 ABSTRACT

ABSTRACT

 The ARM processor, unlike many other processors, was designed within a single company to meet its particular requirements for product development. One of the reasons the ARM was designed as a small-scale processor was that the resources to design it were not sufficient to allow the creation of a large and complex device. While ARM was developed as a custom device for a highly specific purpose, the team designing it felt that the best way to produce a good custom chip was to produce a chip with good all-round performance.ARM as a controller is used for arcade computer games, high-speed data communications, videophones, fuzzy logic controllers, and test equipment.
	Everything on the Internet involves packets. Each packet carries the information that will help it get to its destination -- the sender's IP address, the intended receiver's IP address, something that tells the network how many packets this e-mail message has been broken into and the number of this particular packet. The packets carry the data within the protocols that the Internet uses: Transmission Control Protocol/Internet Protocol (TCP/IP). When a device connects to a network and begins communicating with it, it is taking a risk. Access to the Internet involves the risk of exposing sensitive data, securing these increasingly popular devices comes as a challenge. Security is provided by ways like Cryptography, Firewall, etc. Here, we are providing the security by firewall.
Any Firewall prevents unauthorized use and access to your device, its job is to carefully analyze data entering and exiting the device based on user configurations and ignore information that comes from suspicious location. This Firewall uses Packet Filtering
to examine the header of packet, to determine source, destination and the type of protocol. This information is compared to a set of predefined or user-created rules that determine whether the packet is to be accepted or dropped. A rule can be something like "block all http traffic”. So packets with http protocol header will be dropped by the firewall. Linux kernel provides a mechanism to implement our own firewall with the basic level of security. This mechanism is called "Net filters".

 (
FIREWALL IN ARM 9
LINUX ON
KERNEL S3C2440
 EMBEDDED
 BOARDS
) (
INTERNET
 (LAN/WAN/MAN)
)

[image:]

ENVIRONMENT/TOOLS:
Programming Language: 'C'
Target Operating System: Linux
Host Operating System: Linux
Target: i386,PC’s.

1. INTRODUCTION
1.1 EMBEDDED SYSTEM
Embedded System is a system used to perform one specific operation “repeatedly” and “endlessly” within a given “time frame”.

1.1.1 Characteristics
a) An embedded system is a computer system designed to perform one dedicated functions often with real-time computing constraints.
b) It is embedded as part of a complete device often including hardware and mechanical parts. By contrast, a general-purpose computer, such as a personal computer, is designed to be flexible and to meet a wide range of end-user needs.
c) Embedded systems are controlled by one or more main processing cores that is typically either a microcontroller or a digital signal processor (DSP).
d) One common design style uses a small system module, perhaps the size of a business card, holding high density chips such as an ARM-based System-on-a-chip processor and peripherals, like external flash memory for storage.
The module vendor will usually provide boot software and make sure there is a selection of operating systems, usually including Linux and some real time choices. Some also have real-time performance constraints that must be met, for reasons such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs. Embedded systems are not always standalone devices.
 Many embedded systems consist of small, computerized parts within a larger device that serves a more general purpose. For example, an embedded system in an automobile provides a specific function as a subsystem of the car itself.
The program instructions written for embedded systems are referred to as firmware, and are stored in read-only memory or Flash memory chips. They run with limited computer hardware resources: little memory, small or non-existent keyboard and/or screen.

1.2 TYPES OF EMBEDDED SYSTEMS

Embedded systems are of two types they are:
1. Low level ES
1. High level ES

1. Low level ES
1. Low level ES can be used without OS.
1. Machine Dependent(H/W).
1. Less Flexible/Scalable due to H/W and S/W constraints.
1. Difficult to Debug.
1. Less IT firms to target with.

1. High level ES
a) High level ES can be used with OS.
b) Machine Independent (H/W).
c) More Flexible/Scalable due to adequate.
d) H/W and S/W.
e) Easy to Debug.
f) More IT firms can be targeted.

1.2.1 A Short list of embedded systems in our daily life

a) Modems
b) MPEG decoders
c) Network cards
d) Network switches/routers
e) On-board navigation
f) Pagers
g) Photocopiers
h) Point-of-sale systems
i) Portable video games
j) Printers
k) Satellite phones
l) Scanners
m) Smart ovens/dishwashers
n) Speech recognizers
o) Stereo systems
p) Teleconferencing systems
q) Televisions
r) Temperature controllers
s) Theft tracking systems
t) TV set-top boxes
u) VCR's, DVD players
v) Video game consoles

1.3 ARM PROCESSOR
ARM stands for Advanced RISC Machines. As of 2009, ARM processors account for approximately 90% of all embedded 32-bit RISC processors. ARM processors are used extensively in consumer electronics, including PDAs, mobile phones, digital media and music players, hand-held game consoles, calculators and computer peripherals such as hard drives and router. As of 2007, about 98 percent of the more than one billion mobile phones sold each year use at least one ARM processor. The ARM architecture is licensable. ARM processors are developed by ARM and by ARM licensees.
 Prominent examples of ARM Holdings ARM processor families include the ARM7, ARM9 etc. The ARM architecture has the best MIPS to Watts ratio in the industry; the smallest CPU die size; all the necessary computing capability coupled with low power consumption of which a highly flexible and customizable set of processors are available with options to choose from, all at a low cost. ARM processor features include, Load/store architecture, an orthogonal instruction set, mostly single-cycle execution, a 6x32-bit register, enhanced power-saving design. The small size, low cost, and low power usage leads to one of the most common uses for an ARM processor today, embedded applications.
 Embedded environments like cell phones or PDAs (Personal Digital Assistants) require those benefits that this architecture provides. Sure, there has to be a trade-off between performance, cost, and size. But, the ARM fits into this category nicely. It has very small die size, its performance, although not on the cutting edge, is more than adequate for the tasks at hand, and most importantly, it is cheap and low in power consumption.
1.4 RISC FEATURES
The ARM architecture includes the following RISC features:
a) Load/store architecture.
b) No support for misaligned memory accesses (now supported in ARMv6 cores, with some exceptions related to load/store multiple word instructions).
c) Uniform 16 × 32-bit register file.
d) Fixed instruction width of 32 bits to ease decoding and pipelining, at the cost of decreased code density. Later, "Thumb mode" increased code density.
e) Mostly single-cycle execution.
f) Conditional execution of most instructions, reducing branch overhead and compensating for the lack of a branch predictor.
g) Arithmetic instructions alter condition codes only when desired.
h) 32-bit barrel shifter which can be used without performance penalty with most arithmetic instructions and address calculations.
i) Powerful indexed addressing modes.
j) A link register for fast leaf function calls.
k) Simple, but fast, 2-priority-level interrupt subsystem with switched register banks.
l) RISC is an acronym standing for "Reduced Instruction Set Computer".
m) RISC claims of simplicity in comparison to CISC.
n) Fixed 32-bit instruction size instead of variable.
o) Large register bank of GPR 32-bit registers.
p) Easier to prototype and put together.
q) Hard-wired instruction decode logic instead of micro coded ROMs to decode.
r) Pipelined execution.
s) Possible single cycle execution.
t) RISC Advantages.
u) Smaller die sizes. 	
1.5 CLASSIFICATION OF ARM PROCESSORS
ARM processor families includes
a. ARM7.
b. ARM9.
c. ARM11.
d. Cortex.
1.5.1 ARM7
ARM7 is a generation of ARM processor designs. This generation introduced the 16-bit instruction set which provides improved code density compared to previous designs. The most widely used ARM7 designs implement the ARMv4T architecture. All these designs use Von Neumann architecture, so the few versions which include a cache do not separate data and instruction caches.
The ARM7 processor is a 32-bit RISC CPU designed by ARM, and licensed for manufacture by an array of semiconductor companies. In 2009 it remains one of the most widely used ARM cores, and is found in numerous deeply embedded system designs.
A. Specifications:
a. It is a versatile processor designed for mobile devices and other low power electronics.
b. This processor architecture is capable of up to 130 MIPS on a typical 0.13µm process.
c. The processor supports both 32-bit and 16-bit instructions via the ARM and Thumb instruction sets.
B. Range Of Applications:
a. Embedded: USB controllers, Bluetooth controllers, Networking/Wi-Fi, Medical scanners.
b. Consumer: Electronic toys, Low end handheld devices, GPS, MP3 Players, Entry level handsets.
c. Industrial: Power meters, Circuit breakers, UPS, Brushless motor drive, Factory automation.
	
1.5.2 ARM9
	The ARM9 family offers a range of very high-performance, low power optimized 32-bit RISC microprocessor cores, for a wide variety of cost and power-sensitive applications. Built around the robust ARM9 processor core, the ARM9 family delivers up to 250 MHz on 0.13µm technology and incorporates the 32-bit instruction set, which improves code density by as much as 40%.This power and performance capability enables system developers to implement leading-edge features, while delivering benefits including considerable savings in system cost, development cost, time-to-market, and power consumption.

A. Specifications:
a. 32-bit RISC processor core with ARM and 32b instruction sets
b. 5-stage integer pipeline achieves up to 200 MHz worst case performance
c. Single 32-bit AMBA interconnect interface
d. Memory Management Unit (MMU)
e. Supporting Windows CE, Symbian OS, Linux and Palm OS
f. Integrated instruction and data caches
g. Portable to latest 0.18µm, 0.15µm and 0.13µm silicon processes
B. Range of applications:
a. Consumer: Smart phones, PDA, set top box, digital still cameras, digital video cameras.
b. Networking: Wireless LAN, 802.11, Bluetooth, Fire wire, SCSI, 2.5G/3G Baseband etc
c. Automotive : Power train, ABS, Body systems, Navigation, Infotainment etc
d. Embedded : USB controllers, Bluetooth controllers, medical scanners etc

1.6 COMPARISON BETWEEN ARM7 AND ARM9

Table 1.1. Comparison between ARM7 and ARM9.

	 ARM7 PROCESSOR
	 ARM9 PROCESSOR

	1. Pipeline depth three-stages

	1.Pipeline depth five-stages

	2. Typical processor speed 80 MHz

	2.Typical processor speed 250 MHz

	3. Follows Von Neumann architecture

	3.Follows Harvard architecture

	4. 36 MIPS

	4. 156 MIPS

	5.Cache memory is 8 KB
	5. Cache memory is 16 KB

2. ARM BOARD DESCRIPTION

2.1 BOARD INFORMATION
A. It is Linux-ready, hardware/software development kit for Samsung's ARM9-based S3C2440 microprocessor. The 100mm-square Mini2440 board features the workhorse S3C2440 processor clocked to 533MHz, and targets embedded development training applications, industrial control equipment, and consumer electronics devices like PDA devices and GPS navigators.
B. The MINI2440 appears to be smallest S3C2440 development kit to date. Measuring 3.9 by 3.9 inches (100 x 100mm), the MINI2440 is a four-layer board that clocks the Samsung S3C2440's ARM920T RISC core at 400MHz (dominant frequency) and 533MHz (peak frequency).
C. The S3C2440 system-on-chip (SoC) primarily targets handheld devices such as smart phones and PDAs. The SoC integrates 16KB each of instruction and data cache, 4KB RAM, and a NAND flash boot loader, power management functions, an interrupt controller, and an external memory controller.
D. The Mini2440 comes standard with 256MB each of SDRAM and NAND flash, expandable via an SD card slot, along with 2MB of NOR flash. The board has camera and LCD interfaces, and with a built-in 3.5-inch QVGA (320x240) TFT Touch Screen LCD.
E. The Mini2440's complement of PC-style I/O includes Ethernet, USB host and slave ports, and three serial connections. Available options include a Wi-Fi module, and CMOS and USB camera options. The Mini2440 board offers a "stable CPU power source chip and reset system.

2.1.1 An Overview of the ARM board
The MINI2440 is a single board computer based on Samsung S3C2440 microprocessor.

[image:]
 Fig 2.1 An Overview Of ARM9 Samsung S3C2440 Kit.

2.2 HARDWARE DESCRIPTION

[image:]
Fig 2.2 Internal Structure of ARM9 Samsung S3C2440 ARM Kit.
ARM stands for Advanced RISC Machines. As of 2007, about 98 percent of the more than one billion mobile phones sold each year use at least one ARM processor. As of 2009, ARM processors account for approximately 90% of all embedded 32-bit RISC processors. ARM processors are used extensively in consumer electronics, including PDAs, mobile phones, digital media, hand-held game consoles, and computer peripherals such as hard drives and routers.
The original objective of the ARM design team was to produce a processor which provided a logical advance from the 6502 processor, and was suitable for use as the central processor of a business or home computer. It was not intended to produce the most powerful processor on the market, but to produce a processor which harnessed the latest techniques to provide computing power at a price which meant that it could be included in a low-cost personal computer system.

Table 2.1 Hardware 	Configuration or Features of ARM Board
	PROCESSOR (CPU)
	Samsung S3C2440 (ARM920T) the highest frequency up to 532MHz)

	MEMORY (SDRAM)
	64Mbyte, , 32 bit 100 MHz Bus

	FLASH
	64 MB NAND Flash and 2 MB NOR Flash wit BIOS

	SUPPORTED LCD
(screen LCD)
	1. on-board integrated 4-wire Resistive Touch Panel interface, you can directly connect four-wire resistive Touch Panel Supporting
1. black and white, 4 gray-scale, 16 gray-scale, 256 color, 4096 color STN LCD screen size from 3.5 inch to 12.1 inch, 1024x768 screen resolution can be achieved pixels Supporting
1. Black & White, 4 gray-scale, 16 gray-scale, 256 color, 64K color, True Color TFT LCD screen size from 3.5 inch to 12.1 inch, 1024x768 screen resolution can be achieved pixels
1. Standard configuration for the NEC 256K color 240x320/3.5-inch TFT true color LCD with Touch Panel; Leads to a 12V power supply on-board interface, for the large-size TFT LCD 12V CCFL backlight module (Inverting) power supply.

	USB PORT (USB port)
	one to USB interface, one from the USB interface(slave & master)

	DIMENSION

	
100 x 100 mm

	AUDIO (Audio)
	1 stereo audio output interface (standard 3.5mm interface), one input way microphone interface

	NETWORK (LAN)
	one 100M Ethernet RJ-45 I (DM9000 card used)

	SD / MMC card
	one SD / MMC card memory interface

	CAMERA
	leads all CPU internal signal pin camera

	SERIAL PORT (UART)
	3serial port, COM0 for RS232 DB9 interface (TTL interface also leads to), COM2 and COM3 for 2.0mm pitch

	JTAG
	3serial port, COM0 for RS232 DB9 interface (TTL interface also leads to), COM2 and COM3 for 2.0mm pitch

	KEYS (buttons)
	6 user buttons

	LED
	4 users Indicator

	REAL-TIMECLOCK (RTC)
	onboard real-time clock with lithium battery backup

	EXPANSION INTERFACE
	one 34pin 2.0mmGPIO interface
one 40pin 2.0mm system bus interface

	POWER INPUT (Power supply)
	5V power input ,1A, with power switch and led

	SIZE (Dimensions)
	100x100 mm

	USER INPUTS
	6x push buttons and 1x A/D pot

	USER OUTPUTS
	4x LED

	SYSTEM CLOCK
 SOURCE
	12MHz passive crystal oscillator

	ETHERNET
	100M Ethernet RJ-45 port (powered by the DM9000 network chip)

	OS SUPPORT
	Android, Linux 2.6, Windows CE 5 and 6

Boot options you can select the booting mode by toggling the S2 switch. When toggling the S2 switch to the “NOR Flash” side the system will boot from on board Nor Flash. When toggling the S2 switch to the “NAND Flash” side the system will boot from on board NAND Flash.
This board is shipped with the switch toggled to the NAND Flash side by default it will boot from NAND Flash. Both it’s NOR Flash and NAND Flash have been installed an identical BIOS (which supports both types of Flash. The only difference is that the system will have different startup windows).

2.3 CONNECTING PERIPHERALS
a. Connect the MINI2440 board’s serial port to a PC’s serial port with the shipped serial cable in the package
b. Connect the MINI2440 board’s Ethernet interface to a PC with the shipped crossover cable
c. Connect the shipped 5V power supply adapter to the 5V power supply interface on the board
d. Connect a headphone or speaker to the audio input(green) on the board
e. Connect an LCD touch panel (if the user has one) to the LCD interface on the board following the data bus’ arrow.
f. Connect the MINI2440 board to a PC with a USB cable.

2.4 SETTING UP SUPER TERMINAL
To connect the MINI2440 board to a host PC via a serial cable, you should use a simulated terminal. There are many tools available. A most widely used one is the MS-Windows’ super terminal. In Windows9x, you need to install it by checking that option during installation Windows2000 and later versions already have it installed by default. We used
the super terminal in Windows XP in all our examples in this manual (Other versions of super terminal might have different user interfaces). Go to “Start” -> “All Programs” -> “Accessories” -> “Communications”. Click on “Hyper Terminal” and a Window will pop up as below. Click on the “No” button.

[image:]

 Fig 2.3.1 setup 1.

i. Click on the “Cancel” button on the following windows
ii. Click on the “Yes” button and the “OK” button to the next step

[image:]

Fig 2.3.2 setup 2.

[image:]

Fig 2.3.3 setup 3.

[image:]

Fig 2.3.4 setup 4.

iii. A popup window will require you to name this connection. In this example we typed “ttyS0”. Windows does not accept names like “COM1” that have already been used by the system.

[image:]

Fig 2.3.5 setup 5.

iv. After naming this connection another window will require you to select a serial port that will be used to connect the MINI2440 board. Here we selected COM1
[image:]

Fig 2.3.6 setup 6.

v. Lastly, also the most important step is to set up the port properties. Note: you must select “No” in the data flow control field otherwise you will only be able to see outputs. In addition the bits per second should be set to 115200.
vi. After setting up all properties, turn on the board’s power supply, if the connection gets set properly, you will see a VIVI startup interface. If everything runs fine, please save this connection for later use

[image:]

Fig 2.3.7 setup 7.

3. OPERATING SYSTEM
An operating system (OS) is an interface between hardware and user which is responsible for the management & coordination of activities and the sharing of the resources of a computer, that acts as a host for computing applications run on the machine. It is the most important program that runs on a computer. Every general-purpose computer must have an operating system to run other programs. Operating systems perform basic tasks, such as recognizing input from the keyboard, sending output to the display screen, keeping track of files and directories on the disk, and controlling peripheral devices such as disk drives and printers.
Operating systems provide a software platform on top of which other programs, called application programs, can run. The application programs must be written to run on top of a particular operating system. The choice of operating system, therefore, determines to a great extent the applications you can run. For PCs, the most popular operating systems are DOS, OS/2, and Windows but others are available, such as Linux.
3.1 LINUX
A freely-distributable open source operating system that runs on a number of hardware platforms, because it's open to all and because it runs on many platforms, including PCs and Macintoshes, Linux has become an extremely popular alternative to proprietary operating systems. Any changes made in Linux are possible and feasible.
[image:]
Fig 3.1 Linux System.
3.1.1 THE OPEN SOURCE DEFINITION
Open source doesn't just mean access to the source code. The distribution terms of open-source software must comply with the following criteria:
a) Free Redistribution
The license shall not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources. The license shall not require a royalty or other fee for such sale.
b) Source Code
The program must include source code, and must allow distribution in source code as well as compiled form. Where some form of a product is not distributed with source code, there must be a well-publicized means of obtaining the source code for no more than a reasonable reproduction cost preferably, downloading via the Internet without charge. The source code must be the preferred form in which a programmer would modify the program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a preprocessor or translator are not allowed.
c) Derived Works
The license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software.
d) Integrity of the Author's Source Code
The license may restrict source-code from being distributed in modified form only if the license allows the distribution of "patch files" with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of software built from modified source code. The license may require derived works to carry a different name or version number from the original software.

e) No Discrimination against Persons or Groups
The license must not discriminate against any person or group of persons.
f) No Discrimination against Fields of Endeavor
The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research.
g) Distribution of License
The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an additional license by those parties.
h) License Must Not Be Specific to a Product
The rights attached to the program must not depend on the program's being part of a particular software distribution. If the program is extracted from that distribution and used or distributed within the terms of the program's license, all parties to whom the program is redistributed should have the same rights as those that are granted in conjunction with the original software distribution.
i) License Must Not Restrict Other Software
The license must not place restrictions on other software that is distributed along with the licensed software. For example, the license must not insist that all other programs distributed on the same medium must be open-source software.
j) License Must Be Technology-Neutral
No provision of the license may be predicated on any individual technology or style of interface.

3.2 WHY LINUX?
Apart from being open source, efficient Linux kernel is
a. Portable.
b. Follows monolithic kernel architecture.
c. Runs on most of the processors even on ARM.
d. Scalable, can run on super computer and also on tiny devices.
e. Excellent networking support.
3.2.1 Kernel
a. The central module of an operating system.
b. It is the part of the operating system that loads first, and it remains in main memory.
Because it stays in memory, it is important for the kernel to be as small as possible while still providing all the essential services required by other parts of the operating system and applications. Typically, the kernel is responsible for memory management, process task management, and disk management. A useful system requires much more than a kernel. It should have shells, utility programs etc. It is called Linux distribution.

[image:]
Fig 3.2 Illustration of Linux Kernel.
4. COMPUTER NETWORK AND SECURITY

4.1 COMPUTER NETWORK
 A Network is a series of points or nodes interconnected by communication paths. Networks can interconnect with other networks and contain sub networks. In its simplest form, a network is at least two computers, desktops, laptops or one of each connected together with wireless or wired technologies.
 Networks can be characterized in terms of spatial distance as local area network (LANs), which connects computers and devices in a limited geographical area such as home, school, computer laboratory etc. Metropolitan area networks (MANs),that connects two or more local area networks or campus area networks together but does not extend beyond the boundaries of the immediate town/city and wide area networks (WANs) that covers a large geographic area such as a city, country etc. A given network can also be characterized by the type of data transmission technology in use on it (for example, a TCP/IP or Systems Network Architecture network); by whether it carries voice, data, or both kinds of signals; by who can use the network (public or private); by the usual nature of its connections (dial-up or switched, dedicated or non switched, or virtual connections); and by the types of physical links (for example, optical fiber, coaxial cable, and Unshielded Twisted Pair), it turns out that everything you do on the Internet involves packets. For example, every Web page that you receive comes as a series of packets, and every e-mail you send leaves as a series of packets.
 On the Internet, the network breaks a message into parts of a certain size in bytes. These are the packets. Each packet carries the information that will help it get to its destination. The sender's IP address, the intended receiver's IP address, something that tells the network how many packets this e-mail message has been broken into and the number of this particular packet. The packets carry the data in the protocols that the Internet uses: Transmission Control Protocol/Internet Protocol (TCP/IP). Each packet contains part of the body of your message.

4.2 NEED FOR SECURITY
When a device connects to a network and begins communicating with it, it is taking a risk. Access to the Internet involves the risk of exposing sensitive data, securing these increasingly popular devices comes as a challenge. Network Security is generally taken as providing protection at the boundaries of an organization by keeping out intruders (hackers). Information Security explicitly focuses on protecting data resources from malware attack or simple mistakes by people within an organization by use of Data Loss Prevention (DLP) techniques.
It's very important to understand that in security, one simply cannot say “what's the best firewall?” There are two extremes: absolute security and absolute access. The closest we can get to an absolutely secure machine is one unplugged from the network, power supply, locked in a safe, and thrown at the bottom of the ocean. Unfortunately, it isn't terribly useful in this state. A machine with absolute access is extremely convenient to use: it's simply there, and will do whatever you tell it, without questions, authorization, passwords, or any other mechanism. Unfortunately, this isn't terribly practical, either: the Internet is a bad neighborhood now, and it isn't long before some bonehead will tell the computer to do something like self-destruct, after which, it isn't terribly useful.
“Unauthorized access'' is a very high-level term that can refer to a number of different sorts of attacks. The goal of these attacks is to access some resource that your machine should not provide the attacker. For example, a host might be a web server, and should provide anyone with requested web pages. However, that host should not provide command shell access without being sure that the person making such a request is someone who should get it, such as a local administrator.
It's obviously undesirable for an unknown and un-trusted person to be able to execute commands on your server machines. There are two main classifications of the severity of this problem: normal user access, and administrator access.

4.3 FIRE WALL
A firewall is a part of a computer system or network that is designed to block unauthorized access while permitting authorized communications. It is a device or set of devices configured to permit, deny, encrypt, decrypt, or proxy all (in and out) computer traffic between different security domains based upon a set of rules and other criteria. Any Firewall prevents unauthorized use and access to your device, its job is to carefully analyze data entering and exiting the device based on user configurations and ignore information that comes from suspicious location. A firewall is a dedicated appliance, or software running on a computer, which inspects network traffic passing through it, and denies or permits passage based on a set of rules.
A firewall's basic task is to regulate some of the flow of traffic between computer networks of different trust levels. A firewall's function within a network is similar to physical firewalls with fire doors in building construction. In the former case, it is used to prevent network intrusion to the private network. In the latter case, it is intended to contain and delay structural fire from spreading to adjacent structures.

[image:]
Fig 4.1 Illustration of a Firewall.

4.4 PACKET FILTERING
Packet filters act by inspecting the "packets" which represent the basic unit of data transfer between computers on the Internet. If a packet matches the packet filter's set of rules, the packet filter will drop (silently discard) the packet, or reject it (discard it). Packet Filtering firewall examines the header of packet, to determine source, destination and the type of protocol. This information is compared to a set of predefined or user-created rules that determine whether the packet is to be forwarded or dropped. This firewall filters each packet based only on information contained in the packet itself (most commonly using a combination of the packet's source and destination address, its protocol, and, for TCP and UDP traffic, the port number).
Packet filtering firewalls work on the first three layers of OSI reference model which means all the work done between the network and physical layers. When a packet originates from the sender and filters through a firewall the device checks for matches to any of the packet filtering rules that are configured in the firewall and drops or rejects the packet accordingly. When the packet passes through firewall it filters the packet on a protocol. For example if a rule in the firewall exists to “block all http traffic”. So packets with http protocol header will be dropped by the firewall. These rules are written as framework in the Linux kernel. Packet filtering can be done at various locations in the path of packet traversal, as shown below
[image: firewall.gif]
Fig 4.2 Illustrating the Firewall Placement.

5. PROJECT DESCRIPTION

5.1 PROJECT ARCHITECTURE
 The architecture of the project can be shown in the following figure	

[image: Untitled]
Fig 5.1 Illustration of Project Architecture.
The core blocks of the project architecture consists of the following:
· ARM Processor and Linux operating system running on it.
1) User space.
2) System call interface.
3) Kernel space.
5.2 ARM PROCESSOR AND LINUX OPERATING SYSTEM
	ARM processor is capable of running open source operating system Linux there by providing the facilities such as multi-tasking environment, designs that include networking. This itself is not enough initialize the system. A boot loader is required. The boot loader is expected to find and initialize all RAM that the kernel will use for volatile data storage in the system. The boot loader should initialize and enable one serial port on the target. This includes enabling any hardware power management etc., to use the port. This allows the kernel serial driver to automatically detect which serial port it should use for the kernel console (generally used for debugging purposes, or communication with the target.)
5.2.1 User space
	The user space gives the ability for a user to define his own rules. These rules can be applied to the modules for successful programming. Its blocks are as described below
1. User configuration
 The user-defined rules that define the actions to be performed on packets that match those rules. The actions such as Accept, Drop are to be taken with respect to the user defined rules, based on
a) Protocol type: Packets can be dropped based on the type of protocol such as HTTP, ICMP, TCP and UDP.
b) IP Address: Packets can be dropped based on the source and the destination IP Address.
c) Port numbers: Packets can be dropped based on the port number at which the packet is arrived.
2. Time management
	A user can also define a rule that, the packets can be dropped from a particular time and end the blocking of packets after a certain time. The time given is of the format HH:MM. Both start-time and end-time has to be mentioned. This clearly shows that the firewall is active for a period of time, and need not be manually started again at that desired time. If the user wishes to start the firewall again, and wants to drop the packets then it can be started again following the same rules mentioned above.
3. Inserting module
	Modules are pieces of code that can be loaded and unloaded into the kernel upon demand. The codes are loaded into the kernel using the “insmode” command and removed using “rmmode” command .They extend the functionality of the kernel without the need to reboot the system. For example, one type of module is the device driver, which allows the kernel to access hardware connected to the system. Let us take an example of “hello.c”. Now inserting this into kernel involves the following steps
a) Check if all the required tools and lib (Linux Kernel headers)for building the kernel modules are present.
b) Let the module be a "hello World" program, create c file call - hello.c
Now compile the module to create - hello.ko using command: make a lot of files are created inside the directory, which can be checked using ls command.
c) Load/insert kernel module into running kernel (hello.ko) using insmod hello.ko Command.
d) To list the module currently running inside the kernel : lnsmod.
e) To remove the "hello.ko" module: rmmod hello.ko.
f) This is how a module can be inserted and removed.
4. Device creation
Device drivers take on a special role in the Linux kernel. That make a particular piece of hardware respond to a well-defined internal programming interface; they hide completely the details of how the device works. User activities are performed by means of a set of standardized calls that are independent of the specific driver; mapping those calls to device-specific operations that act on real hardware is then the role of the device driver.
There are two types of device drivers
a) Block Device Drivers.
b) Character Device Drivers.

a) Block Device Drivers
A block driver provides access to devices that transfer randomly accessible data in fixed-size blocks—disk drives, primarily. The Linux kernel sees block devices as being fundamentally different from char devices; as a result, block drivers have a distinct interface and their own particular challenges. Efficient block drivers are critical for performance—and not just for explicit reads and writes in user applications. The Linux block driver interface allows you to get the most out of a block device but imposes, necessarily, a degree of complexity that has to be deal with.
b) Character Device Drivers
	Character devices are accessed through names in the file system. A character (char) device is one that can be accessed as a stream of bytes (like a file); a char driver is in charge of implementing this behavior. Those names are called special files or device files or simply nodes of the file system tree; they are conventionally located in the /dev directory. Special files for char drivers are identified by a “c” n the first column of the output of “ls –l”. Block devices appear in /dev as well, but they are identified by a “b”.
Major and Minor Number: If you issue the ls –l command, you’ll see two numbers (separated by a comma) in the device file entries before the date of the last modification, where the file length normally appears. These numbers are the major and minor device number for the particular device. The following listing shows a few devices as they appear on a typical system. Their major numbers are 1, 4, 7, and 10, while the minors are 1, 3, 5, 64, 65, and 129.
crw-rw-rw- 1 root root 1, 3 Apr 11 2002 null
crw------- 1 root root 10, 1 Apr 11 2002 psaux
crw------- 1 root root 4, 1 Oct 28 03:04 tty1
crw-rw-rw- 1 root tty 4, 64 Apr 11 2002 ttys0
crw-rw---- 1 root uucp 4, 65 Apr 11 2002 ttyS1
crw--w---- 1 vcsa tty 7, 1 Apr 11 2002 vcs1
crw--w---- 1 vcsa tty 7, 129 Apr 11 2002 vcsa
crw-rw-rw- 1 root root 1, 5 Apr 11 2002 zero
Char devices are accessed through device files, usually located in /dev. The major number tells you which driver handles which device file. The minor number is used only by the driver itself to differentiate which device it's operating on, just in case the driver handles more than one device. Traditionally, the major number identifies the driver associated with the device. For example, /dev/null and /dev/zero are both managed by driver 1, whereas virtual consoles and serial terminals are managed by driver 4; similarly, both vcs1 and vcsa1 devices are managed by driver 7. Modern Linux kernels allow multiple drivers to share major numbers, but most devices seen are still organized on the one-major-one-driver. The minor number is used by the kernel to determine exactly which device is being referred to. Depending on how the user driver is written one can either get a direct pointer to your device from the kernel, or can use the minor number himself as an index into a local array of devices. Either way, the kernel itself knows almost nothing about minor numbers beyond the fact that they refer to devices implemented by your driver.

5.2.2 System call interface
A system call is a request by a running task to the kernel to provide some sort of service on its behalf. In general, the kernel services invoked by system calls comprise an abstraction layer between hardware and user-space programs, allowing a programmer to implement an operating environment without having to tailor his program(s) too specifically to one single brand or precise specific combination of system hardware components.
System calls also serve this generalization function across programming languages; e.g., the read system call will read data from a file descriptor. To the programmer, this looks like another C function, but in actuality, the code for read is contained within the kernel.

System calls can be roughly grouped into five major categories
1) Process Control.
2) File management.
3) Device Management.
4) Information Maintenance.
5) Communication.

1) Process Control:
a. end, abort
b. load, execute
c. create process, terminate process
d. get process attributes, set process attributes
e. wait for time
f. wait event, signal event
g. allocate and free memory
2) File management:
a. create file, delete file
b. open, close
c. read, write, reposition
d. get file attributes, set file attributes
3) Device Management:
a. request device, release device
b. read, write, reposition
c. get device attributes, set device attributes
d. logically attach or detach devices

4) Information Maintenance:
a. get time or date, set time or date
b. get system data, set system data
c. get process, file, or device attributes
d. set process, file, or device attributes
5) Communication:
a. create, delete communication connection
b. send, receive messages
c. transfer status information
d. attach or detach remote devices
5.2.3 Kernel space
a. Netfilters framework
Netfilter is a framework that provides hook handling within the Linux kernel for intercepting and manipulating network packets. Put more concretely, Netfilter is invoked, for example, by the packet reception and send routines from/to network interfaces. As the master Netfilter function is called with a packet, Netfilter runs through the list of registered hooks and calls the extensions in succession, which then handle packets as they desire. Netfilter is a packet filtering subsystem in the Linux kernel stack and has been there since kernel 2.4.x. Netfilter's core consists of five hook. Although these functions are for IPv4, they aren't much different from those used in the IPv6 counterpart. The hooks are used to analyze packets in various locations on the network stack. This situation is depicted below:

Fig 5.2 Illustrating the Hooks present in a Netfilter.

The following are the hook function in a net filter
a) [1] NF_IP_PRE_ROUTING: This function is called right after the packet has
 been received. This is the hook we are most interested in for our firewall.
b) [2] NF_IP_LOCAL_IN: This is for packets that are destined for the network
 stack and thus has not been forwarded
c) [3] NF_IP_FORWARD: This function is called for packets not addressed to us
 but that should be forwarded.
d) [4] NF_IP_POST_ROUTING: This function is called for packets that have
 been routed and are ready to leave
e) [5] NF_IP_LOCAL_OUT: This function is called when packets has to sent out
 from our own network stack.
Each function has a chance to mangle or do what it wishes with the packets, but it eventually has to return a Netfilter code. Here are the codes that can be returned and what they mean:
a) NF_ACCEPT: Accept the packet (continue network stack trip)
b) NF_DROP: Drop the packet (don't continue trip)
Once the hook function is written, has to be registered with its options with the nf_hook_ops struct located in linux/netfilter.h.
struct nf_hook_ops
{
 struct list_head list;
 nf_hookfn *hook;
 int pf;
 int hooknum;
 int priority;
};
The first thing we see in the struct is the list_head struct, which is used to keep a linked list of hooks, but it's not necessary for our firewall. The nf_hookfn* struct member is the name of the hook function that we define. The pf integer member is used to identify the protocol family; it's PF_INET for IPv4. The next field is the hooknum int, and this is for the hook we want to use. The last field is the priority int. The priorities are specified in linux/netfilter_ipv4.h, but for our situation we want NF_IP_PRI_FIRST.
Our module should block all traffic in and out of the network stack and should use the NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING hooks. We start by defining our hook function and registering the nf_hook_ops structs in init_module(). Finally, we unregister the hooks in cleanup().
B. Kernel module
Any kernel module will a have a minimum of two important functions an init function which is an initialization function and an exit function. A simple kernel program is shown below
#include<linux/init.h>
#include<linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");
static int hello_init(void)
	{ 	
 printk(KERN_ALERT "\nHello world.This is my first Kernel module program");
 return 0;
 }
 static void hello_exit(void)
 { printk(KERN_ALERT "\n Bye bye cruel world");
 }
 	 module_init(hello_init);
 	 module_exit(hello_exit);
Whenever a kernel module is inserted into the kernel, using the command “insmode” the init function is called and similarly when it is removed using “rmmode” the exit function is called. Every function in a kernel module has to be registered, the last two statements shows it.
5.3 HOW DOES THE FIREWALL WORKS?
By using user space, customized rules are build that are saved in kernel space. These rules have targets that tell the netfilters what to do with packets coming from certain sources, heading for certain destinations or have certain protocol types or heading from certain port numbers. If a packet matches a rule, the packet can be dropped. A packet can also be allowed to pass if does not match any rule. There are many more targets available for other actions that can be performed on packets.
After the rules are built and hooks are in place, the real work of packet filtering starts. Here is where the kernel space takes over from user space. When a packet reaches the firewall, the netfilters first examines the header information of the packet, particularly the destination of the packet. This process is known as routing.
If the packet originated from outside and is destined for the system and the firewall is
ON, the kernel passes it on to the INPUT hook of the kernel space netfilter. If the packet originated from inside the system or another source on an internal network the system is connected to and is destined for another outside system, the packet is passed on to the OUTPUT hook. Similarly, packets originating from outside systems and destined for outside systems are passed on to the FORWARD hook (here we are not dealing with forwarding though).
Next the packet's header information is compared with each rule in the kernel module by the netfilters it is passed on to, unless it perfectly matches a rule.
If a packet matches a rule, the netfilter performs the action specified by the target of that rule on the packet, ideally it should tell the netfilter to DROP that packet. But if the packet doesn't match a rule, then it is compared to the next rule. Finally, if the packet doesn't match to any rule in the hook, then the kernel consults the policy of that chain hook to decide what to do with the packet, that is it simply allows the packet to pass through.
The kernel starts with three lists of rules in netfilter, these lists are called netfilter hooks or chains. The three hooks are called INPUT, OUTPUT and FORWARD mainly.
When a packet reaches, that hook is examined to decide the fate of the packet. If the rule in the kernel says to DROP the packet using the command NF_DROP, it is killed there, but if the rule says to ACCEPT the packet, it is allowed to pass, using the command NF_ACCEPT.
A hook is a checklist of rules.
1. When a packet comes in (say, through the Ethernet card) the kernel first looks at the destination of the packet: this is called ‘routing’. This hook is called NF_IP_PRE_ROUTING.
2. If it's destined for this system, the packet passes to the INPUT chain. If it passes this, any processes waiting for that packet will receive it. This hook is called NF_IP_LOCAL_IN.
3. If forwarding is enabled, and the packet is destined for another network interface (if you have another one), then the packet goes to the FORWARD hook. This hook is called NF_IP_FORWARD.
4. The packets which are ready to leave are sent the hook called NF_IP_POST_ROUTING.
5. These packets pass through the OUTPUT hook immediately. This hook is called NF_IP_LOCAL_OUT.

6. CONCLUSION AND FUTURE SCOPE
6.1 ADVANTAGES
a) Basic level security can be provided efficiently.
b) This basic level security is being implemented using the net filters framework present in the kernel space of the Linux operating system and this OS is an open source system.
c) User can configure the rules to the parameters of his choice in implementing this firewall.
d) Time management helps the user in running the firewall at his choice of time especially when he is away from the system.
e) The power requirement of an ARM processor is very low.

6.2 APPLICATIONS
a) Firewall is applied in any system where the basic security is concerned.
b) Provides complete action of user choice to select or reject particular packets.
c) Time based applications are also been achieved to specify the activation of packets for the respective time periods.

6.3 CONCLUSION
 Packets are filtered by firewall using net filters and the basic security is been achieved using the firewall. Linux kernel provides a mechanism to implement our own firewall. This mechanism is called "Netfilters". Hence Packet filtering using Net filters can successfully be implemented on an ARM processor. The Linux Kernel is configured to monitor the incoming and outgoing packets. Packet filtering is the process of passing or blocking packets at a network interface based on source and destination addresses, ports, or protocols. If the packet does not match a rule the packet is dropped. Highly-sensitive devices can be protected, as the firewall is developed.
 The firewall developed is free of cost and also provides the basic level of security. Netfilters firewall can drop packets based on protocols like http, icmp and based on source and destination ip address. Hence the user can configure and derive many more applications. Apart from these many tasks the other function which can be carried out in future by working on the other different protocols apart from the protocols which are been used here as a concept of dropping and accepting the particular packets depending on the instructions or the rules given to it. A rule is also been configured such that the packets are dropped for a period of time and also at some regular intervals of time.

6.4 FUTURE SCOPE
Firewall can be extended over applications like
A. Maintaining statistics (number of packets dropped /accepted) which is nothing but the result here is been displayed as showing the number of packets which are been received or dropped.
B. Storage of dropped packets deals with the task where the device stores some particular number of packets or its information which where been executed in the past and stores that information if need further by the user.
C. Firewall can be active in periodic way that is the firewall is configured in such a way that, it gets activated on its own for the time it is scheduled to.
CODE APPENDIX #A

MODULE CODE DESCRIPTION
I. USER SPACE MODULE
A. Header File
typedef int sms_int32;
typedef unsigned int sms_uint32;
typedef char sms_byte8;
typedef unsigned char sms_ubyte8;
typedef enum BOOL
{	
 SMS_FALSE,
 SMS_TRUE
}
SMS_BOOL_t;
typedef enum RV
{
 SMS_SUCCESS,
 SMS_FAILURE,
 SMS_ARGS_FAIL
}
SMS_RV_t;

B. Source File
 #define _GNU_SOURCE
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <getopt.h>	
#include <sys/socket.h>
#include <netinet/in.h>
#include "firewall.h"
#include "sms_types.h"
#include "sms_time_mgmt.h"
static struct option longopts[] = {
 {"stime",1,NULL,'a'},
 {"etime",1,NULL,'b'},
 {"sipaddr",1,NULL,'c'},
 {"dipaddr",1,NULL,'d'},
 {"interface",1,NULL,'e'},
 {"protocol",1,NULL,'f'},
 {"sport",1,NULL,'g'},
 {"dport",1,NULL,'h'},
 {0,0,0,0}
 };

static int sms_fd = -1;
SMS_RV_t sms_process_arguments(sms_int32 argc,sms_byte8* argv[],sms_firewall_t* pfirewall)
{
sms_int32 opt = 0;
struct in_addr addr;
sms_int32 i;
if (argv == NULL || pfirewall == NULL)
 {
return SMS_ARGS_FAIL;
 }
while ((opt = getopt_long(argc,argv,"a:b:c:d:e:f:g:h:",longopts,NULL)) != -1)
{
switch(opt)
{
case ':':
printf("\r\n Option %s requires value",argv[optind]);
exit(1);
case 'a': /*stime*/
strncpy(pfirewall->stime,optarg,strlen(optarg));
printf("\n[%s ... %d] start time is %s",__func__,__LINE__,pfirewall->stime);
break;
case 'b':/*etime*/
strncpy(pfirewall->etime,optarg,strlen(optarg));
printf("\n[%s ... %d] end time is %s",__func__,__LINE__,pfirewall->etime);
break;
case 'c':/*sipaddr*/
pfirewall->sipaddr = inet_addr(optarg);
printf("\n [%s ... %d]source ipaddr is %x",__func__,__LINE__,pfirewall->sipaddr);
if (pfirewall->sipaddr == -1)	
{
printf("\n Invalid source ip addr");
exit(1);
}
break;
case 'd':/*dipaddr*/
pfirewall->dipaddr = inet_addr(optarg);
printf("\n [%s ... %d]dest ipaddr is %x",__func__,__LINE__,pfirewall->dipaddr);
if (pfirewall->dipaddr == -1)
{
printf("\n Invalid dest ip addr");
exit(1);
}
break;
break;
case 'e':/*interface*/
strncpy(pfirewall->dev_name,optarg,strlen(optarg));
printf("\n [%s ... %d]interface name is %s",__func__,__LINE__,pfirewall->dev_name);
break;
case 'f':/*protocol*/
if (strcmp(optarg,"ip") == 0)
{
pfirewall->match_ip = SMS_TRUE;
printf("\n [%s ... %d] ip protocol matched",__func__,__LINE__);
}
else if (strcmp(optarg,"icmp") == 0)
{
printf("\n [%s ... %d] icmp protocol matched",__func__,__LINE__);
pfirewall->upper_protocol = ICMP_PROTOCOL;
}
else if (strcmp(optarg,"tcp") == 0)
{
printf("\n [%s ... %d] tcp protocol matched",__func__,__LINE__);
pfirewall->upper_protocol = TCP_PROTOCOL;
}
else if (strcmp(optarg,"udp") == 0)
{
printf("\n [%s ... %d] udp protocol matched",__func__,__LINE__);
pfirewall->upper_protocol = UDP_PROTOCOL;
}
else if (strcmp(optarg,"http") == 0)
{
printf("\n [%s ... %d] http protocol matched",__func__,__LINE__);
pfirewall->match_http = SMS_TRUE;
}
else
{
printf("\n%s protocol name is not supported",optarg);
}
break;
case 'g':/*sport*/
pfirewall->sport = atoi(optarg);
printf("\n [%s ... %d] source port number is %d",__func__,__LINE__,pfirewall->sport);
break;
case 'h':/*dport*/
pfirewall->dport = atoi(optarg);
printf("\n [%s ... %d] dest port number is %d",__func__,__LINE__,pfirewall->dport);
break;
default:
printf("\n Invalid option!!!");
break;
}
}
return SMS_SUCCESS;
}
SMS_RV_t sms_install_rules(sms_firewall_t* pfirewall)
{
char device_name[32];
memset(device_name,0x0,sizeof(device_name));
 strcpy(device_name,SMS_DEV_PATH);
 strcat(device_name,FIREWALL_DEV_NAME);
 printf("\n firewall device name is %s",device_name);
 sleep(2);
 /*open the device /dev/sms_firewall*/
 sms_fd = open(device_name, O_RDWR);
 if (sms_fd < 0)
{
perror("\n Failed to open the device because ");
return SMS_FAILURE;
}
if (pfirewall == NULL)
{
return SMS_FAILURE;
}
if (pfirewall->dev_name[0] != '\0')
{
 /*Need to modify this to write function*/
ioctl(sms_fd,SMS_FIREWALL_DROP_INTERFACE,0);
}
if (pfirewall->match_ip == SMS_TRUE)
{
ioctl(sms_fd,SMS_FIREWALL_DROP_IP,1);
}
if (pfirewall->upper_protocol != INVALID_PROTOCOL)
{
printf("\n I am in drop prototcol and protocol is %d",pfirewall->upper_protocol);
ioctl(sms_fd,SMS_FIREWALL_DROP_PROTOCOL,pfirewall->upper_protocol);
}
if (pfirewall->match_http == SMS_TRUE)
{
ioctl(sms_fd,SMS_FIREWALL_DROP_HTTP,1);

 if (pfirewall->sipaddr != INVALID_IP)
{
ioctl(sms_fd,SMS_FIREWALL_DROP_SIP,pfirewall->sipaddr);
}
if (pfirewall->dipaddr != INVALID_IP)
{
ioctl(sms_fd,SMS_FIREWALL_DROP_DIP,pfirewall->dipaddr);
}
if (pfirewall->sport != INVALID_PORT)
{
ioctl(sms_fd,SMS_FIREWALL_DROP_SPORT,pfirewall->sport);
}
if (pfirewall->dport != INVALID_PORT)
{
ioctl(sms_fd,SMS_FIREWALL_DROP_DPORT,pfirewall->dport);
}
 return SMS_SUCCESS;
}
SMS_RV_t firewall_start(void* data)
{
sms_firewall_t* pfirewall = (sms_firewall_t*)data;
if (pfirewall == NULL)
{
return SMS_FAILURE;
}
/*insert the module first*/
if (system("insmod firewall.ko") != 0)
{
perror("\nFailed to insert the module because ");
exit(1);
}
 /*Install the rules now*/
sms_install_rules(pfirewall);
return SMS_SUCCESS;
}
SMS_RV_t firewall_stop(void* data)
{
sms_firewall_t* pfirewall = (sms_firewall_t*)data;
if (pfirewall == NULL)
{
return SMS_FAILURE;
}
close(sms_fd);
/*remove the module*/
 if (system("rmmod firewall") != 0)
{
perror("\nFailed to remove the module because ");
 }
 return SMS_SUCCESS;
}
SMS_RV_t sms_firewall_set_default(sms_firewall_t* firewall)
{
if (firewall == NULL)
{
return SMS_ARGS_FAIL;
}
firewall->upper_protocol = INVALID_PROTOCOL;
firewall->sport = INVALID_PORT;
firewall->dport = INVALID_PORT;
firewall->sipaddr = INVALID_IP;
firewall->dipaddr = INVALID_IP;
firewall->match_http = SMS_FALSE;
firewall->match_protocol = SMS_FALSE;
firewall->match_ip = SMS_FALSE;
memset(firewall->dev_name,0x0,sizeof(firewall->dev_name));
memset(firewall->stime,0x0,sizeof(firewall->stime));
memset(firewall->etime,0x0,sizeof(firewall->etime));
return SMS_SUCCESS;
}
nt main(int argc,char* argv)
{
int result;
 int ch;
sms_firewall_t firewall;
/*set firewall to default values*/
sms_firewall_set_default(&firewall);
sms_process_arguments(argc,argv,&firewall);
if (firewall.stime[0] != '\0')
{
sms_time_register_entry("sms_firewall",firewall.stime,firewall_start,(void*)&firewall, firewall.etime,firewall_stop,(void*)&firewall,0);
}
else
{
firewall_start(&firewall);
printf("\nPress q to stop the firewall:");
do
{
ch = getchar();
}while(ch != 'q' && ch != 'Q');
firewall_stop(&firewall);
}
}

C. USERSPACE MODULE DESCRIPTION
a. ioctl
 #include <sys/ioctl.h>
 int ioctl(int d, int request, ...);
ioctl is a device controller. The ioctl() function manipulates the underlying device parameters of special files. In particular, many operating characteristics of character special files like (e.g., terminals) may be controlled with ioctl() requests. The argument d must be an open file descriptor. The second argument is nothing but a device-dependent request code and the third argument is an untyped pointer to memory.
An ioctl() request has encoded in it whether the argument is an in parameter or out parameter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl() request are located in the file <sys/ioctl.h>.Usually, on success zero is returned. A few ioctl() requests use the return value as an output parameter and return a non-negative value on success. On error, -1 is returned, and errno is set appropriately.
b. fcntl
 #include <fcntl.h>
 int fcntl(int fd, int cmd, ... /* arg */);
fcntl manipulates the file descriptor. The fcntl() performs one of the operations described below on the open file descriptor fd. The operation is determined by cmd.
c. getopt_long()
The getopt_long() function works like getopt() except that it also accepts long options. The getopt() function passes the command-line arguments. Its arguments argc and argv are the argument count and array as passed to the main() function on program invocation. If getopt() is called repeatedly, it returns successively each of the option characters from each of the option elements. The caller can reset it to 1 to restart scanning of the same argv, or when scanning a new argument vector. If there are no more option characters, getopt() returns -1. Getopt_long() provides the facility to provide concurrent access of the user input.

II. KERNEL MODULE
A. HEADER FILE
#define SMS_FIREWALL_H
#define SMS_FIREWALL_H
#define IPADDR_LEN 24
#define MAX_DEV_NAME_SIZE 16
#define INVALID_PROTOCOL -1
#define INVALID_PORT -1
#define INVALID_IP 0
#define ICMP_PROTOCOL 1
#define TCP_PROTOCOL 6
#define UDP_PROTOCOL 17
#define HTTP_PORT_NUM 80
#define FIREWALL_DEV_NAME "sms_firewall"
#define SMS_DEV_PATH "/dev/"
#define SMS_MAX_TIME_STR_LEN 32
typedef struct sms_firewall_s
{
int upper_protocol;
int sport;
int dport;
unsigned int sipaddr;
unsigned int dipaddr;
int drop_cnt;
int match_protocol;
int match_sport;
int match_dport;
int match_sip;
int match_dip;
int match_dev;
int match_ip;
int match_http;
char dev_name[MAX_DEV_NAME_SIZE];
char stime[SMS_MAX_TIME_STR_LEN];
char etime[SMS_MAX_TIME_STR_LEN];
}sms_firewall_t;
typedef enum firewall_ioctl_cmds_s
{
SMS_FIREWALL_DROP_IP = 0x100,
SMS_FIREWALL_DROP_HTTP,
SMS_FIREWALL_DROP_PROTOCOL,
SMS_FIREWALL_DROP_SPORT,
 SMS_FIREWALL_DROP_DPORT,
 SMS_FIREWALL_DROP_INTERFACE,
 SMS_FIREWALL_DROP_SIP,
 SMS_FIREWALL_DROP_DIP
}firewall_ioctl_cmds_t;
#endif

B. SOURCE FILE
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/udp.h>
#include <linux/netdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <net/ip.h>
#include <linux/fs.h>
#include <linux/types.h>
#include<linux/cdev.h>
#include "firewall.h"
#include "sms_types.h"
MODULE_LICENSE("Dual BSD/GPL");
#define MINOR_NUM 0
#define MAX_NUM_DEVICES 1
static struct nf_hook_ops netfilter_ops;
static struct nf_hook_ops netfilter_ops1;
static dev_t firewall_dev;
static int major_num;
static int minor_num;
static int reference = 0;
static struct cdev sms_cdev;
sms_firewall_t firewall;
static struct class *sms_class;
static struct device *sms_device = NULL;
#if 0
struct nf_hook_ops
{
struct list_head list;
/* User fills in from here down. */
nf_hookfn *hook;
struct module *owner;
int pf;
int hooknum;
/* Hooks are ordered in ascending priority. */
int priority;
};
#define ETH_P_IP 0x0800 /* Internet Protocol packet */
#define ETH_P_ARP 0x0806 /* Address Resolution packet */
#endif
int sms_memcpy(char* dst,char* src,int len)
{
 int i = 0;
 if (src == NULL || dst == NULL)
return -1;
for (i = 0; i < len; i++)
{
*dst = *src;
dst++;
src++;
 }
return len;
}
int sms_strcmp(char* s1,char* s2)
{
if (s1 == NULL || s2 == NULL)
{
return -1;
}
while(*s1 != '\0' && *s2 != '\0')
{
if (*s1 != *s2)
{
return (*s1 - *s2);
}
s1++;
s2++;
}
if (*s1 != '\0' || *s2 != '\0')
{
return *s1 - *s2;
 }
 return 0;
}
int sms_strlen(char* str)
{
int len = 0;
if (str == NULL)
{
return len;
}
while (*str != '\0')
{
len++;
str++;
}
return len;
}
char* sms_strcpy(char* s1,char* s2)
{
if (s1 == NULL || s2 == NULL)
{
return NULL;
}
while (*s2 != '\0')
{
*s1 = *s2;
s1++;
s2++;
}
return s1;
}
SMS_RV_t sms_firewall_set_default(sms_firewall_t* firewall)
{
if (firewall == NULL)
{
return SMS_ARGS_FAIL;
}
firewall->upper_protocol = INVALID_PROTOCOL;
firewall->sport = INVALID_PORT;
firewall->dport = INVALID_PORT;
firewall->sipaddr = INVALID_IP;
firewall->dipaddr = INVALID_IP;
firewall->drop_cnt = 0;
firewall->match_http = SMS_FALSE;
memset(firewall->dev_name,0x0,sizeof(firewall->dev_name));
return SMS_SUCCESS;
}
void testing_function(sms_firewall_t* firewall)
{
 //char* debug_interface = "ppp0";
 //sms_memcpy(firewall->dev_name,debug_interface,sizeof(debug_interface));
 firewall->match_ip = SMS_FALSE;
 //firewall->sipaddr = 1754879441;
 //firewall->dipaddr = 50505920;
 //firewall->upper_protocol = UDP_PROTOCOL;
 //firewall->match_http = SMS_TRUE;
 //firewall->sport = 80;
}
unsigned int protocol_hook(unsigned int hooknum, struct sk_buff** skb,const struct net_device *in,const struct net_device *out,int (*okfn)(struct sk_buff*))
{
struct iphdr* iph = ip_hdr(skb);
struct tcphdr *tch;
struct udphdr *udh;
if (iph == NULL)
{
return NF_ACCEPT;
}
if (firewall.match_ip == SMS_TRUE)
 {
firewall.drop_cnt++;
return NF_DROP;
}
else if (iph->saddr == firewall.sipaddr)
{
firewall.drop_cnt++;
return NF_DROP;
}
else if (iph->daddr == firewall.dipaddr)
{
firewall.drop_cnt++;
return NF_DROP;
}
switch(iph->protocol)
{
case ICMP_PROTOCOL:
case TCP_PROTOCOL:
case UDP_PROTOCOL:
if (iph->protocol == firewall.upper_protocol)
{
firewall.drop_cnt++;
return NF_DROP;
}
break;
default:
break;
}
/*Check higher layer protocol like http*/
if (iph->protocol == TCP_PROTOCOL)
{
//tch = (struct tcphdr*)skb_push(skb,iph->ihl * 4);
tch = (void*)iph + ip_hdrlen(skb);
if (tch != NULL)
{
if(firewall.match_http == SMS_TRUE)
{
if (ntohs(tch->source) == HTTP_PORT_NUM || ntohs(tch->dest) == HTTP_PORT_NUM)
{
firewall.drop_cnt++;
return NF_DROP;
}
}
if (ntohs(tch->source) == firewall.sport)
{
firewall.drop_cnt++;
return NF_DROP;
}
if (ntohs(tch->dest) == firewall.dport)
{
firewall.drop_cnt++;
return NF_DROP;
}
}
else
{
printk(KERN_ALERT "tch is NULL!!!");
}
// skb_pull(skb,iph->ihl * 4);
}
else if (iph->protocol == UDP_PROTOCOL)
{
// udh = (struct udphdr*)skb_push(skb,iph->ihl * 4);
udh = (void*)iph + ip_hdrlen(skb);
if (udh != NULL)
{
if (ntohs(udh->source) == firewall.sport)
{
firewall.drop_cnt++;
return NF_DROP;
}
if (ntohs(udh->dest) == firewall.dport)
{
firewall.drop_cnt++;
return NF_DROP;
}
}
else
{
printk(KERN_ALERT "udp header is NULL!!!");
}
//skb_pull(skb,iph->ihl * 4);
}
return NF_ACCEPT;
}
unsigned int main_hook(unsigned int hooknum, struct sk_buff** skb,const struct net_device *in, const struct net_device *out,int (*okfn)(struct sk_buff*))
{
if (firewall.dev_name[0] != '\0')
{
if (sms_strcmp(firewall.dev_name,in->name) == 0)
{
firewall.drop_cnt++;
return NF_DROP;
}
}
if(NF_DROP == protocol_hook(hooknum,skb,in,out,NULL))
 {
return NF_DROP;
 }
return NF_ACCEPT;
}
static int sms_firewall_open(struct inode *inode, struct file *file)
{
if (reference != 0)
 {
return -EBUSY;
 }
reference++;
return 0;
}
static ssize_t sms_firewall_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
return 0;
}
static ssize_t sms_firewall_write(struct file * file, const char * buf, size_t count, loff_t *off)
{
return 0;
}
static int sms_firewall_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
switch(cmd)
{
case SMS_FIREWALL_DROP_IP:
firewall.match_ip = SMS_TRUE;
break;
case SMS_FIREWALL_DROP_PROTOCOL:
firewall.upper_protocol = arg;
break;
case SMS_FIREWALL_DROP_HTTP:
firewall.match_http = SMS_TRUE;
break;
case SMS_FIREWALL_DROP_SPORT:
firewall.sport = arg;
break;
case SMS_FIREWALL_DROP_DPORT:
firewall.dport = arg;
 break;
case SMS_FIREWALL_DROP_SIP:
firewall.sipaddr = arg;
break;
case SMS_FIREWALL_DROP_DIP:
 firewall.dipaddr = arg;
break;
case SMS_FIREWALL_DROP_INTERFACE:
sms_strcpy(firewall.dev_name,arg);
break;
 default:
return -EINVAL;
 }
 return 0;
}
static struct file_operations fops = {
 .owner = THIS_MODULE,
 .open = sms_firewall_open,
 .read = sms_firewall_read,
 .write = sms_firewall_write,
 .ioctl = sms_firewall_ioctl
 };
static int firewall_init(void)
{
 int result = alloc_chrdev_region(&firewall_dev,MINOR_NUM,MAX_NUM_DEVICES,FIREWALL_DEV_NAME);
if(result < 0)
{
printk(KERN_ALERT "\nUnable to get the major number for the device %s”,FIREW
ALL_DEV_NAME);
}
 major_num = MAJOR(firewall_dev);
 minor_num = MINOR(firewall_dev);
 cdev_init(&sms_cdev,&fops);
 result = cdev_add(&sms_cdev,firewall_dev,1);
 if (result)
 {
 return result;
 }
 sms_class = class_create(THIS_MODULE, "firewall_class");
 if (IS_ERR(sms_class))
 {
printk(KERN_EMERG "Failed to create the firewall class");
return -1;
 }
sms_device = device_create(sms_class,NULL,firewall_dev,NULL,"%s",FIREWALL_DEV_NAME);
if (IS_ERR(sms_device))
{
printk(KERN_EMERG "Failed to create the sms firewall device");
return -1;
}
if (SMS_SUCCESS != sms_firewall_set_default(&firewall))
{
return -1;
}// testing_function(&firewall);
 netfilter_ops.hook = main_hook;
 netfilter_ops.owner = THIS_MODULE;
 netfilter_ops.pf = PF_INET;
 netfilter_ops.hooknum = NF_INET_PRE_ROUTING;
 netfilter_ops.priority = NF_IP_PRI_FIRST;
 nf_register_hook(&netfilter_ops);
 netfilter_ops1.hook = main_hook;
 netfilter_ops1.owner = THIS_MODULE;
 netfilter_ops1.pf = PF_INET;
 netfilter_ops1.hooknum = NF_INET_POST_ROUTING;
 netfilter_ops1.priority = NF_IP_PRI_FIRST;
 nf_register_hook(&netfilter_ops1);
 return 0;
}
static void firewall_exit(void)
{
printk(KERN_ALERT "\n Total number of packets dropped is %u",firewall.drop_cnt);
device_destroy(sms_class,firewall_dev);
class_destroy(sms_class);
cdev_del(&sms_cdev);
unregister_chrdev(major_num,FIREWALL_DEV_NAME);
nf_unregister_hook(&netfilter_ops);
 nf_unregister_hook(&netfilter_ops1);
}	
module_init(firewall_init);
module_exit(firewall_exit);

C. KERNEL MODULE DESCRIPTION
Kernel module is where the rules configured by the user comes into play. As said a kernel module in general has two main functions, initialization function and exit function. This initialization function is called whenever the “insmode” command is given while inserting the module into the kernel and the exit function is called whenever the “rmmode” command is given to remove the module from the from the kernel.
There three main function in this initialization function static int firewall_init, they are
1) int result = alloc_chrdev_region
2) sms_class = class_create(THIS_MODULE, "firewall_class");
3) sms_device=device_create(sms_class,NULL,firewall_dev,NULL,"%s",FIREWALL_DEV_NAME);
a. int result = alloc_chrdev_region
This function Allocates a range of char device numbers.

The syntax is
	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

 (
int
alloc_chrdev_region
(
dev_t *
dev
,

unsigned
baseminor
,

unsigned
count
,

const char *
name
)
;
)

Arguments
· Dev: output parameter for first assigned number
· Baseminor: first of the requested range of minor numbers
· Count: the number of minor numbers required
· Name: the name of the associated device or driver
The major number will be chosen dynamically, and returned (along with the first minor number) in dev. Returns zero or a negative error code.
A. sms_class = class_create(THIS_MODULE, "firewall_class");
 	This function is used to create a struct class pointer that can then be used in calls to class_device_create. Note, the pointer created here is to be destroyed when finished by making a call to class_destroy. This is done in the exit function.
 The Syntax is
 struct class * class_create (struct module * owner, const char * name);
 Arguments
· Owner: pointer to the module that is to “own” this struct class.
· Name: pointer to a string for the name of this class.

B. sms_device=device_create(sms_class,NULL,firewall_dev,NULL,"%s",FIREWALL_DEV_NAME);
 This function can be used by char device classes. A struct device will be created in to the specified class.
 The Syntax is
 (
struct
 device *
device_create
(struct class *
class
,
struct
 device *
parent
,
dev_
t
devt
, const char *
fmt
,
...
);
)

 Arguments
a. class :pointer to the struct class that this device should be registered to.
b. parent :pointer to the parent struct device of this new device, if any.
c. devt :the dev_t for the char device to be added.
d. fmt :string for the device's name.
e. ...variable arguments.

Exit function is used to release all the devices used and also to unregister the registered hooks.
 printk() is a logging macro used by the kernel and is assigned a priority of <1>.Kernel priorities, of which there are eight, are defined in kernel.h. Each kernel priority has a particular intended meaning and a related definition:

	#define KERN_EMERG	 "<0>" /* system is unusable */
	#define KERN_ALERT 	 "<1>" /* action must be taken immediately */
	#define KERN_CRIT 	 "<2>" /* critical conditions */
	#define KERN_ERR 	 "<3>" /* error conditions */
	#define KERN_WARNING "<4>" /* warning conditions */
	#define KERN_NOTICE 	 "<5>" /* normal but significant condition	 */
	#define KERN_INFO 	 "<6>" /* informational */
	#define KERN_DEBUG 	 "<7>" /* debug-level messages */
printk()is assigned the highest priority to ensure that it prints to the console using KERN_ALERT priority.
III. TIME MANAGEMENT
A. HEADER FILE
#define SMS_TIME_MGMT_H
#define SMS_TIME_MGMT_H
#include<time.h>
#define SMS_TIME_MAX_ENTRIES 5
#define SMS_MAX_NAME_LENGTH 32
#define SMS_TIME_TASK_SLEEP_TIME 1
#define SMS_FALSE 0
#define SMS_TRUE !(SMS_FALSE)
typedef struct tm sms_time_t;
typedef void (*start_hook)(void*);
typedef void (*end_hook)(void*);
typedef struct
{
 char name[SMS_MAX_NAME_LENGTH];
 sms_time_t start_time;
 start_hook start_fn;
 sms_time_t end_time;
 end_hook end_fn;
 int is_periodic;
 int in_use;
 void* sdata;
 void* edata;
 int event_start;
 int event_end;
}sms_time_entry_t;
typedef struct
{
 sms_time_entry_t entry_list[SMS_TIME_MAX_ENTRIES];
 int index;
}
sms_time_mgmt_t;
int sms_register_entry(sms_time_entry_t* entry);
int convert_time_string(char* tstr,sms_time_t* sms_time);
int sms_time_register_entry(char* name,char* stime,void* shandler,void* sdata,char* etime,void* ehandler,void* edata,int is_periodic);
void sms_wait_for_finish();
void sms_init_time_mgmt();
#endif

B. SOURCE FILE
#include <stdio.h>
#include<pthread.h>
#include<stdlib.h>
#include<string.h>
#include "sms_time_mgmt.h"
static sms_time_mgmt_t time_object;
static pthread_t sms_time_mgmt_thread;
void* main_sms_time_mgmt(void* arg)
{
 int i = 0;
 sms_time_entry_t *temp;
 time_t current_time;
 time_t stime;
 time_t etime;
 int result;
 sleep(2);
 while (1)
 {
sleep(SMS_TIME_TASK_SLEEP_TIME);
for (i = 0; i < SMS_TIME_MAX_ENTRIES; i++)
{
temp = &time_object.entry_list[i];
if (temp != NULL && temp->in_use == SMS_TRUE)
{
time(¤t_time);
if (temp->event_start == SMS_FALSE)
{
stime = mktime(&temp->start_time);
result = difftime(stime,current_time);
printf("\r\n Time to invoke start function is %d",result);
if (result <= 0)
{
/*time has reached, now call the start function*/
temp->start_fn(temp->sdata);
temp->event_start = SMS_TRUE;
}
}
if (temp->event_end == SMS_FALSE)
{
etime = mktime(&temp->end_time);
result = difftime(etime,current_time);
printf("\r\n Time to invoke end function is %d",result);
if (result <= 0)
{
/*call the end function*/
temp->end_fn(temp->edata);
temp->event_end = SMS_TRUE;
}
}
if (temp->is_periodic == SMS_FALSE)
{
if (temp->event_start == SMS_TRUE && temp->event_end == SMS_TRUE)
{
temp->in_use = SMS_FALSE;
}
}
}/*if temp!= NULL*/
}/*for loop*/
}/*while(1)*/
}
void sms_init_time_mgmt()
{
memset(&time_object,0x0,sizeof(time_object));
pthread_create(&sms_time_mgmt_thread,NULL,(void*)main_sms_time_mgmt,NULL);
}
void display_time(char* heading,char sep,int numtimes,sms_time_t* sms_time)
{
int i = 0;
printf("\r\n%s\r\n",heading);
for (i = 0; i < numtimes; i++)
{
printf("%c",sep);
}
printf("\r\n seconds = %d",sms_time->tm_sec);
printf("\r\n minutes = %d",sms_time->tm_min);
printf("\r\n hours = %d",sms_time->tm_hour);
printf("\r\n day of the month = %d",sms_time->tm_mday);
printf("\r\n month since january = %d",sms_time->tm_mon);
printf("\r\n year since 1900 = %d",sms_time->tm_year);
printf("\r\n day of the week = %d",sms_time->tm_wday);
printf("\r\n days since Jan 1 = %d\r\n",sms_time->tm_yday);
printf("\r\n is day light savings set = %d\r\n",sms_time->tm_isdst);
for (i = 0; i < numtimes; i++)
{
printf("%c",sep);
}
}
void sms_wait_for_finish()
{
void* exit_status;
pthread_join(sms_time_mgmt_thread,&exit_status);
}
int convert_time_string(char* str,sms_time_t* sms_time)
{
time_t t;
sms_time_t *temp;
if (str == NULL || sms_time == NULL)
{
return -1;
}
time(&t);
temp = localtime(&t);
strptime(str,"%H:%M",temp);
sms_time->tm_sec = 0;
sms_time->tm_min = temp->tm_min;
sms_time->tm_hour = temp->tm_hour;
sms_time->tm_mday = temp->tm_mday;
sms_time->tm_mon = temp->tm_mon;
sms_time->tm_year = temp->tm_year;
sms_time->tm_wday = temp->tm_wday;
sms_time->tm_yday = temp->tm_yday;
sms_time->tm_isdst = temp->tm_isdst;
display_time(__func__,'-',20,sms_time);
return 0;
}
int sms_time_register_entry(char* name,char* stime,void* shandler,void* sdata,char* etime,void* ehandler,void* edata,int is_periodic)
{
sms_time_t pstime;
sms_time_t petime;
time_t curtime;
time_t start_time;
time_t end_time;
int diff;
sms_time_entry_t tentry;
int retval;
if (stime == NULL)
{
return -1;
}
time(&curtime);
retval = convert_time_string(stime,&pstime);
if (retval != 0)
{
return -1;
}
display_time("Start time details",'*',20,&pstime);
start_time = mktime(&pstime);
diff = (int)difftime(start_time,curtime);
printf("\r\n Number of seconds before start is %d",diff);
if (diff <= 0)
{
return -1;
}
if (etime != NULL)
{
retval = convert_time_string(etime,&petime);
if (retval != 0)
{
return -1;
}
display_time("End time details",'-',20,&petime);
end_time = mktime(&petime);
diff = (int)difftime(end_time,curtime);
printf("\r\n Number of seconds before end is %d",diff);
if (diff <= 0)
{
return -1;
}
}
memset(&tentry,0x0,sizeof(tentry));
strncpy(tentry.name,name,strlen(name));
tentry.start_time = pstime;
tentry.start_fn = (start_hook)shandler;
if (etime != NULL)
{
tentry.end_time = petime;
tentry.end_fn = (end_hook)ehandler;
}
tentry.is_periodic = is_periodic;
tentry.sdata = sdata;
tentry.edata = edata;
return sms_register_entry(&tentry);
}
int sms_register_entry(sms_time_entry_t *entry)
{
sms_time_entry_t *temp;
if (entry == NULL)
{
return -1;
}
if (time_object.index < SMS_TIME_MAX_ENTRIES)
{
temp = &time_object.entry_list[time_object.index];
if (temp->in_use == SMS_FALSE)
{
strcpy(temp->name,entry->name);
temp->start_time = entry->start_time;
temp->start_fn = entry->start_fn;
temp->end_time = entry->end_time;
temp->end_fn = entry->end_fn;
temp->is_periodic = entry->is_periodic;
temp->sdata = entry->sdata;
temp->edata = entry->edata;
temp->in_use = SMS_TRUE;
temp->event_start = SMS_FALSE;
temp->event_end = SMS_FALSE;
return time_object.index++;
}
}
return -1;
}

IV. TIME MANAGEMENT MODULE DESCRIPTION
The ctime() and localtime() functions all take an argument of data type time_t which represents calendar time. When interpreted as an absolute time value, it represents the number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC). The mktime() function take an argument representing broken-down time which is a representation separated into year, month, day, etc. Broken-down time is stored in the structure tm which is defined in <time.h> as follows:
struct tm
{
int tm_sec; 	 /* The number of seconds after the minute, normally in the
 range 0 to 59, but can be up to 60 to allow for leap
 seconds.*/
int tm_min; /* The number of minutes after the hour, in the range 0 to 59. */
int tm_hour; /* number of hours past midnight, in the range 0 to 23. */
int tm_mday; /* The day of the month, in the range 1 to 31.*/
int tm_mon; /* The number of months since January, in the range 0 to 11. */
int tm_year; /* number of years since 1900.*/
int tm_wday; /* The number of days since Sunday, in the range 0 to 6.*/
int tm_yday; /* The number of days since January 1, in the range 0 to 365.*/
int tm_isdst; /* A flag that indicates whether daylight saving time is in
 effect at the time described */
};

The call ctime(t) is equivalent to localtime(t).It converts the calendar time into a null-terminated string of the form
"Wed Mar 21 21:49:08 2011\n"

BIBLIOGRAPHY:

REFERENCE BOOKS
1) ARM system on chip architecture(2nd edition) by Steve Furber
2) ARM926EJ-S Technical Reference Manual
3) Computer Networks by Andrew S Tanenbaum
4) TCP/IP Suite by Behrouz Forouzan
5) Beginning with Linux Programming by Neil Matthew, Richard Stones, Alan Cox
6) Programming under c c-embedded arm9
7) Linux Device Drivers by Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman.
WEBSITES
1) www.arm9.org
2) www.friendlyarm.net/products/mini2440
3) www.compnetworking.about.com
4) www.networkcomputing.com
5) www.linuxsecurity.com
6) www.netfilter.org
7) www.wikipedia.org

 PACKET FILTERING FIREWALL USING NETFILTERS IN LINUX FOR ARM9. 	

image2.jpeg

image3.emf

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.emf

image12.emf

image13.png

image14.png

image15.png

image16.png

image1.png

