket on a smart card and another for storing
of a ticket on a flash drive.

The first tab for saving of a ticket on a smart card can be used only if a smart card reader
is attached, therefore the tab should be disabled if a smart card reader is not attached. It
could be also hidden, but then a user would not see, that saving to a smart card is also
available. The tab needs to contain an input for entering a PIN and a button for saving of
a ticket.

31

3.4. CARD TERMINAL DEMO

Figure 3.4: Smart card and Flash drive tabs of Service Ticket Saver application

The second tab needs to contain a list of connected flash drives for selecting the desired
one, an input for entering a PIN and a button for saving of a ticket. Generated PINs are
desired, so a PIN field should be enabled only if the selected flash drive already contains
a storage file. Otherwise a new PIN should be generated and displayed to a user when
a ticket is saved.

3.4 Card Terminal Demo

The application should demonstrate how the Service Ticket Authorization Library can be
used in an application, which is awaiting a card and use the ticket stored on it to authorize
a service request. The application might be composed from the following three classes:

ServiceAction
This class represents the action that should be performed. When an action is run,
a service ticket is retrieved from the card and a service request is performed.

TerminalPooler
This class represents a card terminal pooler. It is a thread that periodically checks the
card terminal for presence of a card. When a card is attached, the action is invoked.

Main
This class is the main class containing static main(String[] args) method. When
the application is started and the main method is invoked, a TerminalPooler thread
for each card terminal is started.

32

Chapter 4

Solving the task

The first thing that needed to be done during the solving of the task, was the preparation
of the environment. The environment should have been composed from a network with
Windows server, Windows client and Linux machine. The Windows server with Active
Directory installed should have served also as a Key Distribution Center for the Kerberos
protocol. Windows Server 2008 had been selected as a Windows server. The Windows client
had been used for storing of a ticket for a service. It should have been connected to the
Active Directory domain, so that the user who logs-in can automatically obtain a Kerberos
TGT and therefore save a Kerberos ticket for a service without being prompt for credentials.
Windows 7 had been selected as a Windows client. The Linux machine should have served
as a machine, where the user could have applied the ticket to make a service request. Because
I was using system Fedora during that time, the system Fedora 12 I have had already
installed, was used.

To be able to run three systems at the same time on one computer, a virtual environment
needed to be used. Because Linux was the hosting operating system, it did not need to be
run in a virtual environment. The Windows server and client were installed into VirtualBox1

virtual machines. A virtual network between the virtual machines and the hosting operating
system was created, so that all the systems could communicate with each other.

4.1 Configuration of systems

The virtual network between systems used an address 192.168.56.0 and the name of the
domain was domain.localhost, addresses and names were assigned as follows:

• Linux machine: delisek.domain.localhost (192.168.56.1)

• Windows server: ws2008.domain.localhost (192.168.56.101)

• Windows client: virtual7.domain.localhost (192.168.56.102)

4.1.1 Windows server

Support for the Kerberos protocol is integrated into Active Directory, so only thing that
needs to be done is to select supported Kerberos encryptions on the Account tab of a user
profile in the application Active Directory Users and Computers.

1. Oracle VirtualBox <http://www.virtualbox.org>

33

http://www.virtualbox.org

4.1. CONFIGURATION OF SYSTEMS

In a Kerberos environment clients uniquely identify services by their Service Principal
Names (SPN in short). SPN composes of a service type, machine name and a realm. The
service type can be for example a protocol name (e.g. LDAP, HTTP). The machine name can
be a name of the computer (e.g. virtual7), or a full domain name (virtual7.domain.localhost).
The realm is a Kerberos realm, which can be omitted, if a default one is configured on the
computer. On computers connected to a Windows domain, the name of the domain is used
as a default realm by default. SPN is mapped to a user account or a computer account on
a Windows server via the Setspn application. For proper working in Windows domain,
SPN for both computer name and full domain name should be registered.

Application should have been tested against Microsoft Internet Information Services (IIS
in short), so proper SPNs for it had to be registered via the Setspn application. To do that,
following commands were used:

setspn −A HTTP/ws2008 . domain . l o c a l h o s t ws2008
setspn −A HTTP/ws2008 ws2008

The first command added mapping for SPN HTTP/ws2008.domain.localhost (containing
full domain name of the machine) to the computer account ws2008. The second one did the
same but for SPN with machine name HTTP/ws2008.

To allow Kerberos authentication for a web domain in IIS, Windows Authentication has
to be enabled at the domain Authentication panel. The Windows Authentication contains
Kerberos and NTLM authentication mechanisms.

4.1.2 Windows client

On a Windows client, there is almost nothing to configure. The client just needs to be con-
nected to the Windows domain. Once connected to the domain, the client is configured to
use the proper Key Distrubution Center (KDC in short) and the proper realm.

However in newer versions of Windows, Microsoft does not export a session key nor its
encryption type for tickets obtained from the native credential cache. Such a TGT cannot be
used for obtaining service tickets. Luckily there is a registry entry, that can be set to allow
exporting of a session key and its encryption type when retrieving a ticket from Windows
native credential cache. The registry entry is allowtgtsessionkey and has to be set
to 0x01 (type REG_DWORD). The location of the entry vary between different versions of
Microsoft Windows. On the Windows Server 2003 and Windows 2000 SP4, the location is:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Kerberos\
Parameters

On the Windows XP SP2 and later systems, the location is:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Kerberos

[21]

34

4.1. CONFIGURATION OF SYSTEMS

4.1.3 Linux machine

On a Linux machine, Kerberos has to be configured to use the KDC of the Windows Server.
In Linux, configuration of Kerberos is done in a configuration file /etc/krb5.conf. The con-
figuration file uses INI-style format and is divided to several sections. The most important
sections are:

libdefaults
This section contains default values for Kerberos V5 library. For example the default
realm, ticket lifetime and renew lifetime can be configured in this section.

realms
This section contains configuration of realms keyed by realm names. For each realm,
KDC and administration server addresses can be configured.

domain_realm
This section provides mapping from host names or domain names to Kerberos realms.
If the name starts with a period "." (e.g. ".example.com"), it is a domain name. If not
(e.g. "example.com"), it is a host name.

For the Linux machine to use the Windows domain Kerberos realm as the default realm
and the KDC and administration server running at the Windows server, Kerberos at the
Linux machine had to be configured as follows:

1. KDC and administration server addresses had to be configured for the domain realm
DOMAIN.LOCALHOST, which was the Kerberos realm of the Windows domain. Con-
figuration was done by putting the following lines to the realms section of the config-
uration file:

DOMAIN.LOCALHOST = {
kdc = ws2008 . domain . l o c a l h o s t : 8 8
admin_server = ws2008 . domain . l o c a l h o s t : 7 4 9

}

2. Windows domain name domain.localhost had to be mapped to the Kerberos
realm of the Windows domain DOMAIN.LOCALHOST. Configuration was done by
putting the following line to the domain_realm section of the configuration file:

. domain . l o c a l h o s t = DOMAIN.LOCALHOST

3. The Kerberos default realm had to be set to the Kerberos realm of the Windows
domain DOMAIN.LOCALHOST to support SPNs without specified realm. Also ticket
lifetimes and forward-ability had to be set. Setting was done by putting the following
lines to the libdefaults section of the configuration file:

35

4.2. WORK PROCESS

defaul t_rea lm = DOMAIN.LOCALHOST
t i c k e t _ l i f e t i m e = 24h
renew_l i fe t ime = 7d
forwardable = yes

4.2 Work process

At first, information about Kerberos and its support in Active Directory and Java authenti-
cation and authorization support were collected. Then according to the found information,
systems were configured. When the systems were configured, work itself could have started.
At first the Service Ticket Saver application was prototyped and an application verifying
tickets using the service keytab2 file. The Service Ticket Saver application used JAAS for
authentication of the user and authorized execution of actions retrieving and saving a ticket.
The method used GSS–API to retrieve a service ticket. After this first prototype was pre-
sented to the Y Soft company, a demand of using a ticket for authorized request to a third
party application was introduced. Also a request of storing multiple tickets to a file was
added.

In the next stage, a storage package was developed encapsulating the logic of saving and
loading of tickets. Also support for encryption of storage files was added. To test a saved
ticket, a demonstration application SPNEGO Client Demo was created. The application
used the previously stored ticket to make an authorized request to a website running on IIS.
The application again used GSS–API to generate an SPNEGO token to make an authorized
request. After a live demonstration of those two applications, the last requirement was
introduced. The requirement was to use a contactless smart card to store tickets on.

In the next stage, an applet for smart cards was developed and the storage package was
extended with a smart card support. Writing an applet was the most challenging part. At
first only contact smart card was used for developing purposes. After the applet and the
package were working fine together, a contactless smart card was tested. During that time
the last requirement was introduced — requirement of developing a library that would
encapsulate all the related functionality.

In the end, the packages that contained the core functionality were merged to a single
package cz.muni.fi.xkral5.sta and a main package class providing the functional-
ity to other applications was created. The class is ServiceTicketAuthorization. Also
another demonstration application Card Terminal Demo for smart cards was implemented.
This application awaited smart card and performed an authorized action, when a smart
card was attached. As the last thing, following performance improvements of the applet
were done:

• Putting all ticket slots to a one byte array.

2. What is a keytab, and how do I use one? <http://kb.iu.edu/data/aumh.html>

36

http://kb.iu.edu/data/aumh.html

4.3. ARISEN PROBLEMS

• Putting all SPNs to a one byte array.

• Pre-computing offsets to byte arrays mentioned above in the constructor.

• Using a transient session byte array to hold computed current offsets, instead of
computing of offsets for every request.

• Using a transient byte array for uploading a ticket and copying of the ticket to the
persistent memory in the end of the upload as a whole.

4.3 Arisen problems

During solving the task, several problems have appeared. Some were easy to solve, some
were more challenging. Six of the most significant problems will be described in this section,
along with the solution that has been used to overcome the problem.

Listing of connected flash drives

The first one was listing of connected flash drives in Java application. Java is a platform
independent language and programs written in it run on Java Virtual Machine. Because
of this, Java does not support many platform dependent interfaces. It is possible to list all
file system roots, but it is not possible to list connected devices. Listing of file system roots
could be used on Windows systems, where every connected flash drive is listed between
file system roots. But this approach is unusable on Linux based systems, where there is only
one file system root. All connected devices have to be mounted somewhere to the folder
structure. On Linux systems, where flash drives are mounted automatically, flash drives are
usually mounted to the /media or /mnt folder.

To get an accurate list of connected devices, a library written in another language, that
allows to access a system API, would have to be used. However for this demonstration
application, it is sufficient to retrieve an approximate list for presentation purposes only.
Integrating of the library to an existing application is expected, not using of the Service
Ticket Saver application as is.

On Windows systems, it is sufficient to list file system roots that are writeable and do
not contain several strings that are usual for optical or network drives. The rules used are as
follows:

• drive root must be writable

• path does not start with C:

• name does not contain ROM nor \\

On Linux systems, the approximate list of connected flash drives can be retrieved from
a list of folders in /media or /mnt folder, that does not have ROM in their name and are
writable.

37

4.3. ARISEN PROBLEMS

Setting of a Service Principal Name

The next problem was configuration of SPNs using the Setspn program. During initial
collecting of informations a tutorial about setting SPNs was found. The tutorial contained
the following command for setting SPN in Setspn program, which supports the usage of
an account name:

setspn −A servicename/machine ad−serv ice−account−name

[22]
If the SPN was mapped to an account name, it was working in the first stage, when

a demonstration application was using a keytab file to verify the ticket. However this setting
was not working once, the ticket should have been used to authorized request to IIS. Even
though the IIS was configured to use this account.

Solution was fortunately simple, just instead of an account name, the SPN had to be
mapped to a computer account (specified by a host name of the computer) as described in
the Setspn documentation. [23]

Null session key in retrieved tickets on Windows client

When the Service Ticket Saver application was first tested on a Windows client, an exception
was thrown even though the application was working on the Linux machine.

Solution was fortunately again easy to find, it is a well documented security feature of
new Microsoft Windows systems. To fix this problem the allowtgtsessionkey registry
key had to be set as described in the subsection 4.1.2. After setting up, the application was
working on the Windows client too.

Unlimited Strength Cryptography

Another problem came from unexpected field. When the Service Ticket Saver application
was first tested on Windows machine with Java SE 6 Update 21 from Oracle an exception
java.security.InvalidKeyException was thrown while encrypting a storage file.
Encryption was done using a cipher AES with key size 256 bits, which is supported with the
AES cipher and was also working with the Java from the OpenJDK3 package on Linux. After
short research, a page4 at IBM website was found that redirected attention to the right page
at the Sun website. From the page, it was clear that there are some import–control restric-
tions that do not allow to ship Java with all cryptographic functionality. Because of this, only
key size of 128 bits could be used with AES. To support unlimited strength cryptography,
two JAR files local_policy.jar and US_export_policy.jar need to be downloaded from the
Oracle website5 and copied to < JavaHome > /lib/security/. However this should be

3. OpenJDK <http://openjdk.java.net/>
4. IBM - Error: java.security.InvalidKeyException: Illegal key size <http://www-01.ibm.com/support/
docview.wss?uid=swg21307099>
5. Java SE Downloads <http://www.oracle.com/technetwork/java/javase/downloads/index-
jsp-138363.html>

38

http://openjdk.java.net/
http://www-01.ibm.com/support/docview.wss?uid=swg21307099
http://www-01.ibm.com/support/docview.wss?uid=swg21307099
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

4.3. ARISEN PROBLEMS

done, only if the law in the country allows to use such a strong cryptography. [24]

Addressing a resource packed in application’s JAR file on Windows

Another Windows related problem appeared, when the system property for setting of the
JAAS configuration file to be used (java.security.auth.login.config) needed to be
set. Not to require any configuration of the library, a default JAAS configuration file was
added to its JAR. To get a path to the file, method getResource() of the Class had been
used. Every class in Java provides two methods to retrieve a resource:

getResource(String name)
This method returns an URL of the resource, which can be used to retrieve it.

getResourceAsStream(String name)
This method returns an InputStream that can be used to read the resource content.

Although both of these methods work fine on Windows as well as on Linux, there is a prob-
lem in using of the URL returned by the getResource() method on Windows systems.
On Windows such an URL can not be used to address the file in the JAR file by its file
path. Addressing of a file by its file path is the only way, how to set the system property
java.security.auth.login.config. A file path retrieved from the URL does not exist
on Windows, while on Linux, the file inside of the JAR file is correctly addressed.

However method getResourceAsStream() works perfectly even on Windows sys-
tems, so it can be used, to read the file from the JAR file. It needs to be mentioned, that the
system property can be set only to a file path of the configuration file. Therefore the file read
through the getResourceAsStream() method, has to be saved to a temporary file, to be
able to use its file path to set the system property.

Time of saving/loading of a ticket to/from a smart card

When the applet was first tested with a contactless smart card, need of some performance
improvements appeared. An average reading time was 520 ms and an average writing time
was 498 ms for a contact smart card. For a contactless smart card, an average reading time
was 1107 ms and an average writing time was 991 ms. From the average times, it can be
seen that reading was more time consuming then writing for both contact and contactless
cards. Such difference is little suspicious, because writing should be slower than reading.
During whole reading it is communicated in both directions, but it is exchanged only few
more bytes than during saving of a ticket. It is because, during every loading exchange,
remaining size and ticket slot ID is always sent back along with the ticket data. On the other
hand, when saving a ticket, there are two more commands sent to a card, than when loading
a ticket. Tested ticket was 1065 bytes long, so using a 252 byte long ticket blocks, the ticket
was transferred in five blocks. With such a small number of exchanged ticket blocks, the
3 bytes overhead in a loading command makes a total of only 15 bytes overhead. On the

39

4.3. ARISEN PROBLEMS

other hand the overhead of two commands during saving makes 8 + 8 = 16 bytes. So the
difference is only one byte.

Table 4.1: Applet times of reading and writing of a ticket
Contact card Contactless card

read [ms] write [ms] read [ms] write [ms]
519 503 1106 988
521 496 1109 989
516 497 1105 995
523 496 1108 991
519 499 1105 991

After several improvements, such as putting of all ticket slots to a single byte array,
using of a transient session to hold already computed offsets and pre-computing of offsets
bases in the constructor, the average reading time was 206 ms and the average writing time
was 288 ms for the contact smart card. For the contactless smart card, an average reading
time was 812 ms and the average writing time was 791 ms. Complete list of performance
improvements made can be found in the end of the section 4.2. From the average times, it can
be seen, that the average times have significantly improved for a contact smart card. About
300 ms (60 % improvement for a contact smart card and 27 % improvement for a contactless
smart card) for reading and 200 ms (42 % improvement for a contact smart card and 20 %
improvement for a contactless smart card) for writing of a ticket.

Table 4.2: Applet times of reading and writing of a ticket after few improvements
Contact card Contactless card

read [ms] write [ms] read [ms] write [ms]
204 290 812 791
206 287 812 792
206 288 812 791
207 285 811 789
208 291 814 790

To find out whether it would be possible to improve the times even more, the times
of data transfer between the computer and the smart card were measured. Times were
measured using an applet, where most of the logic was removed, so that the data are only
transferred between the computer and the card. Only offsets were computed on the card to
provide the application at the computer correct remaining sizes. An average time of data
transfer from the contact card was 173 ms and an average time of data transfer to the card
was 198 ms. For the contactless card, an average time of transfer from the card was 782 ms
and to the card 707 ms.

40

4.3. ARISEN PROBLEMS

Table 4.3: Applet data transfer times from/to transient memory
Contact card Contactless card

read [ms] write [ms] read [ms] write [ms]
173 195 780 704
174 195 784 707
175 205 784 705
173 197 783 709
170 197 779 708

From the transfer times, it can be clearly seen that the logic and persistence of data
increase the time of reading only about 30–33 ms and the time of writing about 84–90 ms. It
can be also seen that transfer times for the contactless smart card are about three quarters of
a second, while for the contact smart card the times are under a quarter of a second.

41

Chapter 5

Created applications

Several applications have been created. One of the applications allows a user to save
a Kerberos ticket for the requested service. The user can choose where to store the ticket,
whether on a smart card, or in an encrypted file located on a flash drive selected from
a list of connected flash drives. Other two applications demonstrate how can a previously
stored ticket be used to make an authorized request. All three applications use the same
library encapsulating the core functionality. All the applications, the library and the applet
including their source codes are distributed under original BSD license. The text of the
licence can be found in Appendix C.

5.1 Applications

5.1.1 Service Ticket Saver

The application allows a user to retrieve and save a Kerberos ticket for the requested service.
The user can choose where to store the ticket, either on a smart card, or in an encrypted file
located on a flash drive selected from a list of connected flash drives. The list of connected
flash drives is not 100 % accurate, because Java does not have a way how to retrieve sys-
tem specific information about connected devices. So in a list of flash drives, only drives
complaint with the following rules are listed:

• Windows

– drive root must be writable

– path does not start with C:

– name does not contain ROM nor \\

• Other systems (Linux, Mac OS)

– drive is mounted in /media or /mnt, if /media directory does not exist

– mounted directory must be writable

– name does not contain ROM nor \\

To get an accurate list of flash drives a library written in other language would have to be
used. The library would have to access system API to retrieve the list.

42

5.2. LIBRARY

The application can be launched by the following command:

java − j a r S e r v i c e T i c k e t S a v e r . j a r <SPN>

SPN — the Service Principal Name of the service, for which a ticket should be retrieved

5.1.2 SPNEGO Client Demo Application

The application allows a user to use a previously stored ticket to make an authorized re-
quest. The request consists in retrieving of a web page located on IIS using an SPNEGO
authorization token. It allows to use a ticket stored on a smart card or in an encrypted file
located on a flash drive.

The application can be launched by the following commands:

java − j a r SPNEGOClientDemo . j a r <STORAGE DIRECTORY> <URL>
java − j a r SPNEGOClientDemo . j a r "SC" <URL>

STORAGE DIRECTORY the directory, where the storage file is located, i.e.
"/media/KINGSTON " or "F:"
If the value is "SC" as in the second command, a ticket is
retrieved from a smart card.

URL the url of the page that should be retrieved

5.1.3 Card Terminal Demo Application

The application demonstrates such an application, that periodically checks a card terminal
for presence of a card and performs an authorized service request, when the card is attached.
The request again consists in retrieving of a web page located on IIS using an SPNEGO
authorization token.

The application can be launched by the following command:

java − j a r CardTerminalDemo . j a r

5.2 Library

The library that supports saving and loading of Kerberos tickets to/from a file. The file can
be encrypted using a key generated from 4-digits PIN. Library also supports saving and
loading to/from a smart card using the StorageApplet. Also an SPNEGO token can be
generated from a previously saved Kerberos ticket using the library. The SPNEGO token can
be then used in a service request.

5.2.1 StorageApplet

The applet for Java CARDs allows to store several Kerberos tickets on a smart card. The
limitation is given by the limited memory of the smart card. To allow easy changing of the

43

5.2. LIBRARY

supported number of tickets, the maximal number of tickets is specified during installing
the applet to a smart card. Due to this, the applet is installed only if a card has sufficient
memory to hold the requested number of tickets. Applet has been successfully tested on
a smart card NXP JCOP 41 V2.2.1.

44

Chapter 6

Conclusion

The main purpose of creating this thesis was to investigate and demonstrate possibilities
of authentication and authorization in Java applications using the Kerberos protocol. This
protocol is widely supported. A lot of organizations have a Key Distribution Center in their
Active Directory even though they might not be aware of it. On the other hand, there are
also open source solutions such as ApacheDS 1. On clients, Kerberos is also supported on all
major platforms and its support is mandatory for GSS–API implementations in Java. Such
a wide support makes it a perfect choice.

At first, requirements on applications that should be created were analysed. According
to the requirements, possibilities of authentication and authorization in Java were analysed.
Also information about usable protocols were collected. After that, applications, the library
and the applet were designed to support the required functionality.

In the end, three demonstration applications, a library and an applet for a smart card
were created. One of the applications — Service Ticket Saver allows a user to save a ticket for
a requested service on a flash drive or a smart card. The other two applications demonstrate
how can be a previously saved ticket retrieved and used to make an authorized service
request using Simple and Protected GSS–API Negotiation Mechanism (SPNEGO). The li-
brary with the applet provide the core functionality for those tree applications. Detailed
description can be found in chapter 5, print screens can be then found in Appendix B.

During implementation, several problems had showed up. All the problems had been
overcome and the most significant were along with their solution described in section 4.3.

The most interesting and challenging part was creating of an applet for a smart card.
Even though there was possibility of implementing an applet supporting Extended APDU
through javacardx.apdu.ExtendedLength interface. In the end, ExtendedLength
interface was not implemented in the applet, because this interface was added in Java Card
2.2.2, which is not so widely supported by cards. Therefore a solution that can be used with
lower versions of Java Card specification was selected.

The possible usage of the created library is in any set of applications that should allow
a user to be authenticated on one computer and use the ticket on another machine or de-
vice to get access to it. For example to get access to a printer. Therefore the library is the
main outcome of this work and the other applications just demonstrate its usage to do the

1. ApacheDS v1.5 — An extensible, embeddable LDAP and Kerberos server entirely in Java <http://
directory.apache.org/apacheds/1.5/>

45

http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/

6. CONCLUSION

required operations. Such a solution could be used by companies which already have a Key
Distribution Center in their infrastructure, to secure their printers or other devices from
being misused. Because no special infrastructure would have to be created, such a solution
would be cheap.

In the future, the library could be extended and used not only on devices, but also on
client stations to authorize user requests to some intranet applications. Also support for
other authentication protocols could be added in the future, because the library internally
uses standard Java Authentication and Authorization Service (JAAS) and Generic Security
Service Application Program Interface (GSS–API), which are protocol transparent. To sup-
port some other protocols, the storage package would have to be modified to support storing
of some other types of credentials. The library internally uses JAAS and GSS–API to retrieve
and use the previously stored credentials (Kerberos tickets in current state), so the internal
logic could stay intact. Only its interface and credentials related actions would just needed to
be generalized to accept other types of credentials, than just instances of KerberosTicket.
Also proper OID for the used type of credentials would have to be passed to GSS–API. This
could be easily achieved by introducing of a mapping between credentials types and OIDs.

46

Bibliography

[1] Oracle and/or its affiliates: JavaTM Authentication and Authorization Service (JAAS)
Reference Guide,
May 22, 2011
<http://download.oracle.com/javase/6/docs/technotes/guides/
security/jaas/JAASRefGuide.html> 2.2.1

[2] Oracle and/or its affiliates: Single Sign–on Using Kerberos in Java,
May 22, 2011
<http://download.oracle.com/javase/1.5.0/docs/guide/security/
jgss/single-signon.html> 2.2.2

[3] Oracle and/or its affiliates: Advanced Security Programming in JavaTM SE
Authentication, Secure Communication and Single Sign-On,
May 22, 2011
<http://download.oracle.com/javase/6/docs/technotes/guides/
security/jgss/lab/> 2.2.2

[4] John Linn: Generic Security Service Application Program Interface Version 2, Update 1,
May 22, 2011
<http://www.ietf.org/rfc/rfc2743.txt> 2.2.2

[5] Oracle and/or its affiliates: JavaTM Cryptography Architecture,
May 22, 2011
<http://download.oracle.com/javase/1.5.0/docs/guide/security/
CryptoSpec.html> 2.2.2

[6] Fulvio Ricciardi: KERBEROS PROTOCOL TUTORIAL,
May 22, 2011
<http://www.kerberos.org/software/tutorial.html> 2.3.1

[7] Clifford Neuman, Tom Yu, Sam Hartman, Kenneth Raeburn: The Kerberos Network
Authentication Service (V5),
May 22, 2011
<http://www.ietf.org/rfc/rfc4120.txt> 2.3.1

47

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jgss/single-signon.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jgss/single-signon.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/jgss/lab/
http://download.oracle.com/javase/6/docs/technotes/guides/security/jgss/lab/
http://www.ietf.org/rfc/rfc2743.txt
http://download.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html
http://www.kerberos.org/software/tutorial.html
http://www.ietf.org/rfc/rfc4120.txt

[8] Larry Zhu, Paul Leach, Karthik Jaganathan, Wyllys Ingersoll: The Simple and Protected
Generic Security Service Application Program Interface (GSS–API) Negotiation
Mechanism,
May 22, 2011
<http://www.ietf.org/rfc/rfc4178.txt> 2.3.2

[9] Oracle and/or its affiliates: Java Card Technology Overview,
May 22, 2011
<http://www.oracle.com/technetwork/java/javacard/overview/
overview-jsp-135353.html> 2.4

[10] Oracle and/or its affiliates: Applet Firewall and Object Sharing,
May 22, 2011
<http://java.sun.com/developer/Books/consumerproducts/javacard/
ch09.pdf> 2.4

[11] IEC: ISO/IEC 7816-4,
May 22, 2011
<http://webstore.iec.ch/preview/info_isoiec7816-4%7Bed2.0%7Den.
pdf> 2.1

[12] ANSI: International Registered Application Provider Identifier (RID),
May 22, 2011
<http://www.ansi.org/other_services/registration_programs/rid.
aspx?menuid=10> 2.4

[13] IEC: ISO/IEC 7816-5,
May 22, 2011
<http://webstore.iec.ch/preview/info_isoiec7816-5%7Bed2.0%7Den.
pdf> 2.4

[14] UNMZ: Česká národní registrační autorita pro RID k přidělení registrovaného
identifikátoru poskytovatele aplikace (RID) podle ISO/IEC 7816-5,
May 22, 2011
<http://www.unmz.cz/urad/ceska-narodni-registracni-
autorita-pro-rid-k-prideleni-registrovaneho-identifikatoru-
poskytovatele-aplikace-rid-podle-iso-iec-7816-5> 2.4

[15] Sun Microsystems, Inc.: CHAPTER 5 — Using Extended APDU,
May 22, 2011
<http://www.cs.ru.nl/~tews/jcdocs/app-notes-2.2.2/extapdu.html>
2.4

48

http://www.ietf.org/rfc/rfc4178.txt
http://www.oracle.com/technetwork/java/javacard/overview/overview-jsp-135353.html
http://www.oracle.com/technetwork/java/javacard/overview/overview-jsp-135353.html
http://java.sun.com/developer/Books/consumerproducts/javacard/ch09.pdf
http://java.sun.com/developer/Books/consumerproducts/javacard/ch09.pdf
http://webstore.iec.ch/preview/info_isoiec7816-4%7Bed2.0%7Den.pdf
http://webstore.iec.ch/preview/info_isoiec7816-4%7Bed2.0%7Den.pdf
http://www.ansi.org/other_services/registration_programs/rid.aspx?menuid=10
http://www.ansi.org/other_services/registration_programs/rid.aspx?menuid=10
http://webstore.iec.ch/preview/info_isoiec7816-5%7Bed2.0%7Den.pdf
http://webstore.iec.ch/preview/info_isoiec7816-5%7Bed2.0%7Den.pdf
http://www.unmz.cz/urad/ceska-narodni-registracni-autorita-pro-rid-k-prideleni-registrovaneho-identifikatoru-poskytovatele-aplikace-rid-podle-iso-iec-7816-5
http://www.unmz.cz/urad/ceska-narodni-registracni-autorita-pro-rid-k-prideleni-registrovaneho-identifikatoru-poskytovatele-aplikace-rid-podle-iso-iec-7816-5
http://www.unmz.cz/urad/ceska-narodni-registracni-autorita-pro-rid-k-prideleni-registrovaneho-identifikatoru-poskytovatele-aplikace-rid-podle-iso-iec-7816-5
http://www.cs.ru.nl/~tews/jcdocs/app-notes-2.2.2/extapdu.html

[16] Zhiqun Chen: How to write a Java Card applet: A developer’s guide,
May 22, 2011
<http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.
html> 2.4

[17] Oracle and/or its affiliates: Discover the secrets of the Java Serialization API,
May 22, 2011
<http://java.sun.com/developer/technicalArticles/Programming/
serialization/> 3.1

[18] W3C R© (MIT, ERCIM, Keio): Extensible Markup Language (XML),
May 22, 2011
<http://www.w3.org/XML/> 3.1

[19] Wikipedia R©: Abstract Syntax Notation One,
May 22, 2011
<http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One> 3.1

[20] The Apache Software Foundation: Apache Directory Server v1.0 – Kerberos ASN.1
codec,
May 22, 2011
<https://cwiki.apache.org/DIRxSRVx10/kerberos-asn1-codec.html>
3.1

[21] Oracle and/or its affiliates: Troubleshooting,
May 22, 2011
<http://download.oracle.com/javase/1.5.0/docs/guide/security/
jgss/tutorials/Troubleshooting.html> 4.1.2

[22] Blogger The Java Monkey: Active Directory and Kerberos Service Principal Names,
May 22, 2011
<http://thejavamonkey.blogspot.com/2008/03/active-directory-and-
kerberos-service.html> 4.3

[23] Microsoft: Setspn Overview: Active Directory,
May 22, 2011
<http://technet.microsoft.com/en-us/library/cc773257(WS.10).
aspx> 4.3

[24] Oracle and/or its affiliates: Using AES with Java Technology,
May 22, 2011
<http://java.sun.com/developer/technicalArticles/Security/AES/
AES_v1.html> 4.3

49

http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
https://cwiki.apache.org/DIRxSRVx10/kerberos-asn1-codec.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jgss/tutorials/Troubleshooting.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/jgss/tutorials/Troubleshooting.html
http://thejavamonkey.blogspot.com/2008/03/active-directory-and-kerberos-service.html
http://thejavamonkey.blogspot.com/2008/03/active-directory-and-kerberos-service.html
http://technet.microsoft.com/en-us/library/cc773257(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc773257(WS.10).aspx
http://java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html
http://java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html

Appendix A

Browsers with SPNEGO support

There are browsers supporting SPNEGO for all major platforms (Windows, Mac OS and
Linux). Especially Mozilla Firefox, Google Chrome and Chromium are supported on all
platforms. There is a list of platforms with browsers available for them which are supporting
SPNEGO:

• Windows

– Internet Explorer
– Mozilla Firefox
– Google Chrome/Chromium

• Linux

– Konqueror
– Mozilla Firefox
– Google Chrome/Chromium

• Mac OS1

– Safari
– Mozilla Firefox
– Google Chrome/Chromium

Internet Explorer

Support has been added in version 5.0 and it is supported only on Windows. To allow
SPNEGO, following steps have to be performed:

• in the Security settings check Enable Integrated Windows Authentication (requires
restart)

• add all requested domains to Sites list in Local intranet

Detail instructions can be found on Microsoft’s website: http://msdn.microsoft.com/
en-us/library/ms995329.aspx.

1. List is based on the available information and support has not been tested on Mac OS due to hardware
restrictions of the system.

50

http://msdn.microsoft.com/en-us/library/ms995329.aspx
http://msdn.microsoft.com/en-us/library/ms995329.aspx

A. BROWSERS WITH SPNEGO SUPPORT

Mozilla Firefox

Support has been added in version 0.9 and it is supported on all platforms. To allow SPNEGO,
all domains has to be added to network.negotiate-auth.trusted-uris configuration property,
which can be found on Firefox configuration page about:config. Detail description of inte-
grated authentication support can be found at: https://developer.mozilla.org/En/
Integrated_Authentication.

Google Chrome/Chromium

These two browsers are based on same community source codes for Chromium. Support
has been added in version 6.0.472 and it is supported on all platforms. To allow SPNEGO,
browser has to be run with following arguments:

• --auth-server-whitelist="comma separated list of domains"

• --auth-negotiate-delegate-whitelist="comma separated list of domains"

Detail description of authentication support can be found at: http://dev.chromium.
org/developers/design-documents/http-authentication.

Konqueror

Support has been added in version 3.3.1 and no special configuration is needed.

51

http://kb.mozillazine.org/About:config
https://developer.mozilla.org/En/Integrated_Authentication
https://developer.mozilla.org/En/Integrated_Authentication
http://dev.chromium.org/developers/design-documents/http-authentication
http://dev.chromium.org/developers/design-documents/http-authentication

Appendix B

Print screens of created applications

Service Ticket Saver

Flash drive tab

This tab is always available and allows to store a ticket to a flash drive.

Figure B.1: Flash drive tab with selection of a flash drive and a confirmation dialog

Figure B.2: Flash drive tab with a wrong PIN dialog and a new PIN dialog

52

B. PRINT SCREENS OF CREATED APPLICATIONS

Smart card tab

This tab is available only if a smart card reader is attached and allows to store a ticket to
a smart card.

Figure B.3: Smart card tab with a prompt for a smart card and after a card is inserted

Figure B.4: Dialogs when a ticket is successfully saved and when an incorrect PIN was
entered

53

B. PRINT SCREENS OF CREATED APPLICATIONS

SPNEGO Client Demo

Figure B.5: Successful loading of a page from IIS

Figure B.6: PIN prompt, if a card requires PIN verification

Figure B.7: Warning when no valid ticket was found on the card

Figure B.8: Warning when a card is not attached

54

B. PRINT SCREENS OF CREATED APPLICATIONS

Card Terminal Demo

Figure B.9: Awaiting a card

Figure B.10: Warning when a card communication error occurred

Figure B.11: Warning when no valid ticket was found on the card

Figure B.12: Successful loading of a page from IIS

55

Appendix C

Licence

Copyright (c) 2011, Tomáš Král
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the
following acknowledgement:
This product includes software developed by the Faculty of Informatics Masaryk
University in cooperation with Y Soft.

4. Neither the name of the Faculty of Informatics Masaryk University, Y Soft nor the
names of their contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY TOMÁŠ KRÁL "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL TOMÁŠ KRÁL BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

56

Appendix D

Contents of the attached CD

A CD is attached to the thesis with the following contents:

• source codes of the applications and the library (Maven projects)

• source codes of the applet (NetBeans Ant project)

• documentation of all source codes in JavaDoc format

• built applications with attached default configuration files

• this thesis in PDF format

57

	Contents
	1 Introduction
	2 Analysis
	2.1 Requirements analysis
	2.2 Options of authentication and authorization in Java
	2.2.1 Java Authentication and Authorization Service
	2.2.2 Generic Security Service Application Program Interface

	2.3 Usable protocols
	2.3.1 The Kerberos protocol
	2.3.2 Simple and Protected Negotiation Mechanism

	2.4 Java Card

	3 Design
	3.1 Service Ticket Authorization Library
	3.2 Applet for a smart card
	3.3 Service Ticket Saver
	3.4 Card Terminal Demo

	4 Solving the task
	4.1 Configuration of systems
	4.1.1 Windows server
	4.1.2 Windows client
	4.1.3 Linux machine

	4.2 Work process
	4.3 Arisen problems

	5 Created applications
	5.1 Applications
	5.1.1 Service Ticket Saver
	5.1.2 SPNEGO Client Demo Application
	5.1.3 Card Terminal Demo Application

	5.2 Library
	5.2.1 StorageApplet

	6 Conclusion
	Bibliography
	A Browsers with SPNEGO support
	B Print screens of created applications
	C Licence
	D Contents of the attached CD

