
52

JAVA NOTES

DATA STRUCTURES AND ALGORITHMS

Terry Marris July 2001

8 STACK IMPLEMENTATION - ARRAYS

8.1 LEARNING OUTCOMES

By the end of this lesson the student should be able to

 • describe how an array may be used to implement the standard stack operations
 • explain additional stack methods
 • test stack methods
 • use stacks to solve simple problems

8.2 INTRODUCTION

In the last lesson on the stack interface we saw that a stack is a linear data storage structure
where items are added and removed from the same end. We described the properties of a
stack. We described what the standard stack methods, push(), pop() and peek() do. Now we
go on to describe how they do it. We shall implement the stack interface by using an array as
the underlying data storage structure.

53

8.3 ARRAY IMPLEMENTATION

We shall need an array of objects and two instance variables, one to hold the number of
elements in the array (capacity) and another to indicate the top of the stack.

 Object[] data;
 int capacity;
 int top;

The array is named data. We fix its capacity to (an arbitrary) five elements. Initially, the
array is empty and top has the value -1.

 data top capacity = 5
4
3
2
1
0
 -1

Figure 8.1 An Empty Stack

Instead of drawing the array horizontally, as we usually do, we have drawn it vertically with
the first element (numbered zero) at the bottom.

Straight away we can write the implementation for isEmpty(). A stack is empty if top == -1.
Or put another way, a stack is empty if top is less than zero.

 public boolean isEmpty()
 /* Returns true if this stack contains no objects,
 false otherwise.
 */
 {
 return top < 0;
 }

54

A full stack might look like this.

 data top capacity = 5
4 typing 4
3 delete
2 paste
1 copy
0 edit

Figure 8.2 A Full Stack

A stack is full when top + 1 == capacity. We prefer to write top + 1 >= capacity because it
is safer. The stack is certainly full if top is the same as capacity.

 public boolean isFull()
 /* Returns true if this stack cannot contain an additional
 object, false otherwise.
 */
 {
 if (top + 1 >= capacity)
 return true;
 else
 return false;
 }

55

To add an object to the stack we

 check to see if there is room
 if so, we increment top and store the object in data[top].

After adding edit to an empty stack the picture looks like this

 data top capacity = 5
4
3
2
1
0 edit 0

Figure 8.3 A Stack with One Item

A stack containing three items would look like this.

 data top capacity = 5
4
3
2 paste 2
1 copy
0 edit

Figure 8.4 A Stack with Three Items

56

To remove an item we

 first check that the stack is not empty
 if so, we decrement top.

 data top capacity = 5
4
3
2 paste
1 copy 1
0 edit

Figure 8.4 A Stack with Two Items (After Removing One Item)

Ok. paste is physically left in the stack. But it is logically removed because the next push()
operation increments top and places the next object in data[2], overwriting what was stored
there before.

 public String pop()
 /* Removes the item at the top of this stack, if there is
 one, and returns success, otherwise returns failure.
 */
 {
 if (isEmpty())
 return "failure - stack empty";
 top--;
 return "success";
 }

57

The peek() operation just returns the object at location top in the array. In Figure 8.4 copy
would be returned.

 public Object peek()
 /* Returns the item at the top of this stack, if there is
 one, otherwise returns null.
 */
 {
 if (isEmpty())
 return null;
 return data[top];
 }

The complete implementation of the Stack interface is shown below. Notice that

 we have documented each method with a short description of WHAT it does
 we have provided additional methods, isFull(), size() and getCapacity()
 we have provided two constructors (an interface cannot have constructors because it

cannot be instantiated)

58

/* ArrayStack.java
 Terry Marris 19 July 2001
*/

public class ArrayStack implements Stack {
 /* Implements the standard stack operations push,
 pop, peek and isEmpty(). In addition implements
 constructors, isFull(), getCapacity() and size().
 */

 private Object[] data;
 private int capacity;
 private int top;

 public ArrayStack(int capacity)
 /* Initialises a new stack with the given capacity.
 */
 {
 capacity = Math.abs(capacity); // ensure capacity >= 0
 this.capacity = capacity;
 data = new Object[capacity];
 top = -1;
 }

 public ArrayStack()
 /* Initialises a new stack with a capacity of 10 objects.
 */
 {
 this(10);
 }

 public boolean isEmpty()
 /* Returns true if this stack contains no objects,
 false otherwise.
 */
 {
 return top < 0;
 }

59

 public boolean isFull()
 /* Returns true if this stack cannot contain an additional
 object, false otherwise.
 */
 {
 if (top + 1 >= capacity)
 return true;
 else
 return false;
 }

 public String push(Object obj)
 /* Places the given object on this stack, if there is room,
 and returns success,
 otherwise returns failure.
 */
 {
 if (isFull())
 return "failure - stack full";
 top++;
 data[top] = obj;
 return "success";
 }

 public String pop()
 /* Removes the item at the top of this stack, if there is
 one, and returns success, otherwise returns failure.
 */
 {
 if (isEmpty())
 return "failure - stack empty";
 top--;
 return "success";
 }

 public Object peek()
 /* Returns the item at the top of this stack, if there is
 one, otherwise returns null.
 */
 {
 if (isEmpty())
 return null;
 return data[top];
 }

60

 public int getCapacity()
 /* Returns the maximum number of objects this stack can
 contain.
 */
 {
 return capacity;
 }

 public int size()
 /* Returns the number of objects currently held on this
 stack.
 */
 {
 return top + 1;
 }
}

Important note: Your Stack interface may be in a different directory to the one that contains
your ArrayStack class. If you compile ArrayStack.java and the compiler reports Class Stack
not found you must tell the compiler where to look for your Array interface by using the set
classpath command. For example, at a DOS prompt you might enter

set classpath=.;c:\JavaNotes\DataStructures\J7Stacks

full stop semi or whatever path it is
means this colon to Array.java on your
directory is a path system

 separator

Notice that there is no space before and after the = symbol.

61

8.4 TESTING THE ARRAY STACK

The test program shown below creates a stack with a capacity of five, pushes five objects
onto a stack, and then empties the stack item by item.

/* TestArrayStack.java
 Terry Marris 19 July 2001
*/

public class TestArrayStack {
 public static void main(String[] s)
 {
 ArrayStack stack = new ArrayStack(5);
 System.out.println("A new stack is an empty stack ... " +
 stack.isEmpty());

 System.out.println("Adding five strings ...");
 System.out.println("if: " +
 stack.push(new String("if")));
 System.out.println("else: " +
 stack.push(new String("else")));
 System.out.println("switch: " +
 stack.push(new String("switch")));
 System.out.println("case: " +
 stack.push(new String("case")));
 System.out.println("default: " +
 stack.push(new String("default")));

 System.out.println("The stack is now full ..." +
 stack.isFull());

 System.out.println("Adding a string to a full stack ...");
 System.out.println("while: " +
 stack.push(new String("while")));

 System.out.println("Emptying the stack item by item ...");
 while (!stack.isEmpty()) {
 System.out.println(stack.peek());
 stack.pop();
 }
 }
}

62

Output

A new stack is an empty stack ... true
Adding five strings to the stack ...
if: success
else: success
switch: success
case: success
default: success
The stack is now full ...true
Adding a string to a full stack ...
while: failure - stack full
Emptying the stack item by item ...
default
case
switch
else
if

Notice that the output is in reverse order of the input to the stack.

8.5 REVIEW

8.6 FURTHER READING

In the next lesson we see how to implement a stack without using an array.

63

8.7 EXERCISES

1 Test the methods isFull(), getCapacity() and size().

2 Write and test the method boolean isBalanced(String arithmeticExpression) that returns
true if the brackets in the given arithmetic expression are both balanced and well formed. for
example

 (a + b) balanced and well-formed
 (a + b unbalanced
 a + b) unbalanced
 (a + b)) * ((c + d) balanced (equal numbers of (and), but not well-formed

