Project Report

CSE 598 Design and Analysis of Algorithms

Analysis and Comparison of Two
Important Compression Methods
Michael Weiss-Malik
Computer Science & Engineering Department

Arizona State University

notyou@asu.edu
Table of Contents

1
Introduction
3
1.1
Abstract
3
1.2
Overview of compression’s purpose and history
3
1.3
Summary of significant principles in information theory
4
2
Huffman Coding
5
2.1
Overview
5
2.2
Precise algorithm description
5
2.3
Caveats and implementation details
6
2.4
Real-world optimizations and extensions
6
2.5
Best and worst case performance
7
2.6
Theoretical significance
8
3
Description of arithmetic coding
9
3.1
Overview
9
3.2
Precise algorithm description
9
3.3
Caveats and implementation details
10
3.4
Real-world optimizations and extensions
11
3.5
Best and worst case performance
12
3.6
Theoretical significance
13
4
Comparison of the two algorithms
14
4.1
Discussion of real-world relative pros and cons
14
4.1.1
Time performance
14
4.1.2
Space requirements
14
4.1.3
Relative ease/difficulty of implementations
14
4.2
Survey of actual compression ratios for sample data
15
5
Conclusion
17
5.1
General discussion and review
17
5.2
Current research and future directions
17

1 Introduction

1.1 Abstract

As the world evolves to rely more and more on computers and data storage, data compression becomes an increasingly useful and important tool. Most data used by humans contains a high amount of redundancy. Compression algorithms aim to eliminate this redundancy, while still preserving all the information contained in the original data. The end result is a reduction in storage requirements, in exchange for increased computation.

One of the most well-known and fundamental compression algorithms is the technique known as Huffman Coding, invented in 1952 by David Huffman. It forms the basis for innumerous theoretical and real-world compression schemes, and serves to prove several important properties of compression in general. Unfortunately, Huffman Coding has shortcomings. It always requires an integral number of bits to represent a given symbol; as a result, inefficiencies arise when the optimal number of bits would be fractional. A technique known as Arithmetic Coding has gained prominence as a replacement for Huffman Coding. It avoids the pitfalls of integral bit counts by representing the compressed data conceptually as a single floating-point number.
This paper aims to present and analyze both algorithms.
1.2 Overview of compression’s purpose and history

Compression is used in a wide-ranging variety of applications, from the transmission of science data collected on board NASA space probes, to the storage of digital music on personal computers. Almost as long as there has been digital data, there has been compression of that data.
The basic aim of compression is to sacrifice time and/or processing power in exchange for a reduction in storage requirements. This paper concerns itself in particular with lossless compression, which requires that the compressed data (when uncompressed) restores to an exact copy of the original.
1.3 Summary of significant principles in information theory

It is worth noting that there are very strict limits to lossless compression. In particular, no compressor is capable of compressing all data. If it compresses some input streams into a smaller output stream version, it is mathematically provable that there must exist other input streams which actually get larger when fed through the compressor!
Thus lossless compression schemes attempt to compress “typical” data streams, which are a particular subset of all possible input streams. Just what constitutes “typical” depends on your application… thus the abundance of different compression methods.
2 Huffman Coding

2.1 Overview

Huffman Coding is a variable-length character encoding which uses the frequency of symbols in an input string to determine the optimal number of bits for representing each character in the output. It requires an initial scan of the entire input stream to determine the input symbol frequency distribution. This stage builds a tree to represent the optimal unique prefix code of each character. The actual compression is then performed by simply applying the translation given by the prefix code tree.
2.2 Precise algorithm description

There are two stages to the static Huffman Coding algorithm. The first is an analysis state to determine the coding scheme, the second is the actual encoding stage.

The first step to determining the coding scheme is to make a single pass over the entire input stream, recording the frequency of each input symbol encountered. Each symbol is then formed into a trivial tree with one node. The number of times a particular symbol occurs in the input stream will be referred to as its tree’s weight. One must then perform the following iterative algorithm:
1. T := collection of initial one-node trees.
2. Remove from T elements x, y: the two smallest-weighted trees.
3. Create a new tree z, whose root node has x and y as children.
4. Assign z the weight of x and y combined.

5. Insert z into T.

6. Repeat from step 2 until T contains only a single tree. Call this tree t.
7. For every internal node of t, arbitrarily assign a 1 to one of its child branches and a 0 to the other child branch.
At the end of the above algorithm, t is a full binary tree representing the optimal prefix coding for our input data. Its leaf nodes are the input symbols. The encoding for each symbol is produced by traversing the tree from the root node to the symbol, noting the sequence of 0 and 1 branches along the way.
Thus the compression stage simply iterates through the input stream symbol-by-symbol, outputting the prefix code from the tree t for each input symbol encountered.
The output format from the compressor must also have some mechanism for storing the symbol table, so that the decompressor can perform the compressor’s final stage in reverse. Since the symbols occur only on the tree’s external nodes, their encodings have the unique prefix property: none their codes is the result of another symbol’s code appended with extra bits. The unique prefix property ensures that the decompressor can always decode successive symbols without ambiguity by simply recognizing each compressed symbol one by one, even though they are encoded with varying lengths. The decompressor thus operates by making a single run over the compressed data, performing a lookup on each symbol to translate back to its uncompressed form.
2.3 Caveats and implementation details

Generally speaking, the collection T is best implemented as a priority queue. After step 7 has completed, the tree should generally be converted to a direct look-up array. Beyond these simple observations, implementation of the basic Huffman coding algorithm is fairly trivial and follows directly from the supplied pseudo-code.
2.4 Real-world optimizations and extensions

We have a large number of degrees of freedom induced by step 7. One of the most common optimizations is to more carefully choose which children are assigned a 0 and which are assigned a 1. This allows for compact encoding methods in outputting the lookup table, thereby reducing the total output size.

The above algorithm was invented and finalized many decades ago; however active research is still being pursued in the area of dynamic encoding. The algorithm described is actually known as static Huffman coding. More flexible schemes can be used which involve modifying the symbol frequencies during the encoding phase, to adapt to a changing data stream. It should be obvious to anyone that having a single set of symbol frequencies for an entire input data stream isn’t necessarily the optimal solution… dynamic encodings serve to explicitly address this issue.
2.5 Best and worst case performance

Suppose that n is the size of our input stream, and that m is the number of symbols in the alphabet for that stream. Then the initial frequency analysis scan clearly requires ((n) operations. The dominant operations in the loop over steps 2-6 come from the priority queue insertions and removals. Efficient implementations of a priority queue allow these operations to be performed in O(log m) worst case and ((1) best case operations. A conversion of the tree to an array (after step 7) can be performed in ((m log m) operations. Thus the analysis stage of the algorithm requires O(n+m log m) worst case and ((n) best case operations. In practice we worry mostly about compression of data for which the size of the input is orders of magnitude larger than the size of the alphabet. For all practical purposes, the analysis stage therefore runs in ((n) time.
If a look-up array is used after step 7, then the actual encoding stage trivially requires ((n) time, yielding a final ((n) time for the compression algorithm as a whole.

The decompression algorithm trivially requires ((n) time as well.
As far as compression ratios go, the best compression is achieved with an input consisting of all the same symbol, repeated n times. In this case the symbol is encoded with a single bit, and so the output encoding requires n bits. The worst compression occurs when the symbol frequencies form a Fibonacci sequence. In such a situation, the prefix code tree ends up completely lopsided, and so the ith most-likely symbol requires i bits for its output representation. Using Fi to represent the ith Fibonacci number, the ith most-likely symbol occurs Fi times in the input, and therefore the total worst-case size of the output stream must be:

[image: image1.wmf]5

)

1

(

)

1

(

2

2

1

1

-

+

+

-

=

+

+

=

å

f

f

f

f

n

n

n

i

i

n

n

iF

This expansion follows from the fact that
[image: image2.wmf]ú

û

ù

ê

ë

é

=

5

i

i

F

f

, where
[image: image3.wmf])

5

1

(

2

1

+

=

f

, the golden ratio. The dominant term in the expanded summation is easily seen to be
[image: image4.wmf])

(

n

O

f

, which gives us some feel for the worst-case compression performance.
2.6 Theoretical significance
The Huffman scheme for generating prefix codes is in fact the optimal prefix encoding scheme. Prefix codes had been studied for many years, but Huffman coding was the first scheme which was provably optimal. Its optimality follows from the fact that the prefix code tree is full, and that the least-frequently occurring symbols are (by constructive definition) at the lowest points on the tree.
The basic static scheme described here is also the theoretical foundation for countless dynamic encoding approaches that calculate the prefix coding on the fly. Some of these even manage to not store the prefix code table at all in the output… instead it’s inferred from the output and rebuilt dynamically during decompression.
3 Description of arithmetic coding

3.1 Overview

Huffman codes were a major breakthrough in their time, but they have a flaw: they always encode an output symbol using an integral number of bits. At first glance this may seem obvious and unavoidable, but arithmetic coding showed that this was not the case.
The basic premise of arithmetic coding is to convert the input data stream into a single real number as output. The real number is then represented in binary with the minimum number of digits to ensure it can be accurately decompressed back to the original data.
3.2 Precise algorithm description

As with Huffman coding, the encoding process starts by counting the occurrences of every input symbol in our input stream. Then we divide the unit segment [0,1] into m separate areas, one for each of the m symbols in our input alphabet. Each symbol receives a specific contiguous sub-range of the unit segment, in direct proportion to its occurrence count, such that the entire unit segment is covered exactly once with no overlap between symbols.
Suppose
[image: image5.wmf]}

|

{

alphabet

input

the

in

is

x

x

X

i

i

=

, as an ordered set of size m. Let us define n as the total size of our input stream and p(i) as the probability of symbol xi in the input (number of occurrences of the symbol xi, divided by n).

We're defining critical points
[image: image6.wmf])

(

)

1

(

)

(

i

p

i

c

i

c

+

-

=

 to divide the unit segment into regions, where c(0)=0 and c(m)=1.
The encoding process can then be described as follows:

1. Initialize lo := 0 and hi := 1.
2. Read one symbol from the input, as xi.

3. Set lo := lo + (hi-lo) c(i-1)

4. Set hi := lo + (hi-lo) c(i)

5. Repeat from step 2, until we exhaust the input stream

6. Output a floating-point binary encoding of any number between lo and hi, so long is it possesses the minimum number of bits required to indicate it’s within that range.
The decoding process is similar. It performs the above operations in reverse:
1. Take r as the floating-point binary number between 0 and 1 that resulted from a compression output.
2. Determine the minimum value i satisfying c(i) >= r.

3. Output the symbol xi.
4. Set r := (r – c(i)) / (c(i+1) – c(i))
5. Repeat from step 2, until we exhaust the precision of the original r’s bits.
As with Huffman encoding, the pseudo-code above implies that we must include extra data in the compressor’s output. The decompressor specifically needs the values c(i), in order to translate back to the original symbols.
3.3 Caveats and implementation details

It should be evident from the pseudo-code that the algorithm as described requires arbitrary-precision floafating point operations. This quickly becomes extremely inefficient; it’s silly to manipulate a 10-million digit floating point number when compressing 10 megabytes of data!
Fortunately, we don’t need to. Though its concepts are based heavily in real numbers, all practical implementations of arithmetic encoding use some math tricks to implement the algorithm using only integer arithmetic and shift operations.

Full implementations make use of a sliding window of bits over the conceptual arbitrary-precision binary number, shifting bits in and out as necessary. This complicates the implementation of the compressor a bit, and complicates the decompressor tremendously. But this complication pays off, since fixed-precision integer arithmetic is orders of magnitude faster than arbitrary-precision floating-point arithmetic.

The critical point values c(i) are best kept in a flat array, both for the compressor and the decompressor. The compressor stores them indexed on the value i. The decompressor stores them in a reverse-index format, with values of i stored in an array indexed by c(i) values (which are encoded as small integers in the integer-math version).

An important detail glossed over in the pseudo-code is that of marking the end of file. In order for the decompression routine to terminate, it must have some way of determining the condition described in its step 5. There are generally two approaches to this. One is to encode a special end-of-file marker into the compression format. The other is to simply include a bit count in the compression format. Depending on the application (data transmission versus data storage), each method has its uses.
3.4 Real-world optimizations and extensions

Just as the static Huffman coding could be improved by allowing symbol frequencies to change dynamically, so can arithmetic encoding. There are numerous adaptations of arithmetic coding that allow for this. Arithmetic coding is considerably newer than Huffman coding, so there is even more research into dynamic arithmetic coding schemes. All involve modifying the symbol frequencies during the encoding phase, to adapt to a changing data stream. The fanciest methods actually eliminate explicit transmission of symbol frequencies altogether… instead, the decompressor infers them based on the compressed data stream alone.
3.5 Best and worst case performance

Suppose that n is the size of our input stream. We will again ignore m, the number of symbols in the input alphabet. Note that this allows us to ignore the time required to write/read the symbol frequency table, as this gets lost in the limit.
Clearly the initial symbol frequency determination again requires ((n) operations. The compression loop in steps 2-5 then requires ((n) operations as well. Finally, step 6 of compression involves ((0) best case or O(log n) worst case operations. Thus the compression algorithm as a whole requires ((n) operations. Note that an “operation” here includes a single operation on an arbitrary-precision number on a theoretical arbitrary-precision computer.
If the c(i) values are properly indexed with an efficient data structure, step 2 of the decompression algorithm can be performed in O(1) operations. This means that every step of the decompression algorithm takes constant time, resulting in ((n) performance for decompression.
Now on to compression ratios. In the ideal case, the input consists of a single symbol repeated n times. The ideal compressed data is then actually zero(!) bits to represent the output of the compressor, along with log n bits to indicate the desired length of the original data. So for optimal input, arithmetic coding is capable of compressing n input symbols down to log n output bits!
In the worst case, the input is evenly randomly distributed. In this case the compressed stream is essentially a fixed-size encoding of the input data, resulting in n log m bits. The overhead of log n bits to encode the stream length must be included, for a grand total of
n log m + log n bits in the worst case.
3.6 Theoretical significance
The arithmetic encoding scheme is even more optimal than the fabled “optimal” Huffman coding! Its improvements stem from the fact that it can actually utilize fractions of bits per input symbol.

It’s only recently that arithmetic coding has become practical, due to advances in modern hardware. There is a large amount of interest today in various adaptive frequency scheme add-ons to the basic static algorithm, since arithmetic encoding’s accomplishments were a holy grail to decades of researchers.
4 Comparison of the two algorithms

4.1 Discussion of real-world relative pros and cons

4.1.1 Time performance

Though both algorithms have similar best/worst runtime characteristics when expressed in Big-O notation, the actual runtimes can vary quite a bit. Arithmetic coding requires many more actual operations per iteration than Huffman. In fact, the fully floating-point pseudo-code supplied above will actually require O(n) atomic operations for each arbitrary-precision floating-point operation.
Thus the naïve arithmetic algorithm is an order of magnitude slower than Huffman. However, even the optimized integer arithmetic version generally performs some constant factor slower than Huffman coding.
4.1.2 Space requirements

Both algorithms stream their compressors and decompressors. Both algorithms require O(m log m) storage for frequency data during compression. Time-efficient implementations of both algorithms require O(m) storage during decompression.
Since the cardinality of the input alphabet is generally small, all of the above storage requirements are quite minimal in practice. They’re essentially ignorable in all but the most severely constrained applications.
4.1.3 Relative ease/difficulty of implementations

Huffman coding is heavily used everywhere for a very good reason: it’s easy! Huffman coding is extremely straightforward to implement, and requires little processing power. Both the compressor and decompressor can be implemented in relatively few lines of code, and can easily be adapted to the simplest of processors. Additionally, the simplicity of the algorithm aides quality assurance and, in the event of a problem, debugging. The decompressor in particular is completely trivial, requiring little in the way of data structures.
Arithmetic coding on the other hand, is much more complicated. The pseudo-code supplied above is “magical” enough… but consider what happens when it’s further obfuscated by integer arithmetic! Even after a programmer finishes implementation, the debugging of an arithmetic coding program gone wrong is an intimidating proposition. The state of an arithmetic compressor and decompressor are near-gibberish to a human.
4.2 Survey of actual compression ratios for sample data

To collect the following data, I took simple implementations of both algorithms and applied them to obvious sample data. While certainly not an exhaustive survey, it does give some simple real-world data.

Each compressed file size is expressed as a percentage of the uncompressed file size.
	Description
	Original Size
	Huffman
	Arithmetic

	Large file of constant bits
A file filled with binary 0s.
	1024 KB
	0.025%
	0.041%

	Randomly generated binary data
Created with a C program.
	1024 KB
	100.024%
	100.480%

	Block of English text
Shakespeare’s Romeo and Juliet.
	156 KB
	60.11%
	59.74%

	Programming source code
Large java source file.
	63 KB
	57.30%
	56.90%

	Executable machine code
A Linux executable file.
	2910 KB
	69.83%
	68.95%

It is interesting to note that the arithmetic coder has a better theoretical best case compression ratio, but in practice (for these particular implementations) this is not realized. Indeed, it seems that the Huffman implementation out-performs the arithmetic one for both degenerate cases. However, it’s by only a slim margin, and such cases are usually the exception and not the rule.
For English text, programming source code, and executable code, the implementations performed exactly how one would naïvely expect: the arithmetic implementation shaves a small (but noticeable) amount off of Huffman’s. This is expected since the arithmetic algorithm really does just still those extra fractional bits that Huffman can’t take advantage of.

The sample files and sample implementations are available on the web at:

http://www.notyou.net/compress

5 Conclusion

5.1 General discussion and review

The development of the arithmetic coding scheme was an important theoretical improvement over the traditional Huffman coding. However, as anecdotally demonstrated by the small number of sample compression factors above, the real-world benefit of the raw algorithm isn’t anything spectacular.

Nonetheless, but algorithms form important bases for more sophisticated work. In particular, the algorithms as presented are known as 0-order… they don’t base any of their symbol frequencies on symbol combinations. For most real-world data, the previous symbol can be a very good predictor of the next symbol. For instance, in C source code a right curly brace “}” is almost always followed by a carriage return.
There are n-order implementations of both algorithms that achieve much better compression by leveraging such statistics. However, such an adaptation is far from trivial and requires considerable programmatic book-keeping skills.
5.2 Current research and future directions

There is an enormous amount of research in compression today. Most of it is directed toward lossy compression, which finds applications in video and sound compression technologies. However, lossless compression will always play a vital role, and indeed most lossy compression algorithms are actually lossless algorithms that just discard a few bits at some point.
An excellent follow-up paper for this one would be to investigate the more sophisticated versions of both Huffman and arithmetic coding algorithms. With dynamic frequency calculations and/or n-order prediction statistics, both algorithms achieve much better compression ratios and are better able to compete with today’s fancier tools.
6 References

 “Arithmetic Coding + Statistical Modeling = Data Compression” by Mark Nelson.
Dr Dobb’s Journal, February, 1991.

“A Mathematical Theory of Communication” by C.E. Shannon.
The Bell Systems Technical Journal, Vol 27, Jul/Oct 1948, pp. 379-423, 623-656
“A Method for the Construction of Minimum-Redundancy Codes” by David Huffman.
Proceedings of the IRE, Vol. 40, No. 10, Oct 1952, pp. 1098-1101
http://www.mathworld.com/

http://datacompression.info/

http://www.nist.gov/dads/

_1113741742.unknown

_1113741929.unknown

_1113753449.unknown

_1113753839.unknown

_1113741814.unknown

_1113741635.unknown

