IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011
51
Data Leakage Detection
Panagiotis Papadimitriou, Student Member, IEEE, and Hector Garcia-Molina, Member, IEEE
Abstract—We study the following problem: A data distributor has given sensitive data to a set of supposedly trusted agents (third parties). Some of the data are leaked and found in an unauthorized place (e.g., on the web or somebody’s laptop). The distributor must assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. We propose data allocation strategies (across the agents) that improve the probability of identifying leakages. These methods do not rely on alterations of the released data (e.g., watermarks). In some cases, we can also inject “realistic but fake” data records to further improve our chances of detecting leakage and identifying the guilty party.
Index Terms—Allocation strategies, data leakage, data privacy, fake records, leakage model.
[image: image5.png]

[image: image6.png]

Ç
1
INTRODUCTION
N the course of doing business, sometimes sensitive data must be handed over to supposedly trusted third parties. For example, a hospital may give patient records to researchers who will devise new treatments. Similarly, a company may have partnerships with other companies that require sharing customer data. Another enterprise may outsource its data processing, so data must be given to various other companies. We call the owner of the data the distributor and the supposedly trusted third parties the agents. Our goal is to detect when the distributor’s sensitive data have been leaked by agents, and if possible to identify
the agent that leaked the data.
We consider applications where the original sensitive data cannot be perturbed. Perturbation is a very useful technique where the data are modified and made “less sensitive” before being handed to agents. For example, one can add random noise to certain attributes, or one can replace exact values by ranges [18]. However, in some cases, it is important not to alter the original distributor’s data. For example, if an outsourcer is doing our payroll, he must have the exact salary and customer bank account numbers. If medical researchers will be treating patients (as opposed to simply computing statistics), they may need accurate data for the patients.
Traditionally, leakage detection is handled by water-
marking, e.g., a unique code is embedded in each distributed copy. If that copy is later discovered in the hands of an unauthorized party, the leaker can be identified. Watermarks can be very useful in some cases, but again, involve some modification of the original data. Furthermore, watermarks can sometimes be destroyed if the data recipient is malicious.
In this paper, we study unobtrusive techniques for
detecting leakage of a set of objects or records. Specifically,
. The authors are with the Department of Computer Science, Stanford
University, Gates Hall 4A, Stanford, CA 94305-9040.

E-mail: papadimitriou@stanford.edu, hector@cs.stanford.edu.
Manuscript received 23 Oct. 2008; revised 14 Dec. 2009; accepted 17 Dec.

2009; published online 11 June 2010. Recommended for acceptance by B.C. Ooi.

For information on obtaining reprints of this article, please send e-mail to: tkde@computer.org, and reference IEEECS Log Number TKDE-2008-10-0558. Digital Object Identifier no. 10.1109/TKDE.2010.100.

we study the following scenario: After giving a set of objects to agents, the distributor discovers some of those same objects in an unauthorized place. (For example, the data may be found on a website, or may be obtained through a legal discovery process.) At this point, the distributor can assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. Using an analogy with cookies stolen from a cookie jar, if we catch Freddie with a single cookie, he can argue that a friend gave him the cookie. But if we catch Freddie with five cookies, it will be much harder for him to argue that his hands were not in the cookie jar. If the distributor sees “enough evidence” that an agent leaked data, he may stop doing business with him, or may initiate legal proceedings.
In this paper, we develop a model for assessing the “guilt” of agents. We also present algorithms for distribut- ing objects to agents, in a way that improves our chances of identifying a leaker. Finally, we also consider the option of adding “fake” objects to the distributed set. Such objects do not correspond to real entities but appear realistic to the agents. In a sense, the fake objects act as a type of watermark for the entire set, without modifying any individual members. If it turns out that an agent was given one or more fake objects that were leaked, then the distributor can be more confident that agent was guilty.
We start in Section 2 by introducing our problem setup
and the notation we use. In Sections 4 and 5, we present a model for calculating “guilt” probabilities in cases of data leakage. Then, in Sections 6 and 7, we present strategies for data allocation to agents. Finally, in Section 8, we evaluate the strategies in different data leakage scenarios, and check whether they indeed help us to identify a leaker.
2
PROBLEM SETUP AND NOTATION
2.1
Entities and Agents
A distributor owns a set T ¼ ft1 ; ... ; tm g of valuable data objects. The distributor wants to share some of the objects with a set of agents U1 ; U2 ; ... ; Un , but does not wish the objects be leaked to other third parties. The objects in T could be of any type and size, e.g., they could be tuples in a relation, or relations in a database.
1041-4347/11/$26.00 2011 IEEE
Published by the IEEE Computer Society
52
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011
An agent Ui receives a subset of objects Ri T , determined either by a sample request or an explicit request:
.
Sample request Ri ¼ SAMPLEðT; mi Þ: Any subset of
mi records from T can be given to Ui .
.
Explicit request Ri ¼ EXPLICITðT ; condi Þ: Agent Ui
receives all T objects that satisfy condi .
Example. Say that T contains customer records for a given company A. Company A hires a marketing agency U1 to do an online survey of customers. Since any customers will do for the survey, U1 requests a sample of
1,000 customer records. At the same time, company A
subcontracts with agent U2 to handle billing for all California customers. Thus, U2 receives all T records that satisfy the condition “state is California.”
Although we do not discuss it here, our model can be easily extended to requests for a sample of objects that satisfy a condition (e.g., an agent wants any 100 California customer records). Also note that we do not concern ourselves with the randomness of a sample. (We assume that if a random sample is required, there are enough T records so that the to-be-presented object selection schemes can pick random records from T .)

2.2
Guilty Agents
Suppose that after giving objects to agents, the distributor discovers that a set S T has leaked. This means that some third party, called the target, has been caught in possession of S. For example, this target may be displaying S on its website, or perhaps as part of a legal discovery process, the target turned over S to the distributor.
Since the agents U1 ; ... ; Un have some of the data, it is
reasonable to suspect them leaking the data. However, the
agents can argue that they are innocent, and that the S data were obtained by the target through other means. For example, say that one of the objects in S represents a customer X. Perhaps X is also a customer of some other company, and that company provided the data to the target. Or perhaps X can be reconstructed from various publicly available sources on the web.
Our goal is to estimate the likelihood that the leaked data
came from the agents as opposed to other sources. Intuitively, the more data in S, the harder it is for the agents to argue they did not leak anything. Similarly, the “rarer” the objects, the harder it is to argue that the target obtained them through other means. Not only do we want to estimate the likelihood the agents leaked data, but we would also like to find out if one of them, in particular, was more likely to be the leaker. For instance, if one of the S objects was only given to agent U1 , while the other objects were given to all agents, we may suspect U1 more. The model we present next captures this intuition.
We say an agent Ui is guilty and if it contributes one or
more objects to the target. We denote the event that agent Ui is guilty by Gi and the event that agent Ui is guilty for a given leaked set S by Gi jS. Our next step is to estimate P rfGi jSg, i.e., the probability that agent Ui is guilty given evidence S.

3
RELATED WORK
The guilt detection approach we present is related to the data provenance problem [3]: tracing the lineage of S objects implies essentially the detection of the guilty agents. Tutorial [4] provides a good overview on the research conducted in this field. Suggested solutions are domain specific, such as lineage tracing for data ware- houses [5], and assume some prior knowledge on the way a data view is created out of data sources. Our problem formulation with objects and sets is more general and simplifies lineage tracing, since we do not consider any data transformation from Ri sets to S.
As far as the data allocation strategies are concerned, our
work is mostly relevant to watermarking that is used as a means of establishing original ownership of distributed objects. Watermarks were initially used in images [16], video [8], and audio data [6] whose digital representation includes considerable redundancy. Recently, [1], [17], [10], [7], and other works have also studied marks insertion to relational data. Our approach and watermarking are similar in the sense of providing agents with some kind of receiver identifying information. However, by its very nature, a watermark modifies the item being watermarked. If the object to be watermarked cannot be modified, then a watermark cannot be inserted. In such cases, methods that attach watermarks to the distributed data are not applicable.
Finally, there are also lots of other works on mechan-
isms that allow only authorized users to access sensitive data through access control policies [9], [2]. Such ap- proaches prevent in some sense data leakage by sharing information only with trusted parties. However, these policies are restrictive and may make it impossible to satisfy agents’ requests.
4
AGENT GUILT MODEL
To compute this P rfGi jSg, we need an estimate for the probability that values in S can be “guessed” by the target. For instance, say that some of the objects in S are e-mails of individuals. We can conduct an experiment and ask a person with approximately the expertise and resources of the target to find the e-mail of, say, 100 individuals. If this person can find, say, 90 e-mails, then we can reasonably guess that the probability of finding one e-mail is 0.9. On the other hand, if the objects in question are bank account numbers, the person may only discover, say, 20, leading to an estimate of 0.2. We call this estimate pt , the probability that object t can be guessed by the target.
Probability pt is analogous to the probabilities used in designing fault-tolerant systems. That is, to estimate how likely it is that a system will be operational throughout a given period, we need the probabilities that individual components will or will not fail. A component failure in our case is the event that the target guesses an object of S. The component failure is used to compute the overall system reliability, while we use the probability of guessing to identify agents that have leaked information. The compo- nent failure probabilities are estimated based on experi- ments, just as we propose to estimate the pt s. Similarly, the component probabilities are usually conservative estimates,
PAPADIMITRIOU AND GARCIA-MOLINA: DATA LEAKAGE DETECTION
53
rather than exact numbers. For example, say that we use a component failure probability that is higher than the actual probability, and we design our system to provide a desired high level of reliability. Then we will know that the actual system will have at least that level of reliability, but possibly higher. In the same way, if we use pt s that are higher than the true values, we will know that the agents will be guilty with at least the computed probabilities.
To simplify the formulas that we present in the rest of the paper, we assume that all T objects have the same pt , which we call p. Our equations can be easily generalized to diverse pt s though they become cumbersome to display.
Next, we make two assumptions regarding the relation-
ship among the various leakage events. The first assump- tion simply states that an agent’s decision to leak an object is not related to other objects. In [14], we study a scenario where the actions for different objects are related, and we study how our results are impacted by the different independence assumptions.

Similarly, we find that agent U1 leaked t2 to S with probability 1 p since he is the only agent that has t2 .

Given these values, the probability that agent U1 is not
guilty, namely that U1 did not leak either object, is
P rfG 1 jSg ¼ ð1 ð1 pÞ=2Þ ð1 ð1 pÞÞ;
ð1Þ
and the probability that U1 is guilty is
P rfG1 jSg ¼ 1 P rfG 1 g:
ð2Þ
Note that if Assumption 2 did not hold, our analysis would be more complex because we would need to consider joint events, e.g., the target guesses t1 , and at the same time, one or two agents leak the value. In our simplified analysis, we say that an agent is not guilty when the object can be guessed, regardless of whether the agent leaked the value. Since we are “not counting” instances when an agent leaks information, the simplified analysis yields conservative values (smaller probabilities).
In the general case (with our assumptions), to find the
Assumption 1. For all t; t0 2 S such that t ¼ t0 , the provenance

of t is independent of the provenance of t0 .

probability that an agent Ui

is guilty given a set S, first, we
The term “provenance” in this assumption statement refers to the source of a value t that appears in the leaked set. The source can be any of the agents who have t in their sets or the target itself (guessing).
To simplify our formulas, the following assumption
states that joint events have a negligible probability. As we argue in the example below, this assumption gives us more conservative estimates for the guilt of agents, which is

compute the probability that he leaks a single object t to S.
To compute this, we define the set of agents Vt ¼ fUi jt 2 Ri g that have t in their data sets. Then, using Assumption 2 and known probability p, we have the following:
P rfsome agent leaked t to Sg ¼ 1 p:
ð3Þ
Assuming that all agents that belong to Vt can leak t to S
with equal probability and using Assumption 2, we obtain
 1 p
consistent with our goals.
Assumption 2. An object t 2 S can only be obtained by the

P rfUi leaked t to Sg ¼

jVt j ; if Ui 2 Vt ;
0;
otherwise:

ð4Þ
target in one of the two ways as follows:

.
A single agent Ui leaked t from its own Ri set.

.
The target guessed (or obtained through other means) t

Given that agent Ui is guilty if he leaks at least one value
to S, with Assumption 1 and (4), we can compute the probability P rfGi jSg that agent Ui is guilty:
without the help of any of the n agents.
In other words, for all t 2 S, the event that the target guesses t and the events that agent Ui (i ¼ 1; ... ; n) leaks object t are disjoint.

P rfGi jSg ¼ 1 Y
t2S\Ri
5
GUILT MODEL ANALYSIS

1 p
1
:
ð5Þ
jVt j
Before we present the general formula for computing the probability P rfGi jSg that an agent Ui is guilty, we provide a simple example. Assume that the distributor set T , the agent sets Rs, and the target set S are:
T ¼ ft1 ; t2 ; t3 g; R1 ¼ ft1 ; t2 g; R2 ¼ ft1 ; t3 g; S ¼ ft1 ; t2 ; t3 g:

In this case, all three of the distributor’s objects have been leaked and appear in S. Let us first consider how the target may have obtained object t1 , which was given to both agents. From Assumption 2, the target either guessed t1 or one of U1 or U2 leaked it. We know that the probability of the former event is p, so assuming that probability that each of the two agents leaked t1 is the same, we have the following cases:
.
the target guessed t1 with probability p,

.
agent U1 leaked t1 to S with probability ð1 pÞ=2,
and
.
agent U2 leaked t1 to S with probability ð1 pÞ=2.

In order to see how our model parameters interact and to check if the interactions match our intuition, in this section, we study two simple scenarios. In each scenario, we have a target that has obtained all the distributor’s objects, i.e., T ¼ S.
5.1
Impact of Probability p

In our first scenario, T contains 16 objects: all of them are given to agent U1 and only eight are given to a second agent U2 . We calculate the probabilities P rfG1 jSg and P rfG2 jSg for p in the range [0, 1] and we present the results in Fig. 1a. The dashed line shows P rfG1 jSg and the solid line shows P rfG2 jSg.
As p approaches 0, it becomes more and more unlikely
that the target guessed all 16 values. Each agent has enough of the leaked data that its individual guilt approaches 1. However, as p increases in value, the probability that U2 is guilty decreases significantly: all of U2 ’s eight objects were also given to U1 , so it gets harder to blame U2 for the leaks.
54
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011
[image: image1.png]0 50 100 0 50 100 0 50 100
|R2 N S|/|S] (%) |R2 N S|/|S] (%) |R2 NS|/|S] (%)

(a) (b) (c) (d)

Fig. 1. Guilt probability as a function of the guessing probability p (a) and the overlap between S and R2 (b)-(d). In all scenarios, it holds that
R1 \ S ¼ S and jSj ¼ 16. (a) jR2 \Sj ¼ 0:5, (b) p ¼ 0:2, (c) p ¼ 0:5, and (d) p ¼ 0:9.
On the other hand, U2 ’s probability of guilt remains close to
1 as p increases, since U1 has eight objects not seen by the other agent. At the extreme, as p approaches 1, it is very
possible that the target guessed all 16 values, so the agent’s probability of guilt goes to 0.

5.2
Impact of Overlap between Ri and S
In this section, we again study two agents, one receiving all the T ¼ S data and the second one receiving a varying fraction of the data. Fig. 1b shows the probability of guilt for both agents, as a function of the fraction of the objects owned by U2 , i.e., as a function of jR2 \ Sj=jSj. In this case, p has a low value of 0.2, and U1 continues to have all 16S objects. Note that in our previous scenario, U2 has 50 percent of the S objects.
We see that when objects are rare (p ¼ 0:2), it does not take many leaked objects before we can say that U2 is guilty with high confidence. This result matches our intuition: an agent that owns even a small number of incriminating objects is clearly suspicious.
Figs. 1c and 1d show the same scenario, except for values
of p equal to 0.5 and 0.9. We see clearly that the rate of increase of the guilt probability decreases as p increases. This observation again matches our intuition: As the objects become easier to guess, it takes more and more evidence of leakage (more leaked objects owned by U2) before we can have high confidence that U2 is guilty.
In [14], we study an additional scenario that shows how
the sharing of S objects by agents affects the probabilities that they are guilty. The scenario conclusion matches our intuition: with more agents holding the replicated leaked data, it is harder to lay the blame on any one agent.
6
DATA ALLOCATION PROBLEM
The main focus of this paper is the data allocation problem: how can the distributor “intelligently” give data to agents in order to improve the chances of detecting a guilty agent? As illustrated in Fig. 2, there are four instances of this problem we address, depending on the type of data requests made by agents and whether “fake objects” are allowed.
The two types of requests we handle were defined in
Section 2: sample and explicit. Fake objects are objects generated by the distributor that are not in set T . The objects are designed to look like real objects, and are distributed to agents together with T objects, in order to increase the chances of detecting agents that leak data. We discuss fake objects in more detail in Section 6.1.

As shown in Fig. 2, we represent our four problem instances with the names EF , EF , SF , and SF , where E stands for explicit requests, S for sample requests, F for the use of fake objects, and F for the case where fake objects are not allowed.
Note that, for simplicity, we are assuming that in the E
problem instances, all agents make explicit requests, while in the S instances, all agents make sample requests. Our results can be extended to handle mixed cases, with some explicit and some sample requests. We provide here a small example to illustrate how mixed requests can be handled, but then do not elaborate further. Assume that we have two agents with requests R1 ¼ EXPLICITðT ; cond1 Þ and
R2 ¼ SAMPLEðT 0 ; 1Þ, w h e r e T 0 ¼ EXPLICITðT ; cond2 Þ.
Further, say that cond1 is “state ¼ CA” (objects have a state
field). If agent U2 has the same condition cond2 ¼ cond1 , we can create an equivalent problem with sample data requests
on set T 0 . That is, our problem will be how to distribute the CA objects to two agents, with R1 ¼ SAMPLEðT 0 ; jT 0 jÞ and R2 ¼ SAMPLEðT 0 ; 1Þ. If instead U2 uses condition “state ¼ NY,” we can solve two different problems for sets T 0 and T T 0 . In each problem, we will have only one agent. Finally, if the conditions partially overlap, R1 \ T 0 ¼ ;, but R1 ¼ T 0 , we can solve three different problems for sets R1 T 0 , R1 \ T 0 , and T 0 R1 .

6.1
Fake Objects
The distributor may be able to add fake objects to the distributed data in order to improve his effectiveness in detecting guilty agents. However, fake objects may impact the correctness of what agents do, so they may not always be allowable.
The idea of perturbing data to detect leakage is not new,
e.g., [1]. However, in most cases, individual objects are perturbed, e.g., by adding random noise to sensitive salaries, or adding a watermark to an image. In our case, we are perturbing the set of distributor objects by adding
[image: image2.png]Data
Explicit RequeStS Sample

Fig. 2. Leakage problem instances.
PAPADIMITRIOU AND GARCIA-MOLINA: DATA LEAKAGE DETECTION
55
fake elements. In some applications, fake objects may cause fewer problems that perturbing real objects. For example, say that the distributed data objects are medical records and the agents are hospitals. In this case, even small modifica- tions to the records of actual patients may be undesirable. However, the addition of some fake medical records may be acceptable, since no patient matches these records, and hence, no one will ever be treated based on fake records.
Our use of fake objects is inspired by the use of “trace”
records in mailing lists. In this case, company A sells to company B a mailing list to be used once (e.g., to send advertisements). Company A adds trace records that contain addresses owned by company A. Thus, each time company B uses the purchased mailing list, A receives copies of the mailing. These records are a type of fake objects that help identify improper use of data.
The distributor creates and adds fake objects to the data
that he distributes to agents. We let Fi Ri be the subset of fake objects that agent Ui receives. As discussed below, fake objects must be created carefully so that agents cannot distinguish them from real objects.
In many cases, the distributor may be limited in how many fake objects he can create. For example, objects may contain e-mail addresses, and each fake e-mail address may require the creation of an actual inbox (otherwise, the agent may discover that the object is fake). The inboxes can actually be monitored by the distributor: if e-mail is received from someone other than the agent who was given the address, it is evident that the address was leaked. Since creating and monitoring e-mail accounts consumes resources, the distributor may have a limit of fake objects. If there is a limit, we denote it by B fake objects.
Similarly, the distributor may want to limit the number
of fake objects received by each agent so as to not arouse suspicions and to not adversely impact the agents’ activ- ities. Thus, we say that the distributor can send up to bi fake objects to agent Ui .

Creation. The creation of fake but real-looking objects is a
nontrivial problem whose thorough investigation is beyond the scope of this paper. Here, we model the creation of a fake object for agent Ui as a black box function CREATEFAKEOB- JECT ðRi ; Fi ; condi Þ that takes as input the set of all objects Ri , the subset of fake objects Fi that Ui has received so far, and condi , and returns a new fake object. This function needs condi to produce a valid object that satisfies Ui ’s condition. Set Ri is needed as input so that the created fake object is not only valid but also indistinguishable from other real objects. For example, the creation function of a fake payroll record that includes an employee rank and a salary attribute may take into account the distribution of employee ranks, the distribution of salaries, as well as the correlation between the two attributes. Ensuring that key statistics do not change by the introduction of fake objects is important if the agents will be using such statistics in their work. Finally, function

the Ri and Fi tables, respectively, and the intersection of the conditions condi s.
Although we do not deal with the implementation of CREATEFAKEOBJECT(), we note that there are two main design options. The function can either produce a fake object on demand every time it is called or it can return an appropriate object from a pool of objects created in advance.
6.2
Optimization Problem
The distributor’s data allocation to agents has one constraint and one objective. The distributor’s constraint is to satisfy agents’ requests, by providing them with the number of objects they request or with all available objects that satisfy their conditions. His objective is to be able to detect an agent who leaks any portion of his data.
We consider the constraint as strict. The distributor may
not deny serving an agent request as in [13] and may not provide agents with different perturbed versions of the same objects as in [1]. We consider fake object distribution as the only possible constraint relaxation.
Our detection objective is ideal and intractable. Detection
would be assured only if the distributor gave no data object to any agent (Mungamuru and Garcia-Molina [11] discuss that to attain “perfect” privacy and security, we have to sacrifice utility). We use instead the following objective: maximize the chances of detecting a guilty agent that leaks all his data objects.
We now introduce some notation to state formally the
distributor’s objective. Recall that P rfGj jS ¼ Ri g or simply P rfGj jRi g is the probability that agent Uj is guilty if the distributor discovers a leaked table S that contains all Ri objects. We define the difference functions ði; jÞ as
 ði; jÞ ¼ P rfGi jRi g P rfGj jRi g i; j ¼ 1; ... ; n:
ð6Þ
Note that differences have nonnegative values: given that set Ri contains all the leaked objects, agent Ui is at least as likely to be guilty as any other agent. Difference ði; jÞ is positive for any agent Uj , whose set Rj does not contain all data of S. It is zero if Ri Rj . In this case, the distributor will consider both agents Ui and Uj equally guilty since they have both received all the leaked objects. The larger a ði; jÞ value is, the easier it is to identify Ui as the leaking agent. Thus, we want to distribute data so that values are large.
Problem Definition. Let the distributor have data requests from n agents. The distributor wants to give tables R1 ; ... ; Rn to agents U1 ; ... ; Un , respectively, so that
.
he satisfies agents’ requests, and
.
he maximizes the guilt probability differences ði; jÞ
for all i; j ¼ 1; ... ;n and i ¼ j.
Assuming that the Ri sets satisfy the agents’ requests, we can express the problem as a multicriterion optimization problem:
maximize ... ; i; j ; .. .
i
j:
7
over R1 ;...;Rn
CREATEFAKEOBJECT() has to be aware of the fake objects Fi
ð
Þ
added so far, again to ensure proper statistics.
The distributor can also use function CREATEFAKEOB-

If the optimization problem has an optimal solution, it
means that there exists an allocation D ¼ fR ; ... ; R g such
1
n
JECT() when it wants to send the same fake object to a set of
agents. In this case, the function arguments are the union of

that any other feasible allocation D ¼ fR1 ; ... ; Rn g yields
 ði; jÞ ði; jÞ for all i; j. This means that allocation D
56
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011
allows the distributor to discern any guilty agent with higher confidence than any other allocation, since it maximizes the probability P rfGi jRi g with respect to any other probability P rfGi jRj g with j ¼ i.
Even if there is no optimal allocation D , a multicriterion
problem h as Paret o optimal a llocations. If

po ¼ D
fRpo

The max-objective yields the solution that guarantees that the distributor will detect the guilty agent with a certain confidence in the worst case. Such guarantee may adversely impact the average performance of the distribution.
7
ALLOCATION STRATEGIES
1 ; ... ; Rpo g is a Pareto optimal allocation, it means that
there is no other allocation that yields

 ði; jÞ po ði; jÞ for

In this section, we describe allocation strategies that solve
all

i; j. In other words, if an allocation yields ði; jÞ

exactly or approximately the scalar versions of (8) for the
 po ði; jÞ for some i; j, then there is some i0 ; j0 such that
 ði0 ; j0 Þ po ði0 ; j0 Þ. The choice among all the Pareto optimal allocations implicitly selects the agent(s) we want to identify.
6.3
Objective Approximation
We can approximate the objective of (7) with (8) that does not depend on agents’ guilt probabilities, and therefore, on p:

different instances presented in Fig. 2. We resort to
approximate solutions in cases where it is inefficient to solve accurately the optimization problem.
In Section 7.1, we deal with problems with explicit data requests, and in Section 7.2, with problems with sample data requests.
The proofs of theorems that are stated in the following sections are available in [14].

maximize
ðover R1 ;...;Rn Þ

... ; jRi \ Rj j ; ...
jRi j

i ¼ j:
ð8Þ

7.1
Explicit Data Requests
In problems of class EF , the distributor is not allowed to
This approximation is valid if minimizing the relative overlap jRi \Rj j maximizes ði; jÞ. The intuitive argument for this approximation is that the fewer leaked objects set Rj contains, the less guilty agent Uj will appear compared to Ui (since S ¼ Ri). The example of Section 5.2 supports our
approximation. In Fig. 1, we see that if S ¼ R1 , the difference P rfG1 jSg P rfG2 jSg decreases as the relative
overlap jR2 \Sj increases. Theorem 1 shows that a solution to

add fake objects to the distributed data. So, the data allocation is fully defined by the agents’ data requests. Therefore, there is nothing to optimize.
In EF problems, objective values are initialized by agents’ data requests. Say, for example, that T ¼ ft1 ; t2 g and there are two agents with explicit data requests such that R1 ¼ ft1 ; t2 g and R2 ¼ ft1 g. The value of the sum- objective is in this case
jSj
(7) yields the solution to (8) if each T object is allocated to

2
2
X
X jRi \ Rj j ¼ þ

¼ 1:5:
the same number of agents, regardless of who these agents are. The proof of the theorem is in [14].

Theorem 1. If a distribution D ¼ fR1 ; ... ; Rn g that satisfies agents’ requests minimizes jRi \Rj j and jVt j ¼ jVt j for all t; t0 2

i¼1 jRi j j¼1
2
1
j¼i
The distributor cannot remove or alter the R1 or R2 data to decrease the overlap R1 \ R2 . However, say that the
jRi j
0
T , then D maximizes ði; jÞ.

distributor can create one fake object (B ¼

1) and both
The approximate optimization problem has still multiple criteria and it can yield either an optimal or multiple Pareto optimal solutions. Pareto optimal solutions let us detect a guilty agent Ui with high confidence, at the expense of an inability to detect some other guilty agent or agents. Since the distributor has no a priori information for the agents’ intention to leak their data, he has no reason to bias the object allocation against a particular agent. Therefore, we can scalarize the problem objective by assigning the same weights to all vector objectives. We present two different scalar versions of our problem in (9a) and (9b). In the rest of the paper, we will refer to objective (9a) as the sum-objective and to objective (9b) as the max-objective:

agents can receive one fake object (b1 ¼ b2 ¼ 1). In this case,
the distributor can add one fake object to either R1 or R2 to increase the corresponding denominator of the summation term. Assume that the distributor creates a fake object f and he gives it to agent R1 . Agent U1 has now R1 ¼ ft1 ; t2 ;f g and F1 ¼ ff g and the value of the sum-objective decreases
to 1
1
3 þ 1 ¼ 1:33 < 1:5.
If the distributor is able to create more fake objects, he
could further improve the objective. We present in Algorithms 1 and 2 a strategy for randomly allocating fake objects. Algorithm 1 is a general “driver” that will be used by other strategies, while Algorithm 2 actually performs the random selection. We denote the combination of Algorithm 1 with 2 as e-random. We use e-random as our
maximize
ðover R1 ;...;Rn Þ
maximize

n
n
X
jR \ R j;
ð9aÞ
i 1 jRi j j¼1
j¼i
max jRi \ Rj j :
ð9bÞ

baseline in our comparisons with other algorithms for explicit data requests.
Algorithm 1. Allocation for Explicit Data Requests (EF)

Input: R1 ; ... ; Rn , cond1 ; ... ; condn , b1 ; ... ; bn , B
ðover R1 ;...;Rn Þ

i;j¼1;...;n j¼i

jRi j

Output: R1 ; ... ; Rn , F1 ; ... ; Fn
Both scalar optimization problems yield the optimal solution of the problem of (8), if such solution exists. If there is no global optimal solution, the sum-objective yields the Pareto optimal solution that allows the distributor to detect the guilty agent, on average (over all different agents), with higher confidence than any other distribution.

1: R
;
. Agents that can receive fake objects
2: for i ¼ 1; ... ;n do
3:
if bi > 0 then
4:
R
R [fig
5:
Fi
;
6: while B > 0 do
PAPADIMITRIOU AND GARCIA-MOLINA: DATA LEAKAGE DETECTION
57
7:
i
SELECTAGENTðR; R1 ; ... ; Rn Þ
8:
f
CREATEFAKEOBJECTðRi ; Fi ; condi Þ

7.2
Sample Data Requests
With sample data requests, each agent Ui may receive any T

9:
Ri
Ri [ff g

subset out of ðjT jÞ different ones. Hence, there are Qn

ðjT jÞ
mi
i¼1 mi
10:
Fi
Fi [ff g
11:
bi
bi 1

12:
if bi ¼ 0then
13:
R
RnfRi g

14:
B
B 1

Algorithm 2. Agent Selection for e-random
1: function SELECTAGENT (R; R1 ; ... ; Rn)

2:
i
select at random an agent from R
3: return i
In lines 1-5, Algorithm 1 finds agents that are eligible to receiving fake objects in OðnÞ time. Then, in the main loop in lines 6-14, the algorithm creates one fake object in every iteration and allocates it to random agent. The main loop takes OðBÞ time. Hence, the running time of the algorithm
is Oðn þ BÞ.

different object allocations. In every allocation, the dis-
tributor can permute T objects and keep the same chances of guilty agent detection. The reason is that the guilt probability depends only on which agents have received the leaked objects and not on the identity of the leaked objects. Therefore, from the distributor’s perspective, there are
Qn
jT j
i¼1 ðmi Þ
jT j!
different allocations. The distributor’s problem is to pick one out so that he optimizes his objective. In [14], we formulate the problem as a nonconvex QIP that is NP-hard to solve [15].

Note that the distributor can increase the number of
possible allocations by adding fake objects (and increasing
jT j) but the problem is essentially the same. So, in the rest of
If B Pn

bi , the algorithm minimizes every term of the

this section, we will only deal with problems of class SF ,

objective summation by adding the maximum number bi of fake objects to every set Ri , yielding the optimal solution.

but our algorithms are applicable to SF problems as well.
Otherwise, if B < Pn
¼

bi (as in our example where

7.2.1 Random
An object allocation that satisfies requests and ignores the
B ¼ 1 < b1 þ b2 ¼ 2), the algorithm just selects at random
the agents that are provided with fake objects. We return

distributor’s objective is to give each agent Ui

a randomly
back to our example and see how the objective would change if the distributor adds fake object f to R2 instead of R1 . In this case, the sum-objective would be 1 þ 1 ¼ 1 < 1:33.

selected subset of T of size mi . We denote this algorithm by
s-random and we use it as our baseline. We present s-random
in two parts: Algorithm 4 is a general allocation algorithm that is used by other algorithms in this section. In line 6 of
2
2
The reason why we got a greater improvement is that the
addition of a fake object to R2 has greater impact on the corresponding summation terms, since
1
1
1
1
1
1
<
¼ :

Algorithm 4, there is a call to function SELECTOBJECT() whose implementation differentiates algorithms that rely on Algorithm 4. Algorithm 5 shows function SELECTOBJECT() for s-random.
jR1 j jR1 jþ 1 ¼ 6

jR2 j

jR2 jþ 1
2

Algorithm 4. Allocation for Sample Data Requests (SF)

The left-hand side of the inequality corresponds to the objective improvement after the addition of a fake object to R1 and the right-hand side to R2 . We can use this observation to improve Algorithm 1 with the use of procedure SELECTAGENT() of Algorithm 3. We denote the combination of Algorithms 1 and 3 by e-optimal.
Algorithm 3. Agent Selection for e-optimal
1: function SELECTAGENT (R; R1 ; ... ; Rn)

Input: m1 ; ... ; mn , jT j
. Assuming mi jT j

Output: R1 ; ... ; Rn
1: a
0jT j
. a½k :number of agents who have received object tk
2: R1
;; ... ; Rn
;
3: remaining
Pn mi
¼
4: while remaining > 0 do
5:
for all i ¼ 1; ... ;n : jRi j < mi do
6:
k
SELECTOBJECTði; Ri Þ
. May also use
2:
i
argmax
i0 :Ri0 2R
3: return i

 1
jRi0 j

1
jRi0 jþ 1

 X
jRi0 \ Rj j
j

additional parameters
7:
Ri
Ri [ftk g

8:
a½k
a½k þ 1

9:
remaining
remaining 1

Algorithm 3 makes a greedy choice by selecting the agent that will yield the greatest improvement in the sum- objective. The cost of this greedy choice is Oðn2 Þ in every

Algorithm 5. Object Selection for s-random
1: function SELECTOBJECTði; Ri Þ
2:
k
select at random an element from set
iteration. The overall running time of e-optimal is
Oðn þ n2 BÞ ¼ Oðn2 BÞ. Theorem 2 shows that this greedy

fk0
3:

j tk0

2 Ri g
k
approach finds an optimal distribution with respect to both

return

T j that shows the
optimization objectives defined in (9).

Theorem 2. Algorithm e-optimal yields an object allocation that minimizes both sum- and max-objective in problem instances of class EF .

In s-random, we introduce vector a 2 Nj
object sharing distribution. In particular, element a½k shows the number of agents who receive object tk .

Algorithm s-random allocates objects to agents in a
round-robin fashion. After the initialization of vectors d and
58
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011
a in lines 1 and 2 of Algorithm 4, the main loop in lines 4-9 is executed while there are still data objects (remaining > 0) to be allocated to agents. In each iteration of this loop (lines 5-9), the algorithm uses function SELECTOBJECT() to find a random object to allocate to agent Ui . This loop iterates over all agents who have not received the number of data objects they have requested.

the sum of overlaps, i.e., Pnj 1 jRi \ Rj j. If requests are all
of the same size (m
j¼i), then s-overlap minimizes the sum-objective.

To illustrate that s-overlap does not minimize the sum- objective, assume that set T has four objects and there are four agents requesting samples with sizes m1 ¼ m2 ¼ 2 and
The running time of the algorithm is Oð Pn

mi Þ and

m3 ¼ m4

¼ 1. A possible data allocation from s-overlap is
depends on the running time of the object selection
function SELECTOBJECT(). In case of random selection, we can have ¼ Oð1Þ by keeping in memory a set fk0 j tk0 2 Ri g for each agent Ui .

Algorithm s-random may yield a poor data allocation. Say, for example, that the distributor set T has three objects
and there are three agents who request one object each. It is

R1 ¼ ft1 ; t2 g;
R2 ¼ ft3 ; t4 g;
R3 ¼ ft1 g;
R4 ¼ ft3 g:

ð10Þ
Allocation (10) yields:
4
X
jR \ R j ¼ þ þ þ ¼ 3:
possible that s-random provides all three agents with the same object. Such an allocation maximizes both objectives

i 1 jRi j j¼1
j¼i

j
2
2
1
1
(9a) and (9b) instead of minimizing them.
7.2.2 Overlap Minimization
In the last example, the distributor can minimize both objectives by allocating distinct sets to all three agents. Such an optimal allocation is possible, since agents request in total fewer objects than the distributor has.
We can achieve such an allocation by using Algorithm 4

and SELECTOBJECT() of Algorithm 6. We denote the

With this allocation, we see that if agent U3 leaks his data,
we will equally suspect agents U1 and U3 . Moreover, if
agent U1 leaks his data, we will suspect U3 with high probability, since he has half of the leaked data. The
situation is similar for agents U2 and U4 .

However, the following object allocation
R1 ¼ ft1 ; t2 g;
R2 ¼ ft1 ; t2 g;
R3 ¼ ft3 g;
R4 ¼ ft4 g ð11Þ
yields a sum-objective equal to 2 þ 2 þ 0 þ 0 ¼ 2 < 3, which
2
2
resulting algorithm by s-overlap. Using Algorithm 6, in
each iteration of Algorithm 4, we provide agent Ui with an object that has been given to the smallest number of agents. So, if agents ask for fewer objects than jT j, Algorithm 6 will return in every iteration an object that no agent has received so far. Thus, every agent will receive a data set with objects that no other agent has.
Algorithm 6. Object Selection for s-overlap
1: function SELECTOBJECT (i; Ri ; a)
2:
K
fk j k ¼ argmin a½k0 g

k0
3:
k
select at random an element from set
fk0 j k0 2 K ^ tk0 2 Ri g

4:
return k
The running time of Algorithm 6 is Oð1Þ if we keep in memory the set fkjk ¼ argmink0 a½k0 g. This set contains initially all indices f1; ... ; jT jg, since a½k ¼ 0 for all k ¼ 1; ... ; jT j. After every Algorithm 4 main loop iteration,
we remove from this set the index of the object that we give to an agent. After jT j iterations, this set becomes empty and we have to reset it again to f1; ... ; jT jg, since at this point, a½k ¼ 1 for all k ¼ 1; ... ; jT j. The total running time of

shows that the first allocation is not optimal. With this
allocation, we will equally suspect agents U1 and U2 if either of them leaks his data. However, if either U3 or U4 leaks his data, we will detect him with high confidence. Hence, with the second allocation we have, on average, better chances of detecting a guilty agent.
7.2.3 Approximate Sum-Objective Minimization
The last example showed that we can minimize the sum- objective, and therefore, increase the chances of detecting a guilty agent, on average, by providing agents who have small requests with the objects shared among the fewest agents. This way, we improve our chances of detecting guilty agents with small data requests, at the expense of reducing our chances of detecting guilty agents with large data requests. However, this expense is small, since the probability to detect a guilty agent with many objects is less affected by the fact that other agents have also received his data (see Section 5.2). In [14], we provide an algorithm that implements this intuition and we denote it by s-sum. Although we evaluate this algorithm in Section 8, we do not present the pseudocode here due to the space limitations.
7.2.4 Approximate Max-Objective Minimization
Algorithm s-overlap is optimal for the max-objective
algorithm s-random is thus OðPn

mi Þ.

optimization only if Pn

mi jT j. Note also that s-sum as
Let M ¼ Pn

mi . If M jT j, algorithm s-overlap yields

well as s-random ignore this objective. Say, for example, that
disjoint data sets and is optimal for both objectives (9a) and
(9b). If M > jT j, it can be shown that algorithm s-random
yields an object sharing distribution such that:
 M jT jþ 1 for M mod jT j entries of vector a;

set T contains for objects and there are four agents, each requesting a sample of two data objects. The aforementioned algorithms may produce the following data allocation:
R1 ¼ ft1 ; t2 g;
R2 ¼ ft1 ; t2 g;
R3 ¼ ft3 ; t4 g;
and
a½k ¼

M jT j
for the rest:

R4 ¼ ft3 ; t4 g:

Theorem 3. In general, Algorithm s-overlap does not minimize sum-objective. However, s-overlap does minimize

Although such an allocation minimizes the sum-objective, it allocates identical sets to two agent pairs. Consequently, if
PAPADIMITRIOU AND GARCIA-MOLINA: DATA LEAKAGE DETECTION
59
an agent leaks his values, he will be equally guilty with an innocent agent.
To improve the worst-case behavior, we present a new
algorithm that builds upon Algorithm 4 that we used in s-random and s-overlap. We define a new SELECTOBJECT() procedure in Algorithm 7. We denote the new algorithm by s-max. In this algorithm, we allocate to an agent the object that yields the minimum increase of the maximum relative overlap among any pair of agents. If we apply s-max to the example above, after the first five main loop iterations in Algorithm 4, the Ri sets are:

optimization problem of (7). In this section, we evaluate the presented algorithms with respect to the original problem. In this way, we measure not only the algorithm perfor- mance, but also we implicitly evaluate how effective the approximation is.
The objectives in (7) are the difference functions. Note
that there are nðn 1Þ objectives, since for each agent Ui , there are n 1 differences ði; jÞ for j ¼ 1; ... ;n and j ¼ i. We evaluate a given allocation with the following objective scalarizations as metrics:
Pi;j¼1;...;n ði; jÞ
R1 ¼ ft1 ; t2 g;
R2 ¼ ft2 g;
R3 ¼ ft3 g;
and R4 ¼ ft4 g:
In the next iteration, function SELECTOBJECT() must decide

 :¼

i¼j
nðn 1Þ

;
ð12aÞ
which object to allocate to agent U2 . We see that only objects t3 and t4 are good candidates, since allocating t1 to U2 will yield a full overlap of R1 and R2 . Function SELECTOBJECT() of s-max returns indeed t3 or t4 .

Algorithm 7. Object Selection for s-max
1: function SELECTOBJECT (i; R1 ; ... ; Rn ; m1 ; ... ; mn)

2:

min overlap
1
. the minimum out of the maximum relative overlaps that the allocations of different objects to Ui yield
3:
for k 2 fk0 j tk0 2 Ri g do
4:

max rel ov
0 . the maximum relative overlap between Ri and any set Rj that the allocation of tk to Ui yields
5:
for all j ¼ 1; ... ;n : j ¼ i and tk 2 Rj do
6:
abs ov
jRi \ Rj jþ 1

7:
rel ov
abs ov=minðmi ; mj Þ
8:
max rel ov
Maxðmax rel ov; rel ovÞ
9:
if max rel ov min overlap then
10:
min overlap
max rel ov
11:
ret k
k
12:
return ret k
The running time of SELECTOBJECT() is OðjT jnÞ, since the external loop in lines 3-12 iterates over all objects that agent Ui has not received and the internal loop in lines 5-8 over all agents. This running time calculation implies that we keep the overlap sizes Ri \ Rj for all agents in a two- dimensional array that we update after every object allocation.
It can be shown that algorithm s-max is optimal for the sum-objective and the max-objective in problems where M jT j. It is also optimal for the max-objective if jT j M 2jT j or m1 ¼ m2 ¼ ¼ mn .

8
EXPERIMENTAL RESULTS
We implemented the presented allocation algorithms in Python and we conducted experiments with simulated data leakage problems to evaluate their performance. In Section 8.1, we present the metrics we use for the algorithm evaluation, and in Sections 8.2 and 8.3, we present the evaluation for sample requests and explicit data requests, respectively.
8.1
Metrics
In Section 7, we presented algorithms to optimize the problem of (8) that is an approximation to the original

min :
min i; j :
12b
i;j¼1;...;n
i¼j
Metric is the average of ði; jÞ values for a given allocation and it shows how successful the guilt detection is, on average, for this allocation. For example, if ¼ 0:4, then, on average, the probability P rfGi jRi g for the actual guilty agent will be 0.4 higher than the probabilities of nonguilty agents. Note that this scalar version of the original problem objective is analogous to the sum-objective scalarization of the problem of (8). Hence, we expect that an algorithm that is designed to minimize the sum-objective will maximize .

Metric min is the minimum ði; jÞ value and it
corresponds to the case where agent Ui has leaked his data and both Ui and another agent Uj have very similar guilt probabilities. If min is small, then we will be unable to identify Ui as the leaker, versus Uj . If min is large, say, 0.4, then no matter which agent leaks his data, the probability that he is guilty will be 0.4 higher than any other nonguilty agent. This metric is analogous to the max-objective scalarization of the approximate optimization problem.
The values for these metrics that are considered acceptable will of course depend on the application. In particular, they depend on what might be considered high confidence that an agent is guilty. For instance, say that P rfGi jRi g ¼ 0:9 is enough to arouse our suspicion that agent Ui leaked data. Furthermore, say that the difference between P rfGi jRi g and any other P rfGj jRi g is at least 0.3. In other words, the guilty agent is ð0:9 0:6Þ=0:6 100% ¼
50% more likely to be guilty compared to the other agents. In this case, we may be willing to take action against Ui (e.g., stop doing business with him, or prosecute him). In the rest of this section, we will use value 0.3 as an example of what might be desired in values.
To calculate the guilt probabilities and differences, we
use throughout this section p ¼ 0:5. Although not reported here, we experimented with other p values and observed that the relative performance of our algorithms and our main conclusions do not change. If p approaches to 0, it becomes easier to find guilty agents and algorithm performance converges. On the other hand, if p approaches
1, the relative differences among algorithms grow since more evidence is needed to find an agent guilty.
8.2
Explicit Requests
In the first place, the goal of these experiments was to see whether fake objects in the distributed data sets yield significant improvement in our chances of detecting a
60
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011
[image: image3.png]0.67

o
N

no fake —e—e-random —v— e-optimal

no fake —e—e-random —v—e-optimal

o
o

o S o
[I [3)

A + 95% confidence

o
)
min A 4+ 95% confidence

0 0.05 0.1 0.15 0.2 0.25 0 005 0.1 015 02 025
B/ i |Ri — Fi B/Y i 1 |Ri — F

Fig. 3. Evaluation of explicit data request algorithms. (a) Average . (b) Average min .
guilty agent. In the second place, we wanted to evaluate our e-optimal algorithm relative to a random allocation.
We focus on scenarios with a few objects that are shared
among multiple agents. These are the most interesting scenarios, since object sharing makes it difficult to distin- guish a guilty from nonguilty agents. Scenarios with more objects to distribute or scenarios with objects shared among fewer agents are obviously easier to handle. As far as scenarios with many objects to distribute and many over- lapping agent requests are concerned, they are similar to the scenarios we study, since we can map them to the distribution of many small subsets.
In our scenarios, we have a set of jT j ¼ 10 objects for
which there are requests by n ¼ 10 different agents. We assume that each agent requests eight particular objects out of these 10. Hence, each object is shared, on average, among
Pn
jT j
¼ 8
agents. Such scenarios yield very similar agent guilt probabilities and it is important to add fake objects. We generated a random scenario that yielded ¼ 0:073 and min ¼ 0:35 and we applied the algorithms e-random and e-optimal to distribute fake objects to the agents (see [14] for other randomly generated scenarios with the same para- meters). We varied the number B of distributed fake objects from 2 to 20, and for each value of B, we ran both algorithms to allocate the fake objects to agents. We ran e- optimal once for each value of B, since it is a deterministic algorithm. Algorithm e-random is randomized and we ran it 10 times for each value of B. The results we present are

improves further, since the e-optimal curve is consistently over the 95 percent confidence intervals of e-random. The performance difference between the two algorithms would be greater if the agents did not request the same number of objects, since this symmetry allows nonsmart fake object allocations to be more effective than in asymmetric scenarios. However, we do not study more this issue here, since the advantages of e-optimal become obvious when we look at our second metric.
Fig. 3b shows the value of min , as a function of the
fraction of fake objects. The plot shows that random allocation will yield an insignificant improvement in our chances of detecting a guilty agent in the worst-case scenario. This was expected, since e-random does not take into consideration which agents “must” receive a fake object to differentiate their requests from other agents. On the contrary, algorithm e-optimal can yield min > 0:3 with the allocation of approximately 10 percent fake objects. This improvement is very important taking into account that without fake objects, values min and are close to 0. This means that by allocating 10 percent of fake objects, the distributor can detect a guilty agent even in the worst-case leakage scenario, while without fake objects, he will be unsuccessful not only in the worst case but also in average case.
Incidentally, the two jumps in the e-optimal curve are due to the symmetry of our scenario. Algorithm e-optimal allocates almost one fake object per agent before allocating a second fake object to one of them.
The presented experiments confirmed that fake objects
can have a significant impact on our chances of detecting a
the average over the 10 runs.

guilty agent. Note also that the algorithm evaluation was on
Fig. 3a shows how fake object allocation can affect .
There are three curves in the plot. The solid curve is constant and shows the value for an allocation without fake objects (totally defined by agents’ requests). The other two curves look at algorithms e-optimal and e-random. The y-axis shows and the x-axis shows the ratio of the number of distributed fake objects to the total number of objects that the agents explicitly request.
We observe that distributing fake objects can signifi-

the original objective. Hence, the superior performance of e- optimal (which is optimal for the approximate objective) indicates that our approximation is effective.
8.3
Sample Requests
With sample data requests, agents are not interested in particular objects. Hence, object sharing is not explicitly defined by their requests. The distributor is “forced” to allocate certain objects to multiple agents only if the number
cantly improve, on average, the chances of detecting a guilty

of requested objects Pn
¼

mi exceeds the number of objects
agent. Even the random allocation of approximately 10 to
15 percent fake objects yields > 0:3. The use of e-optimal

in set T . The more data objects the agents request in total,
the more recipients, on average, an object has; and the more
PAPADIMITRIOU AND GARCIA-MOLINA: DATA LEAKAGE DETECTION
61
[image: image4.png]s—-random
—e—s—overlap
—¥—s-sum
—=—s—max

o
©

A + 95% confidence
o o o
o ~ o)

S
3

o
>

Sia|Ral /T

(@)

s—random
| —e—s—overlap
0.85 —¥—s-sum
—8—s—max
0.9r
—~—
& 0.85¢
55:
& 0.8
0.75¢
0.7¢
0.650] > 5

3
S| Ril/|T|

(b)

o
©

s—-random
—e—s—overlap
—¥—S—-sum
—&—s—max

2
o))

min A £ 95% confidence
o
>

;s
S| Ril/|T|

(c)

Fig. 4. Evaluation of sample data request algorithms. (a) Average . (b) Average PrfGi jSi g. (c) Average min .
objects are shared among different agents, the more difficult it is to detect a guilty agent. Consequently, the parameter that primarily defines the difficulty of a problem with sample data requests is the ratio
 i¼1 mi :
jT j
We call this ratio the load. Note also that the absolute values of m1 ; ... ; mn and jT j play a less important role than the relative values mi =jT j. Say, for example, that T ¼ 99 and algorithm X yields a good allocation for the agents’ requests m1 ¼ 66 and m2 ¼ m3 ¼ 33. Note that for any jT j and m1 =jT j ¼ 2=3, m2 =jT j ¼ m3 =jT j ¼ 1=3, the problem is essentially similar and algorithm X would still yield a good allocation.
In our experimental scenarios, set T has 50 objects and we vary the load. There are two ways to vary this number:
1) assume that the number of agents is fixed and vary their
sample sizes mi , and 2) vary the number of agents who request data. The latter choice captures how a real problem may evolve. The distributor may act to attract more or fewer agents for his data, but he does not have control upon agents’ requests. Moreover, increasing the number of agents allows us also to increase arbitrarily the value of the load, while varying agents’ requests poses an upper bound njT j.

Our first scenario includes two agents with requests m1 and m2 that we chose uniformly at random from the interval 6; ... ; 15. For this scenario, we ran each of the algorithms s-random (baseline), s-overlap, s-sum, and s-max 10 different times, since they all include randomized steps. For each run of every algorithm, we calculated and min and the average over the 10 runs. The second scenario adds agent U3 with m3 U ½6; 15 to the two agents of the first scenario. We repeated the 10 runs for each algorithm to allocate objects to three agents of the second scenario and calculated the two metrics values for each run. We continued adding agents and creating new scenarios to reach the number of 30 different scenarios. The last one had
31 agents. Note that we create a new scenario by adding an agent with a random request mi U ½6; 15 instead of assuming mi ¼ 10 for the new agent. We did that to avoid studying scenarios with equal agent sample request sizes, where certain algorithms have particular properties, e.g., s-overlap optimizes the sum-objective if requests are all the same size, but this does not hold in the general case.

In Fig. 4a, we plot the values that we found in our scenarios. There are four curves, one for each algorithm. The x-coordinate of a curve point shows the ratio of the total number of requested objects to the number of T objects for the scenario. The y-coordinate shows the average value of over all 10 runs. Thus, the error bar around each point shows the 95 percent confidence interval of values in the
10 different runs. Note that algorithms s-overlap, s-sum, and s-max yield values that are close to 1 if agents request in total fewer objects than jT j. This was expected since in such scenarios, all three algorithms yield disjoint set allocations, which is the optimal solution. In all scenarios, algorithm s-sum outperforms the other ones. Algorithms s-overlap and s-max yield similar values that are between s-sum and s-random. All algorithms have around 0.5 for load ¼ 4:5, which we believe is an acceptable value.
Note that in Fig. 4a, the performances of all algorithms
appear to converge as the load increases. This is not true and we justify that using Fig. 4b, which shows the average guilt probability in each scenario for the actual guilty agent. Every curve point shows the mean over all 10 algorithm runs and we have omitted confidence intervals to make the plot easy to read. Note that the guilt probability for the random allocation remains significantly higher than the other algorithms for large values of the load. For example, if load 5:5, algorithm s-random yields, on average, guilt probability 0.8 for a guilty agent and 0:8 ¼ 0:35 for nonguilty agent. Their relative difference is 0:8 0:35 1:3. The corresponding probabilities that s-sum yields are 0.75 and
0.25 with relative difference 0:75 0:25 ¼ 2. Despite the fact that
the absolute values of converge the relative differences in the guilt probabilities between a guilty and nonguilty agents are significantly higher for s-max and s-sum compared to s-random. By comparing the curves in both figures, we conclude that s-sum outperforms other algorithms for small load values. As the number of objects that the agents request increases, its performance becomes comparable to s-max. In such cases, both algorithms yield very good chances, on average, of detecting a guilty agent. Finally, algorithm s-overlap is inferior to them, but it still yields a significant improvement with respect to the baseline.
In Fig. 4c, we show the performance of all four
algorithms with respect to min metric. This figure is
62
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 1, JANUARY 2011
similar to Fig. 4a and the only change is the y-axis. Algorithm s-sum now has the worst performance among all the algorithms. It allocates all highly shared objects to agents who request a large sample, and consequently, these agents receive the same object sets. Two agents Ui and Uj who receive the same set have ði; jÞ ¼ ðj; iÞ ¼ 0. So, if either of Ui and Uj leaks his data, we cannot distinguish which of them is guilty. Random allocation has also poor performance, since as the number of agents increases, the probability that at least two agents receive many common objects becomes higher. Algorithm s-overlap limits the random allocation selection among the allocations who achieve the minimum absolute overlap summation. This fact improves, on average, the min values, since the smaller absolute overlap reduces object sharing, and consequently, the chances that any two agents receive sets with many common objects.
Algorithm s-max, which greedily allocates objects to optimize max-objective, outperforms all other algorithms and is the only that yields min > 0:3 for high values of i¼1 mi . Observe that the algorithm that targets at sum-
objective minimization proved to be the best for the
maximization and the algorithm that targets at max- objective minimization was the best for min maximiza- tion. These facts confirm that the approximation of objective (7) with (8) is effective.
9
CONCLUSIONS
In a perfect world, there would be no need to hand over sensitive data to agents that may unknowingly or mal- iciously leak it. And even if we had to hand over sensitive data, in a perfect world, we could watermark each object so that we could trace its origins with absolute certainty. However, in many cases, we must indeed work with agents that may not be 100 percent trusted, and we may not be certain if a leaked object came from an agent or from some other source, since certain data cannot admit watermarks.
In spite of these difficulties, we have shown that it is possible to assess the likelihood that an agent is responsible for a leak, based on the overlap of his data with the leaked data and the data of other agents, and based on the probability that objects can be “guessed” by other means. Our model is relatively simple, but we believe that it captures the essential trade-offs. The algorithms we have presented implement a variety of data distribution strate- gies that can improve the distributor’s chances of identify- ing a leaker. We have shown that distributing objects judiciously can make a significant difference in identifying guilty agents, especially in cases where there is large overlap in the data that agents must receive.
Our future work includes the investigation of agent guilt models that capture leakage scenarios that are not studied in this paper. For example, what is the appropriate model for cases where agents can collude and identify fake tuples? A preliminary discussion of such a model is available in [14]. Another open problem is the extension of our allocation strategies so that they can handle agent requests in an online fashion (the presented strategies assume that there is a fixed set of agents with requests known in advance).

ACKNOWLEDGMENTS
This work was supported by the US National Science Foundation (NSF) under Grant no. CFF-0424422 and an Onassis Foundation Scholarship. The authors would like to thank Paul Heymann for his help with running the nonpolynomial guilt model detection algorithm that they present in [14, Appendix] on a Hadoop cluster. They also thank Ioannis Antonellis for fruitful discussions and his comments on earlier versions of this paper.
REFERENCES
[1] R. Agrawal and J. Kiernan, “Watermarking Relational Databases,” Proc. 28th Int’l Conf. Very Large Data Bases (VLDB ’02), VLDB Endowment, pp. 155-166, 2002.

[2] P. Bonatti, S.D.C. di Vimercati, and P. Samarati, “An Algebra for Composing Access Control Policies,” ACM Trans. Information and System Security, vol. 5, no. 1, pp. 1-35, 2002.

[3] P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A Characterization of Data Provenance,” Proc. Eighth Int’l Conf. Database Theory (ICDT ’01), J.V. den Bussche and V. Vianu, eds.,
pp. 316-330, Jan. 2001.

[4] P. Buneman and W.-C. Tan, “Provenance in Databases,” Proc.

ACM SIGMOD, pp. 1171-1173, 2007.

[5] Y. Cui and J. Widom, “Lineage Tracing for General Data
Warehouse Transformations,” The VLDB J., vol. 12, pp. 41-58,

2003.

[6] S. Czerwinski, R. Fromm, and T. Hodes, “Digital Music Distribu- tion and Audio Watermarking,” http://www.scientificcommons. org/43025658, 2007.

[7] F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li, “An Improved Algorithm to Watermark Numeric Relational Data,” Information Security Applications, pp. 138-149, Springer, 2006.

[8] F. Hartung and B. Girod, “Watermarking of Uncompressed and
Compressed Video,” Signal Processing, vol. 66, no. 3, pp. 283-301,

1998.

[9] S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian, “Flexible Support for Multiple Access Control Policies,” ACM Trans. Database Systems, vol. 26, no. 2, pp. 214-260, 2001.

[10] Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting Relational
Databases: Schemes and Specialties,” IEEE Trans. Dependable and
Secure Computing, vol. 2, no. 1, pp. 34-45, Jan.-Mar. 2005.

[11] B. Mungamuru and H. Garcia-Molina, “Privacy, Preservation and Performance: The 3 P’s of Distributed Data Management,” technical report, Stanford Univ., 2008.

[12] V.N. Murty, “Counting the Integer Solutions of a Linear Equation with Unit Coefficients,” Math. Magazine, vol. 54, no. 2, pp. 79-81,

1981.

[13] S.U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani, “Towards Robustness in Query Auditing,” Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB ’06), VLDB Endowment, pp. 151-162,

2006.

[14] P. Papadimitriou and H. Garcia-Molina, “Data Leakage Detec- tion,” technical report, Stanford Univ., 2008.

[15] P.M. Pardalos and S.A. Vavasis, “Quadratic Programming with One Negative Eigenvalue Is NP-Hard,” J. Global Optimization, vol. 1, no. 1, pp. 15-22, 1991.

[16] J.J.K.O. Ruanaidh, W.J. Dowling, and F.M. Boland, “Watermark- ing Digital Images for Copyright Protection,” IEE Proc. Vision, Signal and Image Processing, vol. 143, no. 4, pp. 250-256, 1996.

[17] R. Sion, M. Atallah, and S. Prabhakar, “Rights Protection for
Relational Data,” Proc. ACM SIGMOD, pp. 98-109, 2003.
[18] L. Sweeney, “Achieving K-Anonymity Privacy Protection Using Generalization and Suppression,” http://en.scientificcommons. org/43196131, 2002.

PAPADIMITRIOU AND GARCIA-MOLINA: DATA LEAKAGE DETECTION
63
Panagiotis Papadimitriou received the diplo- ma degree in electrical and computer engi- neering from the National Technical University of Athens in 2006 and the MS degree in electrical engineering from Stanford University in 2008. He is currently working toward the PhD degree in the Department of Electrical Engineering at Stanford University, California. His research interests include Internet adver- tising, data mining, data privacy, and web
search. He is a student member of the IEEE.

Hector Garcia-Molina received the BS degree in electrical engineering from the Instituto Tecnologico de Monterrey, Mexico, in 1974, and the MS degree in electrical engineering and the PhD degree in computer science from Stanford University, California, in 1975 and
1979, respectively. He is the Leonard Bosack and Sandra Lerner professor in the Departments of Computer Science and Electrical Engineering at Stanford University, California. He was the
chairman of the Computer Science Department from January 2001 to
December 2004. From 1997 to 2001, he was a member of the President’s Information Technology Advisory Committee (PITAC). From August 1994 to December 1997, he was the director of the Computer Systems Laboratory at Stanford. From 1979 to 1991, he was in the Faculty of the Computer Science Department at Princeton University, New Jersey. His research interests include distributed computing systems, digital libraries, and database systems. He holds an honorary PhD degree from ETH Zurich in 2007. He is a fellow of the ACM and the American Academy of Arts and Sciences and a member of the National Academy of Engineering. He received the 1999 ACM SIGMOD Innovations Award. He is a venture advisor for Onset Ventures and is a member of the Board of Directors of Oracle. He is a member of the IEEE and the IEEE Computer Society.
. For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.
I

jSj

ð 	ð 	Þ	Þ	¼ 	ð Þ

n

jRi j

1

1

1

X

1

i

j

¼

i¼1

i 1

i 1

i; ¼

1 ¼ ¼ mn

i¼1

4

1

¼

X	1	1	1	1

i

i

i¼1

i¼1

¼ 	ð 	Þ	ð 	Þ

 i¼1 jRi j

i 1

Pn

0:35

0:25

Pn

�

�

