
 SOA and Web Services

Page 1 of 8
Dept. of CSE, A.I.T.S, Tirupati

SERVICE ORIENTED ARCHITECTURE
AND WEB SERVICES

Presented by

P.PUNEETH
B.Tech III CSE, A.I.T.S, Tirupati

Email: puneeth.pulla560@gmail.com

E.VISHNU VARDHAN
B.Tech III CSE, A.I.T.S, Tirupati

Email: vishnuvardhan.eyunni@gmail.com

mailto:puneeth.pulla560@gmail.com
mailto:vishnuvardhan.eyunni@gmail.com

 SOA and Web Services

Page 2 of 8
Dept. of CSE, A.I.T.S, Tirupati

ABSTRACT:

In software engineering, a Service-
Oriented Architecture (SOA) is a set of
principles and methodologies for
designing and developing software in the
form of interoperable services. These
services are well-defined business
functionalities that are built as software
components (discrete piece of
code and/or data structures) that can
be reused for different purposes.
SOA design principles are used during the
phases of systems
development and integration.

SOA also generally provides a way for
consumers of services, such as web-based
applications, to be aware of available
SOA-based services. For example, several
disparate departments within a company
may develop and deploy SOA services in
different implementation languages; their
respective clients will benefit from a well-
understood, well-defined interface to
access them. XML is often used for
interfacing with SOA services, though this
is not required. JSON is also becoming
increasingly common.

SOA defines how to integrate widely
disparate applications for a Web-based
environment and uses multiple
implementation platforms. Rather than
defining an API, SOA defines the interface
in terms of protocols and functionality.
An endpoint is the entry point for such a
SOA implementation.

Service-orientation requires loose
coupling of services with operating
systems, and other technologies that
underlie applications. SOA separates
functions into distinct units, or services,
which developers make accessible over a
network in order to allow users to combine
and reuse them in the production of
applications. These services and their
corresponding consumers communicate
with each other by passing data in a well-

defined, shared format, or by coordinating
an activity between two or more services.

A Web service is a method of
communication between two electronic
devices over the web (internet).

The World Wide Web Consortium defines
a "Web service" as "a software system
designed to support interoperable
machine-to-machine interaction over
a network". It has an interface described
in a machine-processable format
(specifically Web Services Description
Language, known by the acronym WSDL).
Other systems interact with the Web
service in a manner prescribed by its
description using SOAP messages,
typically conveyed using HTTP with an
XML serialization in conjunction with
other Web-related standards.

Web services platform elements are

• SOAP (Simple Object Access Protocol)
SOAP is a protocol specification for
exchanging structured information in the
implementation of Web Services in
computer networks

• UDDI (Universal Description,
Discovery and Integration)

UDDI is a platform-independent,
Extensible Markup Language (XML)-
based registry for businesses worldwide to
list themselves on the Internet and a
mechanism to register and locate web
service applications.

• WSDL (Web Services Description
Language)

WSDL is an XML-based language that
provides a model for describing Web
services.

 SOA and Web Services

Page 3 of 8
Dept. of CSE, A.I.T.S, Tirupati

Service Oriented Architecture:

In considering the term service-oriented
architecture, it is useful to review the key
terms.

• Architecture is a formal
description of a system, defining its
purpose, functions, externally visible
properties, and interfaces. It also
includes the description of the system’s
internal components and their
relationships, along with the principles
governing its design, operation, and
evolution.

• A service is a software
component that can be accessed via a
network to provide functionality to a
service requester.

• The term service-oriented
architecture refers to a style of
building reliable distributed systems that
deliver functionality as services, with the
additional emphasis on loose coupling
between interacting services.

Technically, then, the term SOA
refers to the design of a system, not to its
implementation. Although it is
commonplace for the term to be used in
referring to an implementation—for
example, in phrases such as “building an
SOA”—in this paper we avoid this use,
and we use the adjective service- oriented
in contexts such as “service-oriented
environment” or “service-oriented grid.”

We regard SOA as an architectural
style that emphasizes implementation of
components as modular services that can
be discovered and used by clients.
Services generally have the following
characteristics:

Services may be individually useful,
or they can be integrated—composed—to

provide higher-level services. Among
other benefits, this promotes re-use of
existing functionality.

• Services communicate with their
clients by exchanging messages: they are
defined by the messages they can accept
and the responses they can give.

• Services can participate in a
workflow, where the order in which
messages are sent and received affects
the outcome of the operations performed
by a service. This notion is defined as
“service Choreography.”

• Services may be completely self-
contained, or they may depend on the
availability of other services, or on the
existence of a resource such as a database.
In the simplest case, a service might
perform a calculation such as computing
the cube root of a supplied number
without needing to refer to any external
resource, or it may have pre-loaded all the
data that it needs for its lifetime.
Conversely, a service that performs
currency conversion would need real-time
access to exchange-rate information in
order to yield correct values.

• Services advertise details such
as their capabilities, interfaces,
policies, and supported
communications protocols.
Implementation details such as
programming language and hosting
platform are of no concern to clients,
and are not revealed.

Figure 1 illustrates a simple service
interaction cycle, which begins with a
service advertising itself through a well-
known registry service (1). A potential
client, which may or may not be another
service, queries the registry (2) to search
for a service that meets its needs. The
registry returns a (possibly empty) list of

 SOA and Web Services

Page 4 of 8
Dept. of CSE, A.I.T.S, Tirupati

suitable services, and the client selects one
and passes a request message to it, using
any mutually recognized protocol (3). In
this example, the service responds (4)
either with the result of the requested
operation or with a fault message.

 2 1
 Discover Advertise

 3
 4

 Interact

Figure 1: Service interaction in a service-oriented environment

The illustration shows the simplest case, but
in a real-world setting such as a commercial
application the process may be
significantly more complex. For example,
a given service may support only the HTTPS
Protocol, be requested to authorized users,
require Kerberos authentication, offer
different levels of performance to different
users, or require payment for use. Services
can provide such details in a variety of
ways, and the client can use this
information to make its selection. Some
attributes, such as payment terms and
guaranteed levels of service, may need to be
established by a process of negotiation
before the client can make use of the service
it has selected. And, while this illustration
shows a simple synchronous, bi-directional
message exchange pattern, a variety of
patterns are possible—for example, an
interaction may be one-way, or the response
may come not from the service to which the
client sent the request, but from some other
service that completed the transaction.

LOOSE COUPLING:

In our definition of SOA, we included the
term loose coupling. This term implies that
the interacting software components
minimize their in-built knowledge of each
other: they discover the information they
need at the time they need it. For example,
having learned about a service’s existence,
a client can discover its capabilities, its
policies, its location, its interfaces and its
supported protocols. Once it has this
knowledge, the client can access the
service using any mutually acceptable
protocol. The word “frictionless” has been
used to describe the ultimate goal of loose
coupling, and the word aptly conjures up a
vision of components that communicate
almost without contact.

The benefits of loose coupling include:

Flexibility:
Loosely-coupled services are typically
more flexible than more tightly-coupled
applications. In a tightly-coupled
architecture, the different components of
an application are tightly bound to each
other, sharing semantics, libraries, and
often sharing state. This makes it difficult
to evolve the application to keep up with
changing business requirements. The
loosely-coupled, document-based,
asynchronous nature of services in an SOA
allows applications to be flexible, and easy
to evolve with changing requirements.

Scalability:
The services in an SOA are loosely
coupled, applications that use these
services tend to scale easily -- certainly
more easily than applications in a more
tightly-coupled environment. That's
because there are few dependencies
between the requesting application and the
services it uses. The dependencies between
client and service in a tightly-coupled
environment are compounded (and the
development effort made significantly
more complex) as an application that uses

Registry

Client Service

 SOA and Web Services

Page 5 of 8
Dept. of CSE, A.I.T.S, Tirupati

these services scales up to handle more
users.

Reusability:
Developers within an enterprise and across
enterprises (particularly, in business
partnerships) can take the code developed
for existing business applications, expose
it as web services, and then reuse it to
meet new business requirements. Reusing
functionality that already exists outside or
inside an enterprise instead of developing
code that reproduces those functions can
result in a huge savings in application
development cost and time. The benefit of
reuse grows dramatically as more and
more business services get built, and
incorporated into different applications.
A major obstacle in taking advantage of
existing code is the uniqueness of specific
applications and systems. Typically,
solutions developed in different
enterprises, even different departments
within the same enterprise, have unique
characteristics. They run in different
operating environments, they're coded in
different languages, they use different
programming interfaces and protocols.
You need to understand how and where
these applications and systems run to
communicate with them.

Cost Efficiency:

Other approaches that integrate disparate
business resources such as legacy systems,
business partner applications, and
department-specific solutions are
expensive because they tend to tie these
components together in a customized way.
Customized solutions are costly to build
because they require extensive analysis,
development time, and effort. They're also
costly to maintain and extend because
they're typically tightly-coupled, so that
changes in one component of the
integrated solution require changes in
other components. A standards-based
approach such as a web services-based
SOA should result in less costly solutions

because the integration of clients and
services doesn't require the in-depth
analysis and unique code of customized
solutions. Also, because services in an
SOA are loosely-coupled, applications that
use these services should be less costly to
maintain and easier to extend than
customized solutions. This is potentially
the biggest cost saving of all.

STATE AND STATELESSNESS:

A key notion of loose coupling is
statelessness—a topic that has been much-
discussed and is often mentioned as a
critical requirement, sometimes without a
clear understanding of its significance.

Simply, the benefits of loose coupling, as
listed above, are derived from the fact that
a client can choose to go to any service
that is capable of fulfilling its need. If its
choice is restricted to a single service then
a tight coupling exists between the client
and the server, and the benefits of loose
coupling are diminished.

For a more complex transaction that
requires several steps, however, the design
of the service might be such that the
service retains in its local memory some
information (“state”) about the first step,
expecting to make use of it when the client
contacts it for the next step. In this case,
the service is “stateful,” and the client
must return to the same service for the next
step. This might result in a delay if many
clients are using the same service or in a
transaction failure if the node hosting the
service fails between steps.

A better approach to the design of the
service is for it not to retain state about the
transaction, but to be “stateless.” This
implies that in a multi-step transaction:

• At the end of each intermediate
step the service must hand back to the
client sufficient state information to enable
any qualified service to identify and
continue the transaction.

 SOA and Web Services

Page 6 of 8
Dept. of CSE, A.I.T.S, Tirupati

• The client must hand the state
information to whichever service it selects
to process the next step of the transaction.

• The selected service must be able
to accept and handle the state information
supplied by the client, regardless of
whether it processed the earlier steps itself.

Figure 2 shows a client engaged in a three-
step transaction with several services, each
of which might be capable of handling any
part or all of the transaction. The service
that handles Step 1 stores the details of the
in-progress transaction in the database, and
returns requested information to the client,
along with a transaction identifier. The
client might request confirmation from the
user before passing the transaction
identifier to another service, which uses it
to retrieve the state information from the
database and initiates Step 2. This service
then updates the database and returns
additional information to the client.
Finally, the client passes the transaction
identifier back to a third service with a
request to complete the transaction.

 Discover

 1 2 3

Advertise

 Read Update commit

Figure 2: A multi-step client/service interaction

The approach outlined above enhances
loose coupling by separating the

transaction’s state from the services that
operate on it. In the example, both the
account data and the details of the
transaction can be considered to be state
information, but the account data is
permanent, while the transaction details
only need to exist while the transaction is
in progress.

WEB SERVICES:

Most people are familiar with accessing
the Web through a Web browser, which
provides a human-oriented interface to
information and user-oriented services
such as on-line auctions and retail stores.
When a user requests a Web page, the
request is handled by a remote Web server,
which returns the information in hypertext
mark-up language (HTML)—a form that
allows the browser to present it using a
selection of fonts, colours and pictures, all
factors that make it more useful and
appealing to a human.

Web services are distributed software
components that provide information to
applications rather than to humans,
through an application-oriented interface.
The information is structured using
extensible Markup Language (XML), so
that it can be parsed and processed easily
rather than being formatted for display. In
a Web-based retail operation, for example,
Web services that may be running on
widely separated servers might provide
account management, inventory control,
shopping cart and credit card authorization
services, all of which may be invoked
multiple times in the course of a single
purchase.

Web services publish details of their
functions and interfaces, but they keep
their implementation details private; thus a
client and a service that support common
communication protocols can interact
regardless of the platforms on which they
run, or the programming languages in
which they are written. This makes Web

Client

Registry

Service Service Service

Database

 SOA and Web Services

Page 7 of 8
Dept. of CSE, A.I.T.S, Tirupati

services particularly applicable to a
distributed heterogeneous environment.

Although it is common to talk about Web-
service “instances,” this can be misleading
as it implies that a service at a given
address is a clone of other “instances.” It
may be true that at a particular moment
several running services are derived from
the same source code, but if the code is
changed and some services continue to run
as they were and others are stopped and re-
started, are they still all instances of the
same service? What if the change added
new operations? The answer is that they
are all independently running services that
offer common functionality, and the word
“instance” is superfluous.

The key specifications used by Web
services are:

XML:
Extensible Markup Language (XML) has
become the de facto standard for
describing data to be exchanged on the
Web. As its name indicates, XML is a
mark-up language. It involves the use of
tags that "markup" the contents of a
document, and in doing so, describe the
contents of a document. An XML tag
identifies information in a document, and
also identifies the structure of the
information.

SOAP:
Simple Object Access Protocol (SOAP) is
an XML-based protocol for exchanging
information in a distributed environment.
SOAP provides a common message format
for exchanging data between clients and
services. The basic item of transmission in
SOAP is a SOAP message, which consists
of a mandatory SOAP envelope, an
optional SOAP header, and a mandatory
SOAP body.

The envelope specifies two things: an
XML namespace and an encoding style.
The XML namespace specifies the names
that can be used in the SOAP message.
Namespaces are designed to avoid name
clashes -- the same name can be used for
different items, provided that the names
are in different namespaces. The encoding
style identifies the data types recognized
by the SOAP message. If a header is
provided, it extends the SOAP message in
a modular way. It's important to
understand that as a SOAP message travels
from a client to a service, it can pass
through a set of intermediate nodes along
the message path. Each node is an
application that can receive and forward
SOAP messages. An intermediate node
can provide additional services such as
transform the data in the message or
perform security-related operations. The
SOAP header can be used to indicate some
additional processing at an intermediate
node, which is, processing independent of
the processing done at the final
destination. Typically, the SOAP header is
used to convey security-related
information to be processed by runtime
components. The body contains the main
part of the SOAP message, that is, the part
intended for the final recipient of the
SOAP message.

WSDL:
Web Service Description Language
(WSDL) defines an XML schema for
describing a web service. A WSDL
document describes a web service as a
collection of abstract items called "ports"
or "endpoints." A WSDL document also

 SOA and Web Services

Page 8 of 8
Dept. of CSE, A.I.T.S, Tirupati

defines the actions performed by a web
service and the data transmitted to these
actions in an abstract way. Actions are
represented by "operations," and data is
represented by "messages." A collection of
related operations is known as a "port
type." A port type constitutes the
collection of actions offered by a web
service. What turns a WSDL description
from abstract to concrete is a "binding." A
binding specifies the network protocol and
message format specifications for a
particular port type. A port is defined by
associating a network address with a
binding. If a client locates a WSDL
document and finds the binding and
network address for each port, it can call
the service's operations according to the
specified protocol and message format.

SOA AND WEB SERVICES:
STYLE VS.
IMPLEMENTATION:

We initially described SOA without
mentioning Web services, and vice versa.
This is because they are orthogonal:
service-orientation is an architectural style,
while Web services are an implementation
technology. The two can be used together,
and they frequently are, but they are not
mutually dependent.

For example, although it is widely
considered to be a distributed-computing
solution, SOA can be applied to advantage
in a single system, where services might
be individual processes with well-defined
interfaces that communicate using local
channels, or in a self-contained cluster,
where they might communicate across a
high-speed interconnect.

Similarly, while Web services are well-
suited as the basis for a service-oriented
environment, there is nothing in their
definition that requires them to embody
the SOA principles. While statelessness is
often held up as a key characteristic of
Web services, there is no technical reason
that they should be stateless—that would

be a design choice of the developer, which
may be dictated by the architectural style
of the environment in which the service is
intended to participate.

THE ROLE OF STANDARDS:

The success of Web services is due in
large part to the development of standards
by bodies such as the World Wide Web
Consortium (W3C), the Organization for
the Advancement of Structured
Information Standards (OASIS), and the
Distributed Management Task Force
(DMTF). These bodies continue to
develop and enhance standards for some of
the essential underpinnings of Web
services, such as describing service
interfaces, implementing security and
policy management services, and, at a
higher level, for implementing business
processes.

REFERENCES:

1. World Wide Web Consortium
(W3C): http://www.w3.org

2. Chatterjee & Webber: Developing

Enterprise Web Services – An
Architect’s Guide (Prentice Hall)

3. WebServices.org:

http://www.webservices.org

4. Wikipedia.org:
 http://www.wikipedia.org

http://www.webservices.org/
http://www.wikipedia.org/

	SOA AND WEB SERVICES: STYLE VS. IMPLEMENTATION:
	THE ROLE OF STANDARDS:

