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Data Leakage Detection
Panagiotis Papadimitriou, Student Member,  IEEE, and  Hector  Garcia-Molina,  Member,  IEEE
Abstract—We study  the following problem:  A data  distributor has  given sensitive data  to a set  of supposedly trusted  agents (third parties). Some  of the data  are leaked  and found in an unauthorized place (e.g., on the web or somebody’s laptop). The distributor must assess the likelihood that the leaked  data came from one or more agents, as opposed to having been independently gathered by other means. We propose data  allocation strategies (across the agents) that improve the probability of identifying leakages. These methods do not rely on alterations of the released data  (e.g.,  watermarks). In some cases, we can also inject “realistic but fake” data  records to further improve our chances of detecting leakage and identifying the guilty party.
Index  Terms—Allocation strategies,  data  leakage, data  privacy, fake records, leakage model.
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1 
INTRODUCTION
N  the  course  of doing  business, sometimes sensitive data must  be handed over to supposedly trusted third parties. For   example,  a  hospital  may   give   patient   records   to researchers who  will  devise   new  treatments.  Similarly,   a company may have partnerships with  other  companies that require  sharing  customer  data.   Another  enterprise  may outsource  its  data   processing, so  data   must   be  given  to various other  companies. We call the owner  of the data  the distributor  and   the  supposedly  trusted  third  parties  the agents. Our  goal is to detect when the distributor’s sensitive data  have  been  leaked by agents,  and  if possible to identify
the  agent  that  leaked  the data.
We  consider applications where  the  original  sensitive data   cannot   be  perturbed.  Perturbation is  a  very  useful  technique  where the  data   are  modified  and  made “less sensitive” before  being  handed to agents.  For example, one can  add   random noise  to  certain   attributes, or  one  can replace  exact values  by ranges [18]. However, in some cases, it is important not to alter the original distributor’s data. For example, if an outsourcer is doing  our payroll, he must  have the  exact  salary   and  customer bank  account numbers. If medical researchers will be treating patients (as opposed to simply  computing statistics), they  may  need  accurate data for the patients.
Traditionally,  leakage   detection   is  handled  by  water-
marking, e.g., a unique code is embedded in each distributed copy.  If that  copy  is  later  discovered in  the  hands of  an unauthorized party, the leaker can be identified. Watermarks can be very  useful  in some cases, but  again,  involve  some modification of the original data.  Furthermore, watermarks can sometimes be destroyed if the data recipient is malicious.
In   this   paper,   we   study  unobtrusive  techniques  for
detecting leakage  of a set of objects or records. Specifically,
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we study the following scenario:  After giving a set of objects to  agents,   the  distributor  discovers some   of  those   same objects  in  an  unauthorized place.  (For  example, the  data may  be found on a website,  or may be obtained through a legal  discovery process.)  At this  point,  the  distributor can assess the likelihood that  the leaked  data  came from one or more  agents,   as  opposed  to  having been  independently gathered by  other  means. Using  an  analogy with  cookies stolen  from  a  cookie  jar, if we  catch  Freddie with  a single cookie, he can argue  that a friend  gave him the cookie. But if we catch  Freddie with  five cookies,  it will be much  harder for him to argue  that his hands were  not in the cookie jar. If the distributor sees “enough evidence” that an agent leaked  data,  he may  stop  doing  business with him, or may  initiate  legal proceedings.
In  this  paper, we  develop a  model   for  assessing  the “guilt” of agents.  We also present algorithms for distribut- ing objects to agents,  in a way that improves our chances  of identifying a leaker.  Finally,  we also consider the option of adding “fake”  objects to the distributed set. Such objects do not  correspond to  real  entities  but  appear realistic  to  the agents.   In   a  sense,   the   fake   objects   act  as   a  type   of watermark  for   the  entire   set,   without  modifying  any individual members. If it turns out that  an agent  was given one   or   more   fake   objects   that   were   leaked,   then   the distributor can be more  confident that  agent  was  guilty.
We start  in Section 2 by introducing our  problem setup
and  the notation we use. In Sections  4 and  5, we present a model for calculating “guilt” probabilities in  cases  of data leakage.  Then, in Sections 6 and  7, we present strategies for data  allocation to agents.  Finally, in Section 8, we evaluate the strategies in different data leakage  scenarios, and  check whether they  indeed help us to identify a leaker.
2 
PROBLEM  SETUP  AND NOTATION
2.1 
Entities and Agents
A  distributor  owns  a  set  T ¼ ft1 ; ... ; tm g of valuable  data objects.  The distributor wants to share  some  of the objects with  a set  of agents  U1 ; U2 ; ... ; Un , but  does  not  wish  the objects be leaked to other third parties. The objects in T could  be  of  any  type  and   size,  e.g.,  they  could   be  tuples in  a relation, or relations in a database.
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An   agent   Ui    receives   a  subset   of  objects   Ri    T , determined either by a sample request or an explicit request:
.
Sample  request Ri  ¼ SAMPLEðT; mi Þ: Any subset of
mi   records from  T can be given  to Ui .
.
Explicit  request Ri  ¼ EXPLICITðT ; condi Þ: Agent Ui
receives  all T objects that  satisfy  condi .
Example. Say that  T contains customer records for a given company A. Company A hires  a marketing agency  U1  to do  an  online  survey of customers.  Since  any  customers will   do   for   the   survey,    U1    requests  a   sample    of
1,000 customer records. At  the  same  time,  company  A
subcontracts  with   agent   U2     to  handle  billing   for   all California customers. Thus, U2  receives  all T  records that satisfy  the condition “state  is California.”
Although we  do  not  discuss it here,  our  model  can  be easily  extended to  requests for  a  sample of  objects  that satisfy  a condition (e.g., an agent  wants any  100 California customer   records).   Also   note   that   we   do   not   concern  ourselves with  the  randomness of a  sample. (We  assume that  if a  random sample is  required, there  are  enough T records so that the to-be-presented object selection  schemes can pick random records from  T .)

2.2 
Guilty  Agents
Suppose that  after  giving  objects  to agents,  the  distributor discovers that a set S     T has leaked.  This means that some third party,  called  the target, has been caught in possession of S. For  example, this  target  may  be displaying S on  its website, or perhaps as part  of a legal discovery process,  the target  turned over  S to the distributor.
Since  the  agents  U1 ; ... ; Un    have  some  of the  data,  it  is
reasonable to suspect them  leaking  the data.  However, the
agents  can argue  that they are innocent, and  that the S data were   obtained  by  the   target   through  other  means.  For example,  say  that   one  of  the  objects  in  S  represents  a customer X.  Perhaps X  is also  a  customer of some  other company, and that company provided the data to the target.  Or perhaps X  can  be  reconstructed from  various publicly available sources on the web.
Our goal is to estimate the likelihood that the leaked data
came   from   the   agents   as   opposed    to  other   sources. Intuitively, the  more   data   in  S,  the  harder  it  is  for  the agents  to argue  they  did  not  leak  anything. Similarly,  the “rarer” the  objects,  the  harder it is to argue  that  the  target obtained them  through other means. Not  only  do we want  to  estimate the  likelihood  the  agents  leaked  data,  but  we would also like to find out if one of them,  in particular, was more  likely  to  be  the  leaker.   For  instance, if  one  of  the S objects was only given to agent  U1 , while  the other  objects were  given  to  all  agents,   we  may  suspect U1    more.   The model  we present next captures this  intuition.
We say an agent  Ui  is guilty and  if it contributes one or
more objects to the target.  We denote the event that agent Ui is guilty  by  Gi   and  the  event  that  agent  Ui   is guilty  for  a given  leaked   set  S  by  Gi jS. Our  next  step  is  to  estimate P rfGi jSg, i.e., the  probability that  agent  Ui  is guilty  given evidence S.

3 
RELATED  WORK
The  guilt  detection approach we  present is related to  the data   provenance  problem   [3]:  tracing   the   lineage   of S  objects  implies   essentially  the  detection  of  the  guilty agents.   Tutorial  [4]  provides  a  good   overview  on   the research conducted in  this  field.  Suggested solutions are domain specific,  such   as  lineage   tracing  for  data   ware-  houses [5], and  assume some prior  knowledge on the way a data   view   is  created  out  of  data   sources.   Our   problem formulation  with   objects  and   sets  is  more   general  and simplifies lineage tracing, since we do not consider any data transformation from  Ri  sets to S.
As far as the data  allocation strategies are concerned, our
work  is mostly  relevant to watermarking that  is used  as a means  of  establishing  original  ownership  of  distributed objects. Watermarks were initially used in images [16], video [8], and audio data [6] whose  digital representation includes considerable redundancy.  Recently,  [1], [17], [10], [7], and other  works  have  also studied marks  insertion to relational data.  Our  approach  and  watermarking are  similar  in  the sense   of  providing   agents   with   some   kind   of  receiver identifying  information.  However,  by  its  very   nature,  a watermark  modifies the  item  being   watermarked.  If  the object  to  be  watermarked  cannot   be  modified,   then   a watermark cannot  be inserted. In such  cases, methods that attach watermarks to the distributed data are not applicable.
Finally,  there  are  also  lots  of other  works  on  mechan-
isms  that  allow  only  authorized users  to  access  sensitive data   through  access   control   policies   [9],   [2].  Such   ap- proaches prevent in  some  sense  data  leakage  by  sharing information  only   with   trusted   parties.  However,  these policies   are   restrictive and   may   make   it  impossible  to satisfy  agents’  requests.
4 
AGENT  GUILT MODEL
To  compute this  P rfGi jSg,  we  need  an  estimate for  the probability that  values  in S can be “guessed” by the target.  For instance, say that some of the objects in S are e-mails  of individuals.  We  can  conduct  an  experiment  and   ask  a person with  approximately the  expertise and  resources of the target  to find  the e-mail of, say, 100 individuals. If this person can  find,  say,  90  e-mails,  then  we  can  reasonably guess  that  the  probability of finding one  e-mail  is 0.9. On the  other hand, if the  objects in question are  bank  account numbers, the person may  only discover, say, 20, leading to an estimate of 0.2. We call this  estimate pt , the probability that  object t can be guessed by the target.
Probability pt    is  analogous to  the  probabilities used  in designing fault-tolerant systems. That  is, to  estimate  how likely  it is that  a system will  be operational  throughout a given   period,  we  need   the  probabilities  that   individual components will or will not fail. A component failure  in our case is the event  that  the target guesses an object of S. The component failure  is used  to  compute the  overall  system reliability,  while   we  use  the  probability  of  guessing  to identify agents  that have  leaked  information. The  compo- nent  failure  probabilities are  estimated based   on  experi-  ments, just as we propose to estimate the pt s. Similarly,  the component probabilities are usually conservative estimates,
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rather than  exact numbers. For example, say that  we use a component failure  probability that  is higher than the actual  probability, and  we design our system to provide a desired high  level of reliability. Then  we will know  that  the actual  system will have at least that level of reliability, but possibly higher. In the same  way,  if we use pt s that  are higher than  the true  values,  we will know that  the agents  will be guilty with  at least the computed probabilities.
To simplify  the formulas that we present in the rest of the paper, we assume that all T objects have the same pt , which  we call p. Our equations can be easily generalized to diverse pt s though they  become  cumbersome to display.
Next,  we make  two  assumptions regarding the relation-
ship  among the  various leakage  events.  The  first  assump- tion simply  states that an agent’s decision  to leak an object is not  related to  other  objects.  In  [14],  we  study a  scenario  where the  actions  for different  objects  are  related, and  we study  how   our   results   are   impacted  by   the   different independence assumptions.

Similarly,   we   find   that   agent   U1      leaked   t2     to   S   with probability 1    p since he is the only  agent  that  has t2 .

Given  these  values,  the  probability that  agent  U1   is  not
guilty,  namely that  U1   did  not leak either  object, is
P rfG 1 jSg ¼ ð1     ð1     pÞ=2Þ  ð1     ð1     pÞÞ;
ð1Þ
and  the probability that  U1   is guilty is
P rfG1 jSg ¼ 1    P rfG 1 g:
ð2Þ
Note  that if Assumption 2 did  not hold,  our analysis would be more  complex because  we would need  to consider joint events,  e.g., the target  guesses t1 , and  at the same  time, one or two agents  leak the value.  In our simplified analysis, we say  that   an  agent   is  not  guilty  when the  object  can  be guessed, regardless of whether the agent  leaked  the  value. Since we are “not counting” instances when an agent  leaks information,   the   simplified  analysis  yields   conservative values (smaller  probabilities).
In  the  general case  (with  our  assumptions), to find  the
Assumption 1. For all t; t0  2 S such that t ¼ t0 , the provenance

of t is independent of the provenance of t0 .

probability that  an agent Ui

is guilty  given  a set S, first, we
The  term   “provenance” in  this  assumption  statement refers  to the  source  of a value  t that  appears in the  leaked  set. The source  can be any of the agents who  have  t in their sets or the target  itself (guessing).
To  simplify   our   formulas,  the   following   assumption
states  that  joint events  have  a negligible probability. As we argue  in the example below,  this assumption gives us more conservative  estimates  for  the  guilt   of  agents,  which   is

compute the probability that  he leaks a single  object t to S.
To compute this, we define the set of agents  Vt  ¼ fUi jt 2 Ri g that have t in their data  sets. Then, using Assumption 2 and known probability p, we have  the following:
P rfsome agent leaked t to Sg ¼ 1    p:
ð3Þ
Assuming that  all agents  that  belong  to Vt   can  leak  t  to  S
with  equal  probability and  using  Assumption 2, we obtain
  1 p
consistent with  our  goals.
Assumption 2. An  object t 2 S  can only be obtained by  the

P rfUi  leaked t to Sg ¼ 

jVt j ;    if Ui  2 Vt ;
0;
otherwise:

ð4Þ
target in one of the two ways as follows:

.
A single agent Ui  leaked t from its own Ri  set.

.
The target guessed (or obtained through other means) t

Given  that agent  Ui  is guilty  if he leaks at least one value
to  S,  with   Assumption 1  and   (4),  we  can  compute  the probability P rfGi jSg that  agent  Ui  is guilty:
without the help of any of the n agents.
In other words, for all t 2 S, the event that the target guesses t and the events that agent Ui   (i ¼ 1; ... ; n) leaks  object t are disjoint.

P rfGi jSg ¼ 1       Y
t2S\Ri
5 
GUILT MODEL ANALYSIS

1   p 
1    
:
ð5Þ
jVt j
Before we present the general formula for computing the probability P rfGi jSg that an agent Ui  is guilty, we provide a simple   example. Assume  that   the  distributor  set  T ,  the agent  sets Rs, and  the target  set S are:
T ¼ ft1 ; t2 ; t3 g; R1   ¼ ft1 ; t2 g; R2   ¼ ft1 ; t3 g; S ¼ ft1 ; t2 ; t3 g:

In this  case, all three  of the  distributor’s objects have been leaked  and  appear in S. Let us first consider how the target  may  have   obtained  object  t1 ,  which   was  given   to  both agents.  From  Assumption 2, the target either  guessed t1  or one of U1   or U2   leaked  it. We know that  the  probability of the former  event  is p, so assuming that probability that each of  the  two   agents   leaked   t1    is  the  same,   we  have   the following cases:
.
the target  guessed t1  with  probability p,

.
agent  U1    leaked  t1    to  S  with  probability ð1   pÞ=2,
and
.
agent  U2   leaked  t1  to S with  probability ð1   pÞ=2.

In order  to see how  our  model  parameters interact and to check   if  the   interactions  match    our   intuition,  in   this section,  we  study two  simple  scenarios. In  each  scenario, we  have   a  target   that   has  obtained all  the  distributor’s objects,  i.e., T ¼ S.
5.1 
Impact of Probability p

In our  first  scenario,  T contains 16 objects:  all of them  are given  to  agent   U1    and   only  eight  are  given  to  a  second  agent   U2 .  We  calculate  the   probabilities P rfG1 jSg  and P rfG2 jSg for p in the range  [0, 1] and  we present the results in Fig. 1a. The dashed line  shows  P rfG1 jSg and  the  solid line shows  P rfG2 jSg.
As p approaches 0, it becomes  more  and  more  unlikely
that the target  guessed all 16 values.  Each agent  has enough of the  leaked  data  that  its  individual guilt  approaches 1. However, as p increases in value,  the probability that  U2   is guilty  decreases significantly: all of U2 ’s eight  objects were also given  to U1 , so it gets harder to blame  U2  for the leaks.
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Fig.  1.  Guilt probability  as  a  function  of the  guessing probability  p (a)  and  the  overlap  between S  and  R2     (b)-(d).  In  all scenarios, it holds  that
R1   \ S ¼ S and  jSj ¼ 16. (a) jR2  \Sj  ¼ 0:5, (b) p ¼ 0:2, (c) p ¼ 0:5, and  (d) p ¼ 0:9.
On the other  hand, U2 ’s probability of guilt remains close to
1 as p increases, since  U1   has  eight  objects  not  seen  by the other  agent.  At  the  extreme, as  p approaches 1, it  is  very
possible  that  the target  guessed all 16 values,  so the agent’s probability of guilt  goes to 0.

5.2 
Impact of Overlap between Ri   and S
In this section,  we again  study two agents,  one receiving all the  T ¼ S  data   and   the  second   one  receiving a  varying fraction  of the data. Fig. 1b shows  the probability of guilt for both  agents,   as  a  function of  the  fraction  of  the  objects owned by U2 , i.e., as a function of jR2   \ Sj=jSj. In this case, p has  a low  value  of 0.2, and  U1   continues to  have  all  16S objects. Note that in our previous scenario,  U2  has 50 percent of the S objects.
We see  that  when objects  are  rare  (p ¼ 0:2), it does  not take many  leaked  objects before we can say that U2  is guilty  with  high  confidence. This result  matches our intuition: an agent   that   owns   even   a  small   number  of  incriminating objects is clearly  suspicious.
Figs. 1c and 1d show the same scenario,  except for values
of  p equal  to  0.5 and  0.9. We  see  clearly  that  the  rate  of increase   of  the  guilt  probability decreases as  p  increases. This observation again  matches our intuition: As the objects become  easier  to guess,  it takes more  and more  evidence of leakage  (more  leaked  objects  owned  by U2 ) before  we  can have  high  confidence that  U2   is guilty.
In [14], we study an additional scenario  that  shows how
the  sharing of S objects  by agents  affects  the  probabilities that  they  are  guilty.  The  scenario  conclusion matches our intuition: with  more  agents  holding the  replicated leaked  data,  it is harder to lay the blame  on any  one agent.
6 
DATA ALLOCATION  PROBLEM
The main  focus of this paper is the data  allocation problem: how can the distributor “intelligently” give data to agents  in order  to improve the chances  of detecting a guilty  agent?  As illustrated in Fig. 2, there  are four instances of this problem we address, depending on the type  of data  requests made by agents  and  whether “fake objects”  are allowed.
The  two  types  of requests we  handle were  defined  in
Section   2:  sample  and   explicit.   Fake  objects  are  objects generated by the distributor that are not in set T . The objects are designed to look like real objects, and  are distributed to agents   together with   T  objects,  in  order  to  increase   the chances  of detecting agents  that  leak data.  We discuss fake objects in more  detail  in Section 6.1.


As  shown  in  Fig.  2,  we  represent  our   four  problem instances with  the  names EF , EF , SF , and  SF , where E stands for explicit requests, S for sample requests, F for the use of fake objects, and  F for the case where fake objects are not allowed.
Note  that,  for simplicity, we are assuming that  in the E
problem instances, all agents  make  explicit  requests, while in  the  S  instances, all agents  make  sample  requests. Our results can be extended to handle mixed cases,  with  some explicit and  some sample requests. We provide here a small example to illustrate how  mixed  requests can  be handled, but  then  do  not  elaborate  further. Assume that  we  have two  agents   with  requests  R1   ¼ EXPLICITðT ; cond1 Þ   and
R2   ¼ SAMPLEðT 0 ; 1Þ,    w h e r e   T 0     ¼ EXPLICITðT ; cond2 Þ.
Further, say that  cond1   is “state  ¼ CA” (objects have  a state
field). If agent  U2  has the same  condition cond2   ¼ cond1 , we can create an equivalent problem with sample data requests
on set T 0 . That is, our problem will be how  to distribute the CA  objects   to  two   agents,   with   R1   ¼ SAMPLEðT 0 ; jT 0 jÞ  and   R2   ¼ SAMPLEðT 0 ; 1Þ.   If  instead  U2      uses   condition  “state  ¼ NY,” we can solve two different problems for sets T 0           and   T     T 0 .  In   each   problem,   we   will   have   only one   agent.   Finally,   if  the   conditions  partially  overlap,  R1   \ T 0     ¼ ;,   but   R1   ¼ T 0 ,  we   can   solve   three   different problems for sets R1    T 0 , R1   \ T 0 , and  T 0         R1 .

6.1 
Fake Objects
The  distributor may   be  able  to  add   fake  objects  to  the distributed data  in  order   to  improve his  effectiveness in detecting guilty  agents.  However, fake objects may  impact  the correctness of what  agents  do, so they  may  not always be allowable.
The idea of perturbing data  to detect  leakage  is not new,
e.g.,  [1].  However, in  most   cases,  individual  objects  are perturbed,  e.g.,  by  adding  random  noise   to   sensitive  salaries, or  adding a watermark to an  image.  In our  case, we  are  perturbing the  set of distributor  objects  by  adding
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Fig. 2. Leakage problem instances.
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fake elements. In some  applications, fake objects may cause fewer problems that  perturbing real  objects.  For  example, say that the distributed data objects are medical records and the  agents  are  hospitals. In this  case, even small  modifica- tions  to the  records of actual  patients may  be undesirable. However, the addition of some fake medical records may be acceptable,  since  no  patient  matches  these   records,  and hence,  no one will ever  be treated based  on fake records.
Our  use of fake objects is inspired by the use of “trace”
records in  mailing lists.  In  this  case,  company A  sells  to company B a  mailing list  to  be  used   once  (e.g.,  to  send  advertisements).  Company  A  adds   trace   records  that contain  addresses owned by company A.  Thus,  each  time company  B  uses   the  purchased  mailing  list,  A  receives copies  of  the  mailing.   These  records are  a  type   of  fake objects that  help  identify improper use of data.
The distributor creates  and  adds fake objects to the data
that he distributes to agents.  We let Fi    Ri  be the subset of fake objects that agent  Ui  receives.  As discussed below,  fake objects  must   be  created  carefully so  that  agents   cannot  distinguish them  from  real objects.
In  many   cases,  the  distributor may  be  limited in  how many fake objects he can create.  For example, objects may contain  e-mail addresses, and  each fake e-mail address may require the creation of an actual inbox (otherwise, the agent  may  discover  that   the  object  is  fake).  The  inboxes   can actually  be   monitored   by  the   distributor:  if  e-mail   is received  from   someone  other   than   the   agent   who   was given the address, it is evident that the address was leaked. Since  creating and  monitoring e-mail  accounts  consumes resources, the distributor may have a limit of fake objects. If there  is a limit,  we denote it by B fake objects.
Similarly,  the  distributor may  want  to limit  the number
of fake  objects  received by each  agent  so as to not  arouse suspicions and  to  not  adversely impact  the  agents’  activ- ities. Thus, we say that the distributor can send  up to bi  fake objects to agent  Ui .

Creation. The creation of fake but real-looking objects is a
nontrivial problem whose  thorough investigation is beyond the scope of this paper. Here, we model  the creation of a fake object for agent  Ui  as a black box function CREATEFAKEOB- JECT ðRi ; Fi ; condi Þ that takes as input the set of all objects Ri , the subset  of fake objects Fi  that  Ui  has received so far, and condi , and  returns a  new  fake  object.  This  function needs  condi   to produce a valid  object that  satisfies  Ui ’s condition. Set Ri  is needed as input so that the created fake object is not only valid but also indistinguishable from other real objects. For example, the creation function of a fake payroll record that  includes an employee rank  and  a salary attribute may take  into  account the  distribution  of  employee ranks,  the distribution of salaries, as well as the correlation between the two attributes. Ensuring that key statistics do not change  by the introduction of fake objects is important if the agents will be  using   such   statistics  in  their   work.   Finally,   function

the Ri  and  Fi  tables, respectively, and  the intersection of the conditions  condi s.
Although we  do  not  deal  with  the  implementation  of CREATEFAKEOBJECT(),  we  note  that  there   are  two  main design  options. The  function  can  either   produce  a  fake object on demand every  time  it is called  or it can return an appropriate object from a pool of objects created in advance.
6.2 
Optimization Problem
The distributor’s data allocation to agents  has one constraint and  one  objective.  The  distributor’s  constraint  is to  satisfy agents’ requests, by  providing  them  with  the  number of objects they  request or with all available objects that  satisfy their conditions. His objective is to be able to detect  an agent who  leaks  any portion of his data.
We consider the constraint as strict. The distributor may
not  deny  serving an  agent  request as in [13] and  may  not provide agents   with   different perturbed  versions  of  the same  objects as in [1]. We consider fake object distribution as the only  possible  constraint relaxation.
Our detection objective is ideal and intractable. Detection
would be assured only if the distributor gave no data object to any  agent  (Mungamuru and  Garcia-Molina [11] discuss that  to  attain   “perfect” privacy and  security, we  have  to sacrifice  utility).   We  use  instead  the  following objective: maximize the chances  of detecting a guilty  agent  that  leaks all his data  objects.
We  now  introduce some  notation to  state  formally  the
distributor’s objective.  Recall that  P rfGj jS ¼ Ri g or simply  P rfGj jRi g is the  probability that  agent  Uj   is  guilty  if the distributor  discovers  a  leaked   table   S   that  contains  all Ri  objects.  We define  the difference functions    ði; jÞ as
 ði; jÞ ¼ P rfGi jRi g P rfGj jRi g    i; j ¼ 1; ... ; n: 
ð6Þ
Note that differences    have nonnegative values:  given that set Ri   contains all the leaked  objects, agent  Ui  is at least as likely  to be guilty  as any  other  agent.  Difference   ði; jÞ  is positive for any agent  Uj , whose  set Rj  does  not contain  all data  of S. It is zero  if Ri    Rj . In this  case, the  distributor will consider both agents  Ui  and  Uj  equally guilty  since they have both received all the leaked  objects. The larger  a    ði; jÞ value  is, the  easier  it is to identify Ui   as the  leaking  agent. Thus, we want  to distribute data  so that      values  are large.
Problem Definition. Let the distributor have data requests from n agents. The distributor  wants to give tables R1 ; ... ; Rn     to agents U1 ; ... ; Un , respectively, so that
.
he satisfies agents’ requests, and
.
he maximizes the guilt probability differences   ði; jÞ
for all i; j ¼ 1; ... ;n and i ¼ j.
Assuming that  the  Ri   sets  satisfy  the  agents’  requests,  we can  express   the  problem as  a  multicriterion  optimization problem:
maximize   ... ;     i; j ; .. . 
i 
j: 
7
over  R1  ;...;Rn
CREATEFAKEOBJECT() has to be aware of the fake objects Fi 
ð 
Þ
added so far, again  to ensure proper statistics.
The  distributor can  also  use  function  CREATEFAKEOB-

If the  optimization problem has  an  optimal solution,  it
means that there exists an allocation D     ¼ fR  ; ... ; R   g such
1
n
JECT() when it wants to send  the same fake object to a set of
agents.  In this case, the function arguments are the union of

that  any  other  feasible  allocation D ¼ fR1 ; ... ; Rn g  yields
 ði; jÞ     ði; jÞ  for  all  i; j.  This  means that  allocation  D 
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allows   the  distributor  to  discern  any  guilty   agent  with higher   confidence  than   any   other   allocation,   since   it maximizes the  probability P rfGi jRi g with  respect to  any other probability P rfGi jRj g with  j ¼ i.
Even if there  is no optimal allocation D   , a multicriterion
problem    h as   Paret o   optimal  a llocations.  If

po  ¼ D
fRpo

The  max-objective yields  the  solution that  guarantees  that the  distributor will  detect  the  guilty  agent  with  a  certain  confidence in the worst  case. Such guarantee may adversely impact the average performance of the distribution.
7 
ALLOCATION  STRATEGIES
1   ; ... ; Rpo g is a Pareto  optimal allocation, it means that
there  is no other  allocation that yields

 ði; jÞ    po ði; jÞ for

In this  section,  we  describe allocation strategies that  solve
all

i; j.  In  other   words,  if  an  allocation  yields      ði; jÞ   

exactly  or  approximately the  scalar  versions of (8) for  the
 po ði; jÞ  for  some  i; j,  then  there   is  some  i0 ; j0   such  that
 ði0 ; j0 Þ    po ði0 ; j0 Þ. The choice among all the Pareto optimal allocations implicitly selects the agent(s) we want to identify.
6.3 
Objective Approximation
We can approximate the objective of (7) with (8) that does not depend on agents’  guilt  probabilities, and  therefore, on p:


different   instances  presented  in   Fig.  2.  We   resort   to
approximate  solutions in  cases  where it  is  inefficient  to solve accurately the optimization problem.
In Section 7.1, we deal  with  problems with  explicit data requests, and  in  Section  7.2, with  problems with  sample data  requests.
The  proofs  of theorems that  are  stated in the  following sections  are available in [14].

maximize
ðover R1 ;...;Rn  Þ

... ; jRi  \ Rj j ; ... 
jRi j

i ¼ j: 
ð8Þ

7.1 
Explicit Data  Requests
In problems of class  EF , the  distributor is not  allowed  to
This  approximation is  valid  if minimizing the  relative  overlap jRi \Rj j   maximizes    ði; jÞ. The intuitive argument for this  approximation is that  the  fewer  leaked objects  set  Rj contains, the less guilty agent Uj  will appear compared to Ui (since  S ¼ Ri ).  The  example  of  Section  5.2  supports our
approximation.  In  Fig.  1,  we   see   that   if  S ¼ R1 ,   the difference P rfG1 jSg  P rfG2 jSg  decreases as  the  relative
overlap jR2  \Sj   increases. Theorem 1 shows  that a solution to

add   fake   objects   to  the   distributed  data.   So,  the   data allocation  is  fully  defined by  the  agents’   data  requests. Therefore, there  is nothing to optimize.
In   EF   problems,  objective   values   are   initialized   by agents’   data   requests. Say,  for  example, that  T ¼ ft1 ; t2 g and  there  are  two  agents  with  explicit  data  requests such that   R1   ¼ ft1 ; t2 g  and   R2   ¼ ft1 g.  The  value   of  the  sum- objective  is in this  case
jSj
(7) yields  the  solution to (8) if each  T object is allocated to

2 
2
X
X jRi  \ Rj j ¼    þ


¼ 1:5:
the same  number of agents,  regardless of who  these agents  are. The proof  of the theorem is in [14].

Theorem 1. If a distribution  D ¼ fR1 ; ... ; Rn g  that  satisfies agents’ requests minimizes jRi \Rj j    and jVt j ¼ jVt j for all t; t0  2

i¼1 jRi j j¼1
2
1
j¼i
The distributor cannot  remove or alter  the R1   or R2   data to decrease   the   overlap   R1   \ R2 .  However,   say   that   the
jRi j
0
T , then D maximizes    ði; jÞ.

distributor  can  create   one  fake  object  (B ¼

1)  and   both
The approximate optimization problem has still multiple criteria  and  it can yield either  an optimal or multiple Pareto  optimal solutions. Pareto  optimal  solutions let us  detect  a guilty  agent  Ui   with  high confidence, at the  expense of an inability  to detect  some other  guilty  agent  or agents.  Since the  distributor has  no  a priori  information for  the  agents’ intention to  leak their  data,  he  has  no  reason  to  bias  the object  allocation against a particular agent.  Therefore, we can  scalarize the  problem objective  by assigning the  same weights to  all  vector  objectives.  We  present two  different scalar versions of our problem in (9a) and  (9b). In the rest of the paper, we will refer to objective  (9a) as the sum-objective and  to objective  (9b) as the max-objective:


agents  can receive  one fake object (b1  ¼ b2  ¼ 1). In this case,
the distributor can add  one fake object to either  R1   or R2  to increase  the corresponding denominator of the summation term. Assume that the distributor creates a fake object f and he  gives  it to agent  R1 . Agent  U1    has  now  R1   ¼ ft1 ; t2 ;f g and  F1   ¼ ff g and  the value  of the sum-objective decreases
to 1 
1
3 þ 1  ¼ 1:33 < 1:5.
If the  distributor is able  to create  more  fake  objects,  he
could   further    improve  the   objective.   We   present   in Algorithms 1 and  2 a strategy for randomly allocating fake objects. Algorithm 1 is a general “driver” that  will be used  by  other  strategies, while  Algorithm 2  actually  performs the   random  selection.   We   denote   the   combination  of Algorithm 1 with  2 as e-random. We use  e-random as our
maximize
ðover R1 ;...;Rn  Þ
maximize

n 
n
X
jR  \ R j;
ð9aÞ
i   1 jRi j j¼1
j¼i
max jRi  \ Rj j :
ð9bÞ

baseline   in  our   comparisons  with   other   algorithms   for explicit  data  requests.
Algorithm 1. Allocation for Explicit  Data  Requests (EF )

Input: R1 ; ... ; Rn , cond1 ; ... ; condn , b1 ; ... ; bn , B
ðover R1 ;...;Rn  Þ

i;j¼1;...;n j¼i

jRi j

Output: R1 ; ... ; Rn , F1 ; ... ; Fn
Both   scalar   optimization  problems  yield   the  optimal solution of  the  problem of  (8), if  such  solution  exists.  If there  is no global optimal solution, the sum-objective yields the  Pareto  optimal solution that  allows  the  distributor to detect   the   guilty   agent,   on   average  (over   all   different agents),  with  higher confidence than  any other  distribution.

1:  R
;
. Agents  that  can receive  fake objects
2:  for i ¼ 1; ... ;n do
3:
if bi  > 0 then
4:
R
R [ fig
5:
Fi 
;
6:  while B > 0 do
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7:
i 
SELECTAGENTðR; R1 ; ... ; Rn Þ
8:
f
CREATEFAKEOBJECTðRi ; Fi ; condi Þ

7.2 
Sample Data  Requests
With sample data requests, each agent Ui  may receive any T

9:
Ri 
Ri  [ ff g

subset  out  of ðjT jÞ different ones.  Hence,  there  are Qn

ðjT jÞ
mi 
i¼1  mi
10:
Fi 
Fi  [ ff g
11:
bi
bi    1

12:
if bi  ¼ 0then
13:
R 
RnfRi g

14:
B 
B     1

Algorithm 2. Agent  Selection  for e-random
1:  function SELECTAGENT  (R; R1 ; ... ; Rn )

2:
i 
select at random an agent  from  R
3:  return i
In lines 1-5, Algorithm 1 finds  agents  that  are eligible to receiving fake objects in OðnÞ time.  Then,  in the main loop in lines 6-14, the algorithm creates  one fake object in every iteration and  allocates  it to random agent.  The  main  loop takes OðBÞ time.  Hence,  the running time  of the algorithm
is Oðn þ BÞ.

different  object  allocations.  In  every   allocation, the  dis-
tributor can permute T objects and  keep  the  same chances  of  guilty   agent   detection.  The   reason   is   that   the   guilt probability depends only on which  agents have received the leaked  objects and  not on the identity of the leaked  objects. Therefore, from  the distributor’s perspective, there  are
Qn 
jT j
i¼1 ðmi Þ
jT j!
different allocations. The  distributor’s problem is  to  pick one  out   so  that   he  optimizes  his  objective.   In  [14],  we formulate the problem as a nonconvex QIP that is NP-hard to solve [15].

Note   that  the  distributor can  increase   the  number  of
possible  allocations by adding fake objects (and increasing
jT j) but the problem is essentially the same. So, in the rest of
If B     Pn

bi , the algorithm minimizes every term of the

this  section,  we  will  only  deal  with  problems of class  SF ,

objective  summation by adding the maximum number bi  of fake  objects  to every  set  Ri , yielding the  optimal  solution.

but  our  algorithms are applicable to SF  problems as well.
Otherwise,  if  B < Pn
¼

bi    (as   in   our   example   where

7.2.1   Random
An  object allocation that  satisfies  requests and  ignores  the
B ¼ 1 < b1  þ b2  ¼ 2), the  algorithm just  selects  at  random
the  agents  that  are  provided with  fake  objects.  We  return


distributor’s objective  is to give  each  agent  Ui


a randomly
back  to  our   example  and   see  how   the  objective  would change  if the distributor adds fake object f to R2  instead of R1 . In this case, the sum-objective would be 1 þ 1  ¼ 1 < 1:33.


selected  subset  of T of size mi . We denote this algorithm by
s-random and we use it as our baseline. We present s-random
in two  parts:  Algorithm 4 is a general allocation algorithm that  is used  by other  algorithms in this section. In line 6 of
2 
2
The reason  why we got a greater improvement is that the
addition of a fake  object  to  R2    has  greater impact  on  the corresponding summation terms,  since
1
1
1
1
1
1
<
¼   :

Algorithm 4,  there   is  a  call  to  function  SELECTOBJECT() whose  implementation differentiates algorithms that rely on Algorithm 4. Algorithm 5 shows function SELECTOBJECT() for s-random.
jR1 j     jR1 jþ 1 ¼ 6


jR2 j


jR2 jþ 1
2


Algorithm 4. Allocation for Sample  Data  Requests (SF )

The  left-hand side  of the  inequality corresponds to  the objective  improvement after the addition of a fake object to R1      and   the   right-hand  side   to  R2 .  We   can   use   this observation  to   improve  Algorithm  1   with   the   use   of procedure SELECTAGENT() of Algorithm 3. We denote the combination of Algorithms 1 and  3 by e-optimal.
Algorithm 3. Agent  Selection  for e-optimal
1:  function SELECTAGENT  (R; R1 ; ... ; Rn )


Input: m1 ; ... ; mn , jT j
. Assuming mi    jT j

Output: R1 ; ... ; Rn
1:  a 
0jT j
. a½k :number of agents  who have received object tk
2:  R1 
;; ... ; Rn 
;
3:  remaining
Pn     mi
¼
4:  while remaining > 0 do
5:
for all i ¼ 1; ... ;n : jRi j < mi  do
6:
k 
SELECTOBJECTði; Ri Þ
. May also use
2:
i 
argmax
i0 :Ri0 2R
3: return i


    1
jRi0 j



1
jRi0 jþ 1

  X
jRi0   \ Rj j
j

additional parameters
7:
Ri 
Ri  [ ftk g

8:
a½k 
a½k þ 1

9:
remaining
remaining    1

Algorithm 3 makes a greedy choice by selecting  the agent  that   will   yield   the   greatest   improvement  in   the   sum- objective.  The  cost  of this  greedy choice  is  Oðn2 Þ  in every


Algorithm 5. Object Selection  for s-random
1:  function SELECTOBJECTði; Ri Þ
2:
k 
select at random an element from  set
iteration.  The   overall   running  time   of   e-optimal   is
Oðn þ n2 BÞ ¼ Oðn2 BÞ.  Theorem 2 shows   that  this  greedy

fk0
3:

j tk0

2 Ri g
k
approach finds  an optimal distribution with  respect to both

return


T j that shows  the
optimization objectives  defined in (9).

Theorem 2. Algorithm e-optimal  yields an object allocation that minimizes both sum- and max-objective in problem instances of class EF .


In s-random, we introduce vector a 2 Nj
object sharing distribution.  In particular, element a½k   shows the number of agents  who  receive  object tk .

Algorithm  s-random  allocates   objects   to  agents   in   a
round-robin fashion.  After the initialization of vectors  d and
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a in lines 1 and  2 of Algorithm 4, the main  loop in lines 4-9 is executed while there are still data  objects (remaining > 0) to  be  allocated  to  agents.   In  each  iteration of  this  loop (lines  5-9), the  algorithm uses function SELECTOBJECT() to find  a  random object  to  allocate   to  agent   Ui .  This  loop iterates over all agents who have not received the number of data  objects they have  requested.

the sum of overlaps, i.e., Pnj   1  jRi  \ Rj j. If requests  are  all
of the same size (m 
j¼i    ), then s-overlap minimizes the sum-objective.

To illustrate that  s-overlap does  not  minimize the  sum- objective,  assume that  set T has  four  objects  and there  are four agents  requesting samples with  sizes m1   ¼ m2   ¼ 2 and
The  running time  of the  algorithm is Oð  Pn

mi Þ  and

m3   ¼ m4

¼ 1. A possible  data  allocation from  s-overlap is
depends  on  the   running  time       of  the   object  selection
function SELECTOBJECT(). In case of random selection,  we can have    ¼ Oð1Þ by keeping in memory a set fk0  j tk0   2 Ri g for each agent  Ui .

Algorithm s-random may  yield  a  poor  data  allocation. Say, for example, that the distributor set T  has three  objects
and  there  are three  agents  who request one object each. It is


R1   ¼ ft1 ; t2 g;
R2   ¼ ft3 ; t4 g;
R3   ¼ ft1 g;
R4   ¼ ft3 g:

ð10Þ
Allocation (10) yields:
4
X
jR  \ R j ¼    þ  þ  þ  ¼ 3:
possible   that  s-random provides all  three  agents  with  the same  object.  Such  an  allocation maximizes both  objectives

i   1 jRi j j¼1
j¼i

j
2
2
1
1
(9a) and  (9b) instead of minimizing them.
7.2.2   Overlap  Minimization
In  the   last  example,  the   distributor  can  minimize  both objectives  by allocating distinct sets to all three agents.  Such an  optimal  allocation is  possible, since  agents   request in total  fewer  objects than  the distributor has.
We can achieve  such  an allocation by using Algorithm 4

and   SELECTOBJECT()  of  Algorithm  6.  We   denote   the

With  this  allocation, we see that  if agent  U3   leaks  his data,
we  will  equally suspect agents   U1    and   U3 .  Moreover,  if
agent   U1     leaks   his  data,   we  will  suspect  U3     with  high probability,  since   he   has   half   of  the   leaked   data.   The
situation is similar  for agents  U2   and  U4 .

However, the following object allocation
R1   ¼ ft1 ; t2 g;
R2   ¼ ft1 ; t2 g;
R3   ¼ ft3 g;
R4   ¼ ft4 g  ð11Þ
yields  a sum-objective equal  to 2 þ 2 þ 0 þ 0 ¼ 2 < 3, which
2
2
resulting  algorithm by  s-overlap.  Using   Algorithm 6,  in
each iteration of Algorithm 4, we provide agent  Ui  with an object that has been given  to the smallest number of agents.  So, if agents  ask for fewer  objects than  jT j, Algorithm 6 will return in every iteration an object that no agent  has received so far. Thus, every  agent  will receive  a data  set with  objects that  no other  agent  has.
Algorithm 6. Object Selection  for s-overlap
1:  function SELECTOBJECT (i; Ri ; a)
2:
K 
fk j k ¼ argmin a½k0  g

k0
3:
k 
select at random an element from  set
fk0  j k0  2 K ^ tk0   2 Ri g

4:
return k
The  running time  of Algorithm 6 is Oð1Þ  if we  keep  in memory  the   set  fkjk ¼ argmink0   a½k0  g.  This  set   contains initially   all   indices   f1; ... ; jT jg,  since   a½k  ¼ 0  for   all k ¼ 1; ... ; jT j. After  every  Algorithm 4 main loop  iteration,
we remove from this set the index  of the object that we give to an agent.  After jT j iterations, this set becomes empty and we have  to reset  it again  to f1; ... ; jT jg, since at this  point,  a½k  ¼ 1  for  all  k ¼ 1; ... ; jT j.  The  total   running time   of

shows   that  the  first  allocation is  not  optimal.  With  this
allocation, we will equally suspect agents  U1  and  U2  if either of them  leaks his data.  However, if either  U3  or U4  leaks his data,  we will detect  him with  high  confidence. Hence,  with the second  allocation we have, on average, better  chances  of detecting a guilty  agent.
7.2.3   Approximate  Sum-Objective Minimization
The  last  example showed that  we  can  minimize the  sum- objective,  and  therefore, increase  the chances  of detecting a guilty  agent,  on  average, by  providing  agents   who  have small  requests with  the  objects  shared among the  fewest agents.   This  way,   we  improve our  chances   of  detecting guilty agents  with  small  data  requests, at  the  expense of reducing our chances  of detecting guilty  agents  with  large data  requests. However, this  expense is  small,  since  the probability to detect  a guilty  agent  with many  objects is less affected by the fact that  other  agents  have  also received his data  (see Section 5.2). In [14], we provide an algorithm that implements  this   intuition  and   we   denote  it  by  s-sum. Although we evaluate this algorithm in Section 8, we do not present the pseudocode here  due  to the space  limitations.
7.2.4   Approximate  Max-Objective  Minimization
Algorithm  s-overlap   is  optimal   for  the   max-objective
algorithm s-random is thus  OðPn

mi Þ.

optimization only  if Pn

mi    jT j. Note  also  that  s-sum  as
Let M ¼ Pn

mi . If M     jT j, algorithm s-overlap yields

well as s-random ignore this objective. Say, for example, that
disjoint  data  sets and  is optimal for both objectives  (9a) and
(9b). If M > jT j, it can  be shown that  algorithm  s-random
yields  an object sharing distribution such  that:
  M     jT jþ 1   for M mod jT j entries of vector a;

set  T  contains for  objects  and  there  are  four  agents,  each requesting a sample of two data objects. The aforementioned algorithms may  produce the following data  allocation:
R1   ¼ ft1 ; t2 g;
R2   ¼ ft1 ; t2 g;
R3   ¼ ft3 ; t4 g;
and
a½k  ¼ 

M     jT j
for the rest:


R4   ¼ ft3 ; t4 g:

Theorem   3.  In   general,   Algorithm   s-overlap    does   not minimize sum-objective. However, s-overlap does  minimize



Although such an allocation minimizes the sum-objective, it allocates  identical sets to two  agent  pairs. Consequently,  if
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an agent  leaks his values,  he will be equally guilty  with an innocent agent.
To improve the  worst-case behavior, we  present a  new
algorithm that  builds upon Algorithm 4 that  we  used  in s-random and  s-overlap. We define  a new SELECTOBJECT() procedure in Algorithm 7. We denote the new algorithm by s-max.  In this  algorithm, we allocate  to an agent  the object that  yields  the minimum increase  of the maximum relative  overlap among any pair  of agents.  If we apply s-max  to the example above,  after  the  first  five  main  loop  iterations in Algorithm 4, the Ri  sets are:

optimization problem of (7). In this section,  we evaluate the presented algorithms with  respect to the  original problem. In  this  way,  we  measure not  only  the  algorithm perfor-  mance,  but  also  we  implicitly  evaluate how  effective  the approximation  is.
The objectives  in (7) are the      difference functions. Note
that  there  are  nðn   1Þ  objectives,  since  for  each  agent  Ui , there  are n     1 differences    ði; jÞ for j ¼ 1; ... ;n and j ¼ i. We evaluate a given  allocation with  the following objective scalarizations as metrics:
Pi;j¼1;...;n   ði; jÞ
R1   ¼ ft1 ; t2 g;
R2   ¼ ft2 g;
R3   ¼ ft3 g;
and    R4   ¼ ft4 g:
In the next iteration, function SELECTOBJECT() must decide

  :¼

i¼j
nðn   1Þ

;
ð12aÞ
which  object to allocate  to agent  U2 . We see that only objects t3   and  t4  are good  candidates, since allocating t1  to U2   will yield a full overlap of R1   and  R2 . Function SELECTOBJECT() of s-max  returns indeed t3  or t4 .

Algorithm 7. Object Selection  for s-max
1:  function SELECTOBJECT (i; R1 ; ... ; Rn ; m1 ; ... ; mn )

2:

min  overlap 
1
. the minimum out of the maximum relative  overlaps that  the allocations of different objects to Ui  yield
3:
for k 2 fk0  j tk0   2 Ri g do
4:

max  rel ov
0 . the maximum relative  overlap between Ri  and  any set Rj  that the allocation of tk  to Ui yields
5:
for all j ¼ 1; ... ;n : j ¼ i and  tk  2 Rj  do
6:
abs ov
jRi  \ Rj jþ 1

7:
rel ov
abs ov=minðmi ; mj Þ
8:
max  rel ov
Maxðmax rel ov; rel ovÞ
9:
if max  rel ov     min  overlap then
10:
min  overlap 
max  rel ov
11:
ret  k 
k
12:
return ret k
The running time of SELECTOBJECT() is OðjT jnÞ, since the external  loop  in  lines  3-12  iterates  over  all  objects  that agent  Ui  has  not received and  the internal loop  in lines 5-8 over  all agents.  This  running time  calculation implies  that we  keep  the  overlap sizes  Ri  \ Rj   for  all agents  in a two- dimensional  array   that   we   update   after   every   object allocation.
It can be shown that  algorithm s-max  is optimal for the sum-objective  and   the  max-objective  in  problems  where M     jT j. It  is  also  optimal for  the  max-objective  if jT j  M     2jT j or m1   ¼ m2   ¼       ¼ mn .

8 
EXPERIMENTAL  RESULTS
We  implemented the  presented  allocation algorithms  in Python  and   we   conducted  experiments with   simulated data   leakage   problems to  evaluate their  performance. In Section   8.1,  we   present  the   metrics   we   use   for   the algorithm  evaluation,  and   in   Sections  8.2  and   8.3,  we present  the  evaluation  for  sample  requests  and   explicit data  requests, respectively.
8.1 
Metrics
In  Section   7,  we   presented  algorithms  to  optimize   the problem of  (8)  that   is  an  approximation to  the  original

min      :
min      i; j :
12b
i;j¼1;...;n
i¼j
Metric       is  the  average of     ði; jÞ  values   for  a  given allocation and it shows  how successful the guilt detection is, on average, for this allocation. For example, if   ¼ 0:4, then, on average, the  probability P rfGi jRi g for the  actual  guilty agent  will be 0.4 higher than  the probabilities of nonguilty agents.  Note  that this scalar version of the original problem objective  is analogous to the  sum-objective scalarization of the problem of (8). Hence,  we expect that  an algorithm that is designed to minimize the sum-objective will maximize   .

Metric   min       is  the   minimum    ði; jÞ   value   and   it
corresponds to the case where agent  Ui  has leaked  his data and  both  Ui   and  another agent  Uj   have  very  similar  guilt probabilities. If min      is small,  then  we  will  be unable to identify Ui  as the leaker, versus Uj . If min     is large, say, 0.4, then  no matter which  agent leaks his data,  the  probability that  he is guilty  will be 0.4 higher than  any other  nonguilty agent.   This   metric   is  analogous  to   the   max-objective scalarization of the approximate optimization problem.
The   values   for   these   metrics   that   are   considered acceptable will  of  course   depend on  the  application. In particular, they  depend on what  might be considered high confidence that  an  agent  is  guilty.  For  instance, say  that P rfGi jRi g ¼ 0:9  is  enough  to  arouse our   suspicion  that agent  Ui    leaked  data.  Furthermore, say  that  the  difference between P rfGi jRi g and  any other  P rfGj jRi g is at least 0.3. In other  words, the guilty  agent  is ð0:9   0:6Þ=0:6   100% ¼
50% more  likely to be guilty  compared to the other agents.  In this case, we may be willing  to take action against Ui  (e.g., stop doing  business with  him, or prosecute him). In the rest of this section,  we will use value  0.3 as an example of what  might  be desired in   values.
To calculate the guilt  probabilities and      differences, we
use  throughout this  section  p ¼ 0:5. Although not reported here,  we  experimented with  other  p values  and observed that  the  relative   performance of  our  algorithms and  our main  conclusions do  not  change.  If  p approaches to  0, it becomes   easier   to   find   guilty   agents   and   algorithm performance converges. On the other  hand, if p approaches
1,  the  relative   differences among algorithms grow  since more  evidence is needed to find  an agent  guilty.
8.2 
Explicit Requests
In the  first place,  the  goal  of these  experiments was  to see whether  fake   objects   in  the   distributed  data   sets  yield significant  improvement  in  our   chances   of   detecting  a
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Fig. 3. Evaluation  of explicit data  request algorithms.  (a) Average    . (b) Average min .
guilty  agent.  In  the  second  place,  we  wanted to  evaluate our  e-optimal  algorithm relative  to a random  allocation.
We focus on scenarios with  a few objects that  are shared
among  multiple  agents.   These   are   the   most  interesting scenarios, since  object  sharing makes  it  difficult  to distin- guish  a guilty  from  nonguilty agents. Scenarios  with  more objects to distribute or scenarios with  objects shared among fewer   agents   are  obviously  easier   to  handle.  As  far  as scenarios with  many  objects  to distribute and  many  over- lapping agent requests are concerned, they are similar  to the scenarios   we   study,   since   we   can   map   them   to  the distribution of many  small  subsets.
In  our  scenarios, we  have  a  set  of jT j ¼ 10 objects  for
which   there  are  requests by  n ¼ 10 different agents.  We assume that each agent  requests eight  particular objects out of these 10. Hence,  each object is shared, on average, among
Pn
jT j
¼ 8
agents.   Such   scenarios  yield   very   similar   agent   guilt probabilities and  it  is  important to  add   fake  objects.  We generated a  random scenario   that  yielded    ¼ 0:073 and min     ¼ 0:35 and  we applied the algorithms e-random and e-optimal to distribute fake objects to the agents  (see [14] for other  randomly  generated scenarios with  the  same  para- meters).  We varied the number B of distributed fake objects from   2   to  20,  and   for  each   value   of  B,  we   ran   both algorithms to allocate  the fake objects to agents.  We ran e- optimal once for each  value  of B, since it is a deterministic algorithm. Algorithm e-random is randomized and  we ran it 10 times  for each  value  of B. The results we present are

improves    further, since the e-optimal curve is consistently over  the  95 percent confidence intervals of  e-random. The performance difference between the two algorithms would be greater if the agents  did  not request the same  number of objects,  since  this  symmetry  allows  nonsmart fake  object allocations  to   be   more   effective   than   in   asymmetric scenarios. However, we do not study more  this  issue  here, since the advantages of e-optimal  become  obvious when we look at our  second  metric.
Fig.  3b shows  the  value  of min    , as  a function of  the
fraction    of  fake   objects.   The   plot   shows    that   random allocation will  yield  an  insignificant  improvement in  our chances   of  detecting  a   guilty   agent   in   the   worst-case scenario.  This was  expected, since  e-random does  not  take into  consideration  which   agents   “must”  receive   a  fake object to differentiate their  requests from  other  agents.  On the  contrary,  algorithm  e-optimal   can  yield   min     > 0:3 with   the   allocation  of   approximately  10  percent  fake objects.  This  improvement is  very  important taking   into account  that   without fake  objects,  values   min      and   are  close  to 0. This  means that  by allocating 10  percent  of fake  objects,  the  distributor can  detect  a  guilty agent  even in  the   worst-case  leakage   scenario,   while   without  fake objects,  he will  be unsuccessful  not only  in the  worst  case but  also  in  average  case.
Incidentally, the  two  jumps   in  the  e-optimal  curve  are due  to the  symmetry of our  scenario.  Algorithm  e-optimal allocates  almost  one fake object per agent before allocating a second  fake object to one of them.
The  presented experiments confirmed that  fake  objects
can have  a significant impact  on our  chances  of detecting a
the  average over  the 10 runs.

   
guilty  agent. Note also that the algorithm evaluation was on
Fig.  3a shows   how  fake  object  allocation can  affect   .
There   are   three   curves   in  the   plot.   The  solid   curve  is constant and  shows  the      value  for an  allocation  without fake objects (totally  defined by agents’ requests). The other two curves  look at algorithms e-optimal  and  e-random. The y-axis shows      and the x-axis shows  the ratio of the number of distributed fake objects to the total number of objects that the agents explicitly request.
We  observe  that   distributing fake  objects  can  signifi-

the original objective. Hence, the superior performance of e- optimal  (which   is  optimal for  the  approximate  objective) indicates that  our  approximation is effective.
8.3 
Sample Requests
With  sample data   requests, agents   are  not  interested  in particular objects.  Hence,   object  sharing is  not  explicitly defined  by  their  requests. The  distributor  is  “forced” to allocate certain  objects to multiple agents only if the number
cantly improve, on average, the chances  of detecting a guilty

of requested objects Pn
¼

mi  exceeds  the number of objects
agent.  Even  the  random allocation of approximately 10  to
15 percent fake objects yields      > 0:3. The use of e-optimal

in set T . The more  data  objects the  agents  request in total,
the more recipients, on average, an object has; and  the more
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Fig. 4. Evaluation  of sample data  request algorithms. (a) Average    . (b) Average PrfGi jSi g. (c) Average min .
objects are shared among different agents,  the more difficult  it is to detect  a guilty  agent.  Consequently, the  parameter that   primarily  defines   the  difficulty  of  a  problem  with sample data  requests is the ratio
       i¼1  mi :
jT j
We call this ratio the load. Note also that the absolute values of m1 ; ... ; mn  and jT j play a less important role than the relative  values mi =jT j. Say, for example, that T ¼ 99 and algorithm X yields a good allocation for the agents’ requests m1   ¼ 66 and m2   ¼ m3   ¼ 33.  Note   that  for  any  jT j  and   m1 =jT j ¼ 2=3, m2 =jT j ¼ m3 =jT j ¼ 1=3, the  problem is  essentially similar  and algorithm X would still yield a good allocation.
In our  experimental scenarios, set  T has  50 objects  and we vary  the load. There  are two ways  to vary  this number:
1) assume that  the number of agents  is fixed and  vary their
sample sizes  mi , and  2) vary  the  number of  agents  who request data.  The latter  choice captures how  a real problem may evolve. The distributor may act to attract more or fewer agents   for  his  data,   but  he  does  not  have   control   upon agents’ requests. Moreover, increasing the number of agents  allows  us  also to  increase arbitrarily the  value  of the  load, while  varying agents’  requests poses  an upper bound njT j.

Our  first scenario  includes two  agents  with  requests m1 and   m2      that   we   chose   uniformly  at  random  from  the interval  6; ... ; 15.  For  this  scenario,   we  ran  each  of  the algorithms  s-random  (baseline),   s-overlap,   s-sum,   and s-max  10 different times,  since they  all include randomized steps.  For each run  of every algorithm, we calculated    and min      and   the   average   over   the   10  runs.   The   second  scenario  adds agent U3  with  m3      U ½6; 15  to the two agents  of  the  first  scenario.   We  repeated the  10  runs   for  each algorithm  to allocate  objects  to three  agents  of the  second scenario and  calculated the two metrics  values  for each run. We continued adding agents  and  creating new scenarios to reach the number of 30 different scenarios. The last one had
31 agents.  Note  that we create a new  scenario  by adding an agent   with   a  random  request  mi    U ½6; 15    instead   of assuming mi  ¼ 10 for the new  agent.  We did that  to avoid  studying  scenarios   with   equal   agent   sample   request sizes,  where certain  algorithms  have  particular properties, e.g., s-overlap optimizes the sum-objective if requests are all the same  size, but  this does  not hold  in the general case.

In  Fig. 4a, we  plot  the  values       that  we  found in  our scenarios. There  are  four  curves,   one  for  each  algorithm. The x-coordinate of a curve point  shows  the ratio of the total number of requested objects to the number of T objects for the scenario.  The y-coordinate shows  the average value of    over  all  10 runs.   Thus,  the  error   bar  around each  point shows  the 95 percent confidence interval of     values  in the
10  different runs.   Note  that  algorithms s-overlap,  s-sum, and   s-max   yield        values   that   are  close  to  1  if  agents  request in  total  fewer  objects  than  jT j. This  was  expected since in such scenarios, all three algorithms yield disjoint  set allocations, which  is the  optimal  solution. In all scenarios, algorithm s-sum outperforms  the  other  ones.  Algorithms s-overlap and s-max yield similar      values  that are between s-sum and  s-random. All algorithms have      around 0.5 for load ¼ 4:5, which we believe  is an acceptable value.
Note  that  in Fig. 4a, the  performances of all algorithms
appear to converge as the load increases. This is not true and we justify that using  Fig. 4b, which  shows  the average guilt probability in each scenario  for the actual guilty agent. Every curve  point  shows  the mean  over all 10 algorithm runs  and we have  omitted confidence intervals to make  the plot easy to  read.   Note   that   the  guilt   probability for  the  random allocation   remains   significantly   higher   than   the   other  algorithms  for  large values   of  the  load.  For  example, if load     5:5,  algorithm  s-random  yields,   on  average, guilt probability 0.8  for  a  guilty   agent   and   0:8         ¼ 0:35  for nonguilty agent. Their relative  difference is 0:8   0:35    1:3. The corresponding probabilities that  s-sum yields  are 0.75 and
0.25 with relative  difference 0:75   0:25 ¼ 2. Despite the fact that
the absolute values  of     converge the relative  differences in the guilt probabilities between a guilty and nonguilty agents are  significantly higher for s-max  and  s-sum  compared to s-random. By  comparing the  curves   in  both  figures,   we conclude that s-sum outperforms other algorithms for small load values.  As the number of objects that the agents  request increases, its performance becomes  comparable to s-max. In such  cases,  both  algorithms yield  very  good  chances,  on average,  of   detecting  a  guilty   agent.   Finally,   algorithm s-overlap is inferior  to them,  but  it still yields  a significant improvement with  respect to the baseline.
In   Fig.  4c,  we   show   the   performance  of  all   four
algorithms  with   respect  to  min      metric.   This  figure  is
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similar   to  Fig.  4a  and   the   only   change   is  the   y-axis. Algorithm s-sum now  has  the  worst  performance among all  the  algorithms. It allocates  all  highly  shared objects  to agents  who request a large sample, and  consequently, these agents receive  the  same  object sets.  Two  agents  Ui   and  Uj who  receive  the  same  set  have     ði; jÞ ¼    ðj; iÞ ¼ 0. So, if either  of Ui   and  Uj   leaks  his  data,  we  cannot  distinguish which  of  them  is guilty.  Random allocation has  also  poor performance, since  as the  number of agents  increases,  the probability that  at least  two  agents  receive  many common objects   becomes   higher.  Algorithm  s-overlap   limits   the random  allocation selection   among  the  allocations  who achieve   the  minimum absolute  overlap  summation. This fact  improves,  on  average,  the   min      values,   since   the smaller   absolute  overlap   reduces  object   sharing,  and consequently, the  chances that  any  two  agents  receive  sets with  many  common objects.
Algorithm  s-max,   which   greedily  allocates   objects  to optimize  max-objective, outperforms  all  other  algorithms and  is the  only  that  yields  min     > 0:3 for  high  values  of i¼1 mi . Observe   that  the  algorithm that  targets at  sum-
objective   minimization proved  to  be  the  best  for  the   
maximization  and   the   algorithm   that   targets   at   max- objective  minimization was  the  best  for  min   maximiza- tion. These facts confirm  that the approximation of objective (7) with  (8) is effective.
9 
CONCLUSIONS
In  a perfect  world, there  would be no  need  to hand  over sensitive  data   to  agents   that   may   unknowingly  or  mal- iciously  leak it. And  even  if we had  to hand over  sensitive data,  in a perfect  world, we could watermark each object so that   we  could   trace   its  origins  with   absolute  certainty. However, in many cases, we must  indeed work  with  agents  that  may  not  be 100 percent trusted, and  we  may  not  be certain  if a leaked  object came from  an agent  or from  some other source,  since certain  data  cannot  admit watermarks.
In  spite  of these  difficulties, we  have  shown that  it  is possible  to assess the likelihood that an agent  is responsible for a leak, based  on the overlap of his data with  the leaked  data   and   the   data   of  other   agents,   and   based   on   the probability that  objects  can  be  “guessed” by  other  means. Our   model   is  relatively  simple,   but   we  believe   that   it captures the  essential  trade-offs. The  algorithms we  have presented  implement a variety of data  distribution strate- gies that can improve the distributor’s chances  of identify- ing   a  leaker.   We  have   shown  that   distributing   objects judiciously can make  a significant difference in identifying guilty  agents,   especially  in   cases   where   there   is  large overlap in the data  that  agents  must receive.
Our   future  work   includes  the   investigation  of  agent  guilt  models that  capture leakage   scenarios that  are  not studied in this paper. For example, what  is the appropriate model  for cases where agents  can collude and  identify fake tuples?  A   preliminary  discussion   of  such   a   model    is available in [14]. Another open problem is the extension of our   allocation  strategies  so  that   they   can  handle  agent  requests  in  an   online   fashion   (the   presented  strategies assume that  there  is  a  fixed  set  of  agents   with  requests known in  advance).

ACKNOWLEDGMENTS
This   work   was   supported  by  the   US  National   Science Foundation (NSF)  under Grant   no.  CFF-0424422  and   an Onassis Foundation Scholarship. The authors would like to thank   Paul   Heymann  for   his   help   with   running  the nonpolynomial guilt  model detection algorithm that  they present in [14,  Appendix] on  a Hadoop cluster.  They  also thank  Ioannis Antonellis for  fruitful discussions and   his comments on earlier  versions of this  paper.
REFERENCES
[1]     R. Agrawal and  J. Kiernan, “Watermarking Relational Databases,” Proc.  28th  Int’l  Conf. Very  Large Data  Bases (VLDB ’02), VLDB Endowment, pp.  155-166, 2002.

[2]     P. Bonatti,  S.D.C. di Vimercati,  and  P. Samarati, “An Algebra  for Composing Access Control Policies,” ACM Trans. Information and System Security, vol. 5, no. 1, pp.  1-35, 2002.

[3]     P.  Buneman, S. Khanna, and   W.C.  Tan,  “Why  and   Where:   A Characterization  of  Data  Provenance,”  Proc.  Eighth  Int’l  Conf. Database Theory (ICDT ’01), J.V. den  Bussche  and  V. Vianu, eds.,
pp.  316-330, Jan. 2001.

[4]     P.  Buneman and   W.-C.  Tan,  “Provenance in  Databases,” Proc.

ACM SIGMOD, pp.  1171-1173, 2007.

[5]     Y.  Cui   and   J.  Widom,  “Lineage  Tracing   for   General   Data
Warehouse Transformations,”  The VLDB J., vol.  12,  pp.  41-58,

2003.

[6]     S. Czerwinski, R. Fromm,  and  T. Hodes, “Digital Music Distribu- tion and  Audio  Watermarking,”  http://www.scientificcommons. org/43025658, 2007.

[7]     F.  Guo,  J. Wang,   Z.  Zhang, X. Ye, and   D.  Li,  “An  Improved Algorithm to  Watermark Numeric  Relational  Data,”  Information Security Applications, pp. 138-149, Springer,  2006.

[8]     F. Hartung and  B. Girod,  “Watermarking  of  Uncompressed and
Compressed Video,”  Signal Processing, vol. 66, no. 3, pp. 283-301,

1998.

[9]    S. Jajodia, P. Samarati, M.L. Sapino,  and  V.S.  Subrahmanian, “Flexible  Support for  Multiple  Access  Control Policies,”   ACM Trans. Database Systems, vol. 26, no. 2, pp.  214-260, 2001.

[10]   Y.  Li,  V.  Swarup,  and   S.  Jajodia,   “Fingerprinting  Relational
Databases: Schemes  and  Specialties,” IEEE Trans. Dependable and
Secure Computing, vol. 2, no. 1, pp.  34-45, Jan.-Mar. 2005.

[11]   B. Mungamuru and  H. Garcia-Molina, “Privacy, Preservation and Performance:  The   3  P’s  of   Distributed  Data   Management,” technical  report, Stanford Univ.,  2008.

[12]   V.N. Murty, “Counting the Integer  Solutions of a Linear  Equation with  Unit  Coefficients,” Math. Magazine, vol. 54, no. 2, pp.  79-81,

1981.

[13]   S.U. Nabar, B. Marthi,  K. Kenthapadi, N. Mishra, and R. Motwani, “Towards Robustness in  Query  Auditing,” Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB ’06), VLDB Endowment, pp. 151-162,

2006.

[14]   P.  Papadimitriou and  H.  Garcia-Molina, “Data  Leakage   Detec- tion,”  technical  report, Stanford Univ.,  2008.

[15]   P.M.  Pardalos and  S.A. Vavasis,  “Quadratic  Programming with One  Negative  Eigenvalue  Is  NP-Hard,” J. Global Optimization, vol. 1, no. 1, pp. 15-22, 1991.

[16]   J.J.K.O. Ruanaidh, W.J. Dowling, and  F.M. Boland, “Watermark- ing  Digital  Images   for  Copyright  Protection,” IEE  Proc. Vision, Signal and Image Processing, vol. 143, no. 4, pp.  250-256, 1996.

[17]   R.  Sion,  M.  Atallah,   and   S.  Prabhakar,  “Rights  Protection  for
Relational  Data,”  Proc. ACM SIGMOD, pp.  98-109, 2003.
[18]   L. Sweeney,  “Achieving K-Anonymity Privacy  Protection Using Generalization and  Suppression,”    http://en.scientificcommons. org/43196131, 2002.

PAPADIMITRIOU AND GARCIA-MOLINA: DATA LEAKAGE DETECTION 
63
Panagiotis  Papadimitriou received   the  diplo- ma   degree  in  electrical   and   computer  engi- neering   from the  National  Technical  University of   Athens  in  2006   and   the   MS   degree  in electrical  engineering  from  Stanford University in  2008.   He  is  currently   working  toward   the PhD   degree  in  the   Department  of   Electrical Engineering at  Stanford  University,  California. His  research  interests include  Internet   adver- tising,   data    mining,   data    privacy,   and   web
search.  He  is  a  student member of the  IEEE.

Hector Garcia-Molina received the  BS degree in  electrical   engineering   from  the   Instituto Tecnologico   de   Monterrey,   Mexico,   in  1974, and the MS degree in electrical engineering and the   PhD   degree   in  computer   science   from Stanford  University,   California,   in  1975  and
1979,   respectively. He  is  the  Leonard  Bosack  and Sandra Lerner professor in the Departments of Computer Science and Electrical Engineering at  Stanford University,  California.  He  was  the
chairman of the  Computer Science  Department from  January 2001  to
December  2004.   From   1997   to  2001,   he   was   a   member  of  the President’s Information Technology Advisory Committee (PITAC). From August 1994  to December 1997,  he  was  the  director  of the  Computer Systems Laboratory  at  Stanford. From  1979  to  1991,  he  was  in the Faculty  of the  Computer  Science  Department at  Princeton University, New   Jersey.   His   research  interests  include   distributed   computing systems, digital libraries,  and  database systems. He holds an honorary  PhD degree from ETH Zurich in 2007. He is a fellow of the ACM and the American Academy of Arts and Sciences and a member  of the National Academy  of  Engineering.   He   received   the   1999   ACM  SIGMOD Innovations Award. He is a venture advisor  for Onset Ventures and  is a member of the Board of Directors  of Oracle.  He is a member of the IEEE and  the IEEE Computer Society.
. For  more information on   this or  any   other  computing topic, please visit  our  Digital  Library at www.computer.org/publications/dlib.
I





jSj





ð 	ð 	Þ	Þ	¼ 	ð  Þ





n





jRi j





1





1





1





X





1





i





j





¼





i¼1





i   1





i   1





i; ¼





1   ¼       ¼ mn





i¼1





4





1





¼





X	1	1	1	1





i





i





i¼1





i¼1





¼ 	ð 	Þ	ð 	Þ





       i¼1  jRi j





i   1





Pn





0:35





0:25





Pn





�








�











