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Balancing Revocation and Storage Trade-Offs
in Secure Group Communication
Bezawada Bruhadeshwar and Sandeep S. Kulkarni
Abstract—In this paper, we focus on trade-offs between storage cost and rekeying cost for secure multicast. Membership in secure
multicast groups is dynamic and requires multiple updates in a single time frame. We present a family of algorithms that provide a
trade-off between the number of keys maintained by users and the time required for rekeying due to revocation of multiple users. We
show that some well-known algorithms in the literature are members of this family. We show that algorithms in this family can be used
to reduce the cost of rekeying by 43-79 percent when compared with previous solutions while keeping the number of keys
manageable. We also describe a scheme to reduce the number of secrets further when revocations are periodic. Furthermore, we
describe techniques to provide preferential treatment for long standing members of the group without affecting the performance of the
algorithms. Using our techniques, as the group size increases, long standing members need to store smaller number of keys than
short-lived members. This property is useful for adapting to the variable storage requirements of users in current day heterogeneous
networks.
Index Terms—Secure multicast, hierarchical key management, rekeying and storage trade-offs, user requirements and capabilities,
heterogeneous environments.
Ç
1 INTRODUCTION
APPLICATIONS such as conferencing, distributed interactive
simulations, networked gaming, and news dissemination
are group-oriented. In these applications, it is
necessary to secure the group communication as the data
are sensitive or it requires the users to pay for it. In the
algorithms for secure group communication (e.g., [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11]), a group key is shared
by all the users. The group key is used to encrypt data
transmitted to the group. The group membership is
dynamic. When group membership changes, to protect
the confidentiality of the current users, a new group key
needs to be shared by the users.




The dynamics of the group membership can be handled
under two settings. 
In the first setting, a central group controller manages the group membership and the users do not have the necessity to communicate among themselves.
Scenarios like pay TV, news dissemination, stock information, etc., are in this category. 
In these scenarios, typically, the group size is large and geographically disparate. 
In the second setting, the group members collaborate to agree upon a common group key [8], [9], [10], [11]. Applications like conferencing and distributed interactive simulation fall under this category. The group sizes in such applications
are typically small and justifies the usage of the relatively
high end computation required by the group key agreement
techniques [8], [9], [10], [11], [12]. In this work, we consider
the first setting where a large group of users is managed by
a group controller and consider the cost of membership
handling in such applications.
When a user is admitted to the group, the group
controller changes the group key and securely unicasts it
to the joining user. To send the new group key to the
current users, the group controller encrypts it with the old
group key and multicasts it to them. Thus, the cost of
rekeying for the group controller, due to a joining user is
small. However, when a user is revoked, i.e., the user leaves
or is forcefully removed from the group, the group
controller needs to securely unicast the new group key to
each of the remaining users. Toward this, the group
controller encrypts the new group key with the personal
keys of each of the remaining users and unicasts each
message to the respective user. The cost of this process is
OðNÞ symmetric key encryptions and OðNÞ messages.
Thus, for a large group, revoking users from the secure
group is an expensive operation.
Many solutions have been proposed (e.g., [2], [3], [4], [5],
[7]) for efficiently handling a single membership change,
i.e., a single join or revocation of a user. In these solutions,
for a group of N users, the group controller distributes the
new group key in OðlogNÞ encrypted messages. We note
that in these solutions, the rekeying cost, i.e., number of
encryptions performed and messages transmitted by the
group controller, for a joining user is increased from two to
OðlogNÞ. However, techniques suggested in [7], [13] reduce
the join cost to nearly constant and as such have been used
by other approaches [4], [14], [15], [16]. On the other hand,
the cost for revoking a user is reduced from OðNÞ to
OðlogNÞ encrypted messages. However, to handle multiple
membership changes, the group controller repeats the
process of revocation for each revoked user. Optimizations
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such as batch [17] or periodic rekeying [18] reduce this cost
to some extent. However, even in these solutions, the cost of
revocation is high. Moreover, as the group controller needs
to interrupt the group communication during the rekeying,
the resulting delay can be unreasonable for many applications.
Thus, efficient distribution of the new group key for
multiple membership changes is a critical problem in secure
group communication.
One approach to revoke multiple users is to associate a
key with every nonempty subset of users in the group. Thus,
if one or more users are revoked, the group controller uses
the key associated with the subset of the remaining users to
encrypt the new group key and transmits the new group key
to them. The advantage of this approach is that the
communication overhead is only one message for revoking
any number of users. However, the number of keys stored
by the group controller and the users is exponential in the
size of the group. In this paper, we describe a family of key
management algorithms that reduce the cost due to multiple
user revocation while keeping the storage cost manageable.
The goal of the paper is to evaluate trade-off between
storage and revocation cost. Storage is computed in terms of
keys that each user (respectively, group controller) maintains.
And revocation cost is computed in terms of the
encryptions performed, and the number of messages
transmitted, by the group controller. Similar to the algorithms
in [2], [3], [4], [5], [7], [13], [17], [18], [19], [20], [21], we
assume that the communication from the group controller
is broadcast in nature. Using our algorithms, the group
controller can efficiently distribute the group key. The main
contributions of our paper are as follows:
. We describe our family of key management algorithms
for efficiently distributing the new group key
when multiple users are revoked from the group. In
our algorithms, the storage at the group controller is
linear and the storage at the users is logarithmic in the
size of the group. Also, we show that some popular
algorithms (e.g., [3], [4]) are members of this family.
. We describe techniques to reduce the number of
keys stored by the users and the group controller.
Using one-way hash functions, we describe two key
assignment techniques. We show that our key
assignment techniques can be used to add users to
the group and to provide preferential treatment to
long standing users in the group. We argue the
applicability of our algorithms to scenarios where
users have varying requirements or capabilities.
. We also describe a hybrid key management algorithm
by combining our algorithm with an existing
solution. We show that such a combination is useful
when users have varying computational requirements.
Moreover, if these requirements vary over
time, our algorithms can be adapted to them
accordingly. The hybrid key management algorithm
proves that our algorithm can be easily composed
with any existing key management algorithm in an
incremental basis.
Organization of the paper. The paper is organized as
follows: In Section 2, we describe the problem of group key
distribution and discuss some related solutions. In Section 3,
we describe our family of key management algorithms for
revocation and present sample algorithms from this family.
In Section 4, we describe the key distribution process for
adding users to the group. In Section 5, we present the
simulation results of our algorithms and compare their
performance with previous solutions. In Section 6, we
describe a scenario in which users have variable requirements
and show that our algorithms can adapt to such
situations. In Section 7, we describe two key assignment
approaches to reduce the keys stored at different users. In
Section 8, we combine our algorithms with an existing
solution and show its benefits. In Section 9, we conclude the
paper and discuss future work.
2 KEY DISTRIBUTION IN SECURE MULTICAST:
NOTATIONS AND RELATED WORK
To ensure group security, all users in the group share a group
key kg. The group key is used to encrypt the data transmitted
to the group. When users are revoked from the group, to
protect the privacy of the remaining users, the group
controller needs to change and distribute the new group
key to the remaining users. To simplify the distribution of the
new group key, each user maintains additional keys (e.g., in
[2], [3], [4], [5], [7]), which are shared with a subset of users.
To send the new group key k0
g to the remaining users, the
group controller encrypts k0
g using the shared keys not
known to the revoked users. To reflect current group
membership, the group controller also needs to change and
distribute the shared keys that are known to the revoked
users. There are two approaches available with the group
controller for distributing the new shared keys. In the first
approach, the group controller explicitly transmits the new
shared keys (e.g., in [2], [3], [5]) to the current users. In our
work, we adopt the second approach where the group
controller and the users update the shared keys using the
following technique: k0
x ¼ fðk0
g; kxÞ, where kx is the old
shared key, k0
x is the new shared key, and f is a one-way
function. Using this technique, only those current users who
knew the old shared key kx will be able to get the new shared
key k0
x. This technique was also used in [4], [7], [13], [14], [15],
[16]. However, this technique may be prone to long-term
collusive attacks, as described [4], by the revoked users. To
provide resistance against such attacks, the group controller
adopts a policy in which the keys known to the current users
are refreshed at regular intervals of time.
From the above discussion, we note that the rekeying cost
for the group controller to revoke multiple users is the cost of
sending the new group key. We measure this cost in the
number of messages sent and the encryptions performed by
the group controller for distributing the new group key.
Related work. Other approaches to address the problem
of revoking multiple users are proposed in [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27]. In [17], the group
controller maintains a logical hierarchy of keys that are
shared by different subsets of the users. To revoke multiple
users, the group controller aggregates all the necessary key
updates to be performed and processes them in a single
step. However, the group controller interrupts the group
communication until all the necessary key updates are
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performed, and then, distributes the new group key to
restore group communication. This interruption to group
communication is undesirable for real-time and multimedia
applications. In [18], to handle multiple group membership
changes, the group controller performs periodic rekeying,
i.e., instead of rekeying whenever group membership
changes, the group controller performs rekeying only at
the end of selected time intervals. However, the revoked
users can access group communication until the group is
rekeyed. This can either cause monetary loss to the service
provider or compromise confidentiality of other users. In
[22], the group controller maintains a logical hierarchy of
keys similar to the solution in [17]. To revoke multiple
users, the group controller distributes the new group key by
using keys that are not known to the revoked users.
However, this solution achieves a good rekeying cost only if
the size of the revoked users is either very small or very
large. In the above schemes, the logical key tree structure
tends to become unbalanced after some membership
changes and results in tree which has large height (OðNÞ).
As the height of the tree determines the rekeying cost,
several approaches [19], [20], [21] have been proposed to
address this issue. These approaches focus on algorithms
for reorganizing the tree structure that becomes unbalanced
after a few membership changes. However, the basic
rekeying algorithm is the same as the one in [3]. The
approaches in these works are orthogonal to our algorithms
in that the approaches from these works can be used to
balance the tree used in our algorithms. In [25], the authors
describe an information-theoretic approach for analyzing
key-tree-based protocols and show interesting relationships
among the storage cost, the number of rekeying messages,
and the resistance against colluding users. They describe an
optimal key distribution protocol which is weakly collusion
resistant, i.e., it cannot tolerate collusion of two users.
In [26], [27], the authors focus on the storage versus
communication trade-offs in secure conferencing given
offline and interactive key distribution models. However,
their approaches do not address the issue of rekeying as
they focus on a fixed-size coalition of attackers and perform
an appropriate key distribution to address this threat
model. In [23], Luby and Staddon focus on the trade-off
between the storage cost and the rekeying cost. They
identify a lower bound on the rekeying cost based on the
number of keys that the users maintain. Their work is based
on previous work in [24] and assumes that an upper bound
on the number of users, say x, that need to be revoked is
known in advance. The key distribution algorithm in [24]
uses the value of x to distribute the keys. Hence, if the
number of users that need to be revoked is more than x,
then their algorithm fails to revoke them using the shared
keys. By contrast, our algorithm does not assume that the
number of revoked users is known in advance.
Notations. We use kðmÞ to denote that message m is
encrypted with key k. Only users who know k can decrypt
this message. The adversary (anyone outside the group) can
listen to all messages sent over the network. Hence, for
simplicity, we assume that all communication is broadcast
in nature, and hence, we do not explicitly identify the
intended recipients of a message. This assumption is similar
to that in [2], [3], [4], [5], [7], [13], [17], [18], [19], [20], [21].
3 KEY MANAGEMENT ALGORITHMS
In Section 3.1, we describe the basic structure and the
associated key management algorithm. In Section 3.2, we
describe our hierarchical key management algorithm for
larger groups using the concepts in the basic scheme.
3.1 The Basic Structure
We arrange a group of K users as children of a rooted tree,
as shown in Fig. 1a. Let R be the root node. We use the tuple
hR; u1; u2; . . . ; uKi to denote the basic structure.
The key management algorithm we use for the basic
structure is the complete key graph algorithm from [3]. In this
algorithm, for every nonempty subset of users, the group
controller provides a unique shared key which is known
only to the users in the subset. The group controller gives
these keys to the users at the time of joining the group. Of
the keys that a user, say ui, receives: 1) one key is associated
with the set fu1; u2 . . . ; uKg, and hence, is known to all the
users and 2) one key is associated with the set fuig. The
former key, say kR, is the group key, whereas the latter key
is the personal key.
Thus, the number of keys stored by the group controller
is 2K _ 1 and the number of keys held by each user is 2K_1.
Now, we consider the process of rekeying in this scheme
when one or more users are revoked from the group. The
proof of the following theorem describes the simple
rekeying process for user revocation:
Theorem 1. In the basic structure, when one or more users are
revoked, the group controller can distribute the new group
key securely to the remaining users using at most one
encrypted transmission.
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Fig. 1. Partial view of (a) basic structure (b) hierarchical structure.
Proof. We consider three possible cases of user revocation
from the basic structure.
Case 0. When no users are revoked, the group
controller sends the new group key using the current
group key that is known to all the users. Although this
trivial case is not important for the basic scheme, it is
important for the hierarchical algorithm we describe in
Section 3.2.
Case 1. When m < K, users are revoked from the
group and the group controller needs to distribute the
new group key to the remaining K _m users. The group
controller uses the shared key kK_m associated with the
remaining subset of K _m users to send the new group
key. Thus, the group controller transmits kK_mfk0
gg. As
the revoked users do not know kK_m, only the current
users will be able to decrypt this message.
Case 2. All users are revoked from the group. The
group controller does not need to distribute the new
group key, and thus, does not send any messages. tu
We note that once the new group key is distributed, the
current users update the necessary shared keys using the
one-way function technique we described in Section 2.
However, the basic structure requires the group controller
and the users to store a large number of keys, which is not
practical if the group is large. In the Section 3.2, we present
our hierarchical algorithm to reduce the number of keys
stored at the group controller and the users. Our hierarchical
algorithm preserves some attractive communication
properties of the basic structure while reducing the storage
requirement for the shared keys.
3.2 The Hierarchical Key Management Algorithm
In our hierarchical algorithm, we compose smaller basic
structures in a hierarchical fashion. To illustrate the
hierarchical structure, consider the sample structure
hR;R1;R2; . . .; Rdi shown in Fig. 1b, where each
Ri; 1 _ i _ d, further consists of the basic structure
hRi; ui1; ui2; . . . ; uidi. The parameter d is the number of
elements in a basic structure and can be considered as the
degree of the hierarchy. We note that the degree can be
different for different nodes in the hierarchy. However, for
the sake of simplicity, in this section, we assume that the
nodes in the hierarchical structures have a uniform degree d.
Now, each of the basic structures of the form
hRi; ui1; ui2; . . . ; uidi is associated with the shared keys as
described in Section 3.1. The structure at next higher level,
hR;R1;R2; . . .;Rdi, is also associated with shared keys. The
personal key associated with Ri; 1 _ i _ d in structure
hR;R1;R2; . . .;Rdi is the same as the group key of the
structure hRi; ui1; ui2; . . . ; uidi. Furthermore, the structure
hR;R1;R2; . . .;Rdi is associated with shared keys. Now,
each user in the basic structure hRi; ui1; ui2; . . . ; uidi is
provided with any shared key that is provided to Ri in
the structure hR;R1;R2; . . .;Rdi. To illustrate our hierarchical
algorithm, we consider four examples for d ¼ N; 2; 3; 4.
In the hierarchical structure, we denote the key associated
with a subset fa; b; . . . ; zg by kab...z.
Example 0. When d ¼ N, the key management algorithm
corresponds to the basic structure (cf. Section 3.1) with
K ¼ N. Thus, the number of keys maintained by the
group controller is 2N _ 1 and the number of keys
maintained by each user is 2N_1.
Example 1. In Fig. 2a, we show a hierarchy with d ¼ 2.
Consider that the shared keys associated with hR;R1;R2i
are fkR; kR1; kR2g, and the shared keys associated with
hR1; u11; u12i are fkR1; ku11; ku12g. Then, in this scheme, user
u11 knows the shared keys ku11; kR1 , and kR.We note that the
hierarchical algorithm for d ¼ 2 corresponds to the logical
key hierarchy proposed in [2], [3].
Example 2. In Fig. 2b, we show a partial view of a sample
hierarchy with d ¼ 3. Consider that the shared keys
associated with hR;R1;R2;R3i are fkR; kR1; kR2; kR3 ;
kR1R2; kR1R3; kR2R3g, and the shared keys associated with
hR1; u11; u12; u13i are fku11; ku12; ku13; ku11u12; ku11u13; ku12u13 ;
kR1g, then the shared keys known to user u11 are
fku11; ku11u12; ku11u13; kR1; kR1R2; kR1R3; kRg. We note that the
hierarchy for d ¼ 3 corresponds to the complementary
key hierarchy proposed in [4].
Example 3. In Fig. 2c, we show a partial view of a sample
hierarchy with d ¼ 4. Consider that the shared keys
associated with hR;R1;R2;R3;R4i are
fkR; kR1; kR2; kR3; kR4; kR1R2; kR1R3; kR1R4; kR2R3 ;
kR2R4; kR3R4; kR1R2R3; kR1R2R4; kR1R3R4; kR2R3R4g
and the shared keys associated with hR1; u11; u12; u13; u14i
are
fku11; ku12; ku13; ku14; ku11u12; ku11u13; ku11u14; ku12u13; ku12u14 ;
ku13u14; ku11u12u13; ku11u12u14; ku11u13u14; ku12u13u14; kR1g:
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Fig. 2. Hierarchies for (a) degree ¼ 2, (b) degree ¼ 3, and (c) degree ¼ 4.
Then, the shared keys known to user u11 are
fku11; ku11u12; ku11u13; ku11u14; ku11u12u13; ku11u12u14; ku11u13u14 ;
kR1; kR1R2; kR1R3; kR1R4; kR1R2R3; kR1R2R4; kR1R3R4; kRg:
Now, we describe the rekeying process for revocation in
an arrangement with h levels.
Theorem 2. In our hierarchical key management algorithm,
when r users are revoked from a hierarchical structure with
h levels, the group controller can distribute the new group key
securely to the remaining users using at most h:r encrypted
transmissions.
Proof. We mark all the nodes which are the ancestors of the
revoked users. At each level, a marked node Ri can be
considered to be revoked from the structure hR;R1 . . . ;
Ri; . . .;Rdi. As an illustration, in the hierarchy with d ¼ 4
in Fig. 2c, if u11; u44 are revoked users, then we mark R1
and R4. We consider u11 to be revoked from the basic
structure hR1; u11; u12; u13; u14i and R1 to be revoked from
the structure hR;R1;R2;R3;R4i. Similarly, u44 is revoked
from the basic structure hR4; u41; u42; u43; u44i and R4 is
revoked from the structure hR;R1;R2;R3;R4i.
To send the new group key, at the lowest level (level h),
the group controller needs to send at most one message (cf.
Theorem 1 in Section 3.1) for the basic structures from
which users are revoked.Asthe number of basic structures
from which users are revoked is at most r, the rekeying
cost due to the hth level is r. We note that the number of
encryptions and messages will be lower if multiple users
are revoked from the same basic structure.
At the next higher level (level h _ 1), the number of
revoked nodes, i.e., marked nodes, is at most r. At this
level, to send the new group key, the group controller
sends at most one encrypted message for each structure.
Based on the key distribution in the hierarchical algorithm,
this message is decrypted by the users which are
children of the nonrevoked nodes in each such structure.
As the number of such structures at this level is at most r,
the group controller sends at most r messages for this
level. Moreover, in the worst case, the group controller
sends r messages for all the levels in the hierarchy. Thus,
for r revoked users, the cost of distributing the new group
key is at most h:r encrypted transmissions. tu
We note that at the highest level (level 1), there is only one
structure. As this scenario is similar to user revocation from
a basic structure, using Theorem 1 at this level, the group
controller sends at most one encrypted message for the new
group key. Therefore, we can reduce the total rekeying cost
from Theorem 2 to ðh _ 1Þ:r þ 1. Thus, we have:
Theorem 3. In our hierarchical key management algorithm,
when r users are revoked, the group controller can distribute
the new group key securely to the remaining users using at
most ðh _ 1Þ:r þ 1 encrypted transmissions.
The upper bounds in Theorems 1 and 2 are tight for a
small number of revoked users. If the number of revoked
users is OðNÞ, where N is the group size, then the group
controller can distribute the group key by only considering
the structures at the lowest level. The group controller
sends at most one message for each basic structure. As there
are N=d basic structures at the lowest level, the group
controller sends at most N=d messages.
Theorem 4. In our hierarchical key management algorithm, for
revoking any number of users, the group controller can
distribute the new group key securely to the remaining users
using at most N=d encrypted transmissions.
We can combine the results in Theorems 2 and 4 as
follows: To revoke r users, for p lower levels in the
hierarchy, the group controller uses the result from
Theorem 2 and sends at most ðh _ pÞ:r encrypted messages.
At level p, for each of the dp_1 structures, the group
controller uses the result from Theorem 4 and sends at most
dp_1 encrypted messages. Therefore, we can also say that
the rekeying cost in our hierarchical key management
algorithm is bounded by minfððh _ pÞ:r þ dp_1Þj1 _ p _ hg.
(If the group controller proceeds with revocation where it
removes the user from the lowest hierarchy, then the next,
and so on, then its cost will be lower than the bound
identified here. The group controller does not need to
determine the value of p.)
We note that all the results we derived give upper
bounds on the rekeying cost for revoking users. Thus, the
minimum of these bounds is still an upper bound. The
simulation results show that, on an average, the performance
of our algorithms is close to these bounds.
Some of the basic structures in the hierarchical structure
may have less than d users. To revoke users, the group
controller assumes that all the basic structures (cf. Section 3.1)
are full. This assumption allows the group controller to
distribute the group key according to the rekeying techniques
we described in Theorems 2, 3, and 4. We note that in this
model, the rekeying cost for the group controller does not
increase and is determined by the actual number of revoked
users. For a full hierarchical structure with h levels of
hierarchy, the group controller stores ðdh_1
d_1 Þð2d _ 1Þ keys and
each user stores h:ð2d_1Þ keys. Thus, in the hierarchical
structure, for small values of d, the user needs to store
OðhÞ keys as compared with Oð2N_1Þ keys in the basic
structure. Next, we present a quick analysis to show that the
storage cost in our approach is justified when compared to
the reduction in revocation cost and is suitable for most
network settings.
A Brief analysis of revocation and storage trade-offs.
For this analysis, we will consider the logical key hierarchy
(LKH) scheme from [3] which has the least storage cost. For
this analysis, we will only compare the cost of revocation of
a single user across LKH and our scheme. We will use the
notation LKHd, where d ¼ 2; 4, etc., to denote the instantiation
of the LKH scheme with degree d ¼ 2. We will denote
our scheme using OurAlgorithmd, where d ¼ 2; 4, etc.,
denotes the degree of the hierarchy with which our scheme
is instantiated.
For LKH2, the revocation cost is the least, i.e., 2 logN.
For the same degree, in our approach OurAlgorithm2, the
revocation cost is logN. In this scenario, the storage in both
the schemes is same, i.e., logN. However, the revocation
cost of our algorithm is half as much.
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For OurAlgorithm4, the revocation cost is log4 N which
simplifies to logN=2. This is a reduction of four times
when compared to the revocation cost in LKH2. The
storage cost in OurAlgorithm4 is 4 logN, which is two
times that storage cost in LKH2, i.e., for a storage increase
of two times the revocation cost, using OurAlgorithm4 is
reduced by four times.
For LKH4, the revocation cost is 4 logN. The storage in
LKH4 is logN=2, which is eight times smaller compared to
the storage in OurAlgorithm4. But the revocation cost in
OurAlgorithm4 is eight times smaller than that of LKH4.
These examples clearly indicate that the storage increase
justifies the reduction in the revocation cost as the
revocation cost is reduced by orders of magnitude.
Also, consider the physical memory requirements using
our approach. For OurAlgorithm4 and N ¼ 216, the storage
required is ð24_1 _ log4 216Þ which simplifies to 64 keys.
Assuming a key length of 128 bits, the storage required per
user is 128 _ 64=8 bytes which is 1,024 bytes or 1 KB. Thus,
the storage cost of our scheme is reasonable and acceptable
even for low capability devices such as sensor networks.
4 MEMBERSHIP ADDITION COST
When users get revoked from a hierarchical structure, it
does not change the number of keys that the existing users
would have although some of the keys that they maintain
may no longer be needed. For example, suppose we begin
with a basic structure of degree 4 (cf. Fig. 1a) where each
user has eight keys. If u4 is revoked, then the basic structure
still has a degree 4 but it now has one empty slot. The
remaining users continue to have eight keys although some
keys (e.g., ku1u2u4; ku2u3u4 )) are currently useless. When a new
user is added to this structure at a later point, these keys
would be updated (as in Section 2) and the revised keys
would be given to the new user.
Adding users to a basic structure with empty slots. We
first describe the algorithm where enough empty slots are
available in the hierarchical structure. The issue of increasing
the height is discussed later in the section. The procedure for
adding a user to the group is as follows: the group controller
changes the group key and distributes it to the current users
of the group and to the joining user. The group controller also
distributes the necessary keys to the joining user. If multiple
users are to be added, the group controller generates the new
group key and distributes it to each of the new users in a
separate unicast message which also contains other keys that
are needed by that user. First, the group controller selects a
basic structure with empty slots in the hierarchy and adds the
new user to this basic structure. Next, the group controller
generates a new group key and distributes it to the current
users using by encrypting it with the old group key. In this
message, it also notifies the users about the location of the
new user. Subsequently, the current users use the following
rule to generate the keys that are given to the new user:
knew
i ¼ fðk0
g; kiÞ, where k0
g is the new group key, f is a one-way
hash function, and ki is the key that is known to any current
user that is part of the same hierarchy as the joining user.
The group controller also performs the same hash
computation and identifies the shared keys that the joining
user would get based on its position in the hierarchical
structure. (Note that the joining users only get the updated
shared keys, and hence, cannot compute old shared keys.)
Subsequently, the group controller sends the new group
key and the updated shared keys to the joining user. It
follows that the number of encryptions performed by the
group controller is equal to the number of keys that need to
be distributed to the joining user, i.e., Oð2d_1 logNÞ. Thus,
the cost of join is equal to the number of keys that each user
maintains. And comparison of storage cost of our scheme
with existing scheme is given in Fig. 14b.1
Our approach of using hash functions to change the
group key is used by others [7], [13], [14], [15], [16] and is
acceptable even if it increases collusion possibility as
described in [4]. Though, it is possible to address collusion
by changing the intermediate keys explicitly, this increases
the join cost significantly. However, one important advantage
is that the cost of join is noncritical using our
algorithms, i.e., the join handling does not have to be
performed immediately, whereas revocation has to be
performed immediately. Join can be handled in background
as the new user does have the group key right away.
Increasing the height of the hierarchy. Adding a level in
the hierarchy is straightforward. Let T be the current tree
with root node R. To add a level in the hierarchy, we can
create a new root R1, let R be its child and create additional
children for R1. Note that in this case, users can continue to
keep the keys that they have. They need to receive
additional keys for this new hierarchy. However, similar
to join process for a basic structure with empty slots, the
cost of increasing the height of hierarchy is small.
We do not propose new schemes for reducing the height
of hierarchy when users leave. Most group key management
algorithms utilize periodic rekeying to deal with lost keys,
collusion, etc. At the time of periodic rekeying, the height
can be reduced using techniques similar to [19], [20], [21].
In Table 1, we summarize the complexity of our
algorithm and compare them with the schemes from [17],
[22].2 Here, r is the number users joining or leaving the
system, N is the total number of users in the system, d is the
degree of the key tree, and h is its height.
5 SIMULATION RESULTS AND ANALYSIS
We compare the performance of our algorithms with the
algorithms in [17], [22]. In [17], the group controller
associates a set of keys with the nodes of a rooted tree and
the users with the leaves of the tree. Each user knows the keys
associated with the nodes on the path from itself to the root.
To revoke a user, the group controller recursively distributes
the changed keys at the higher levels in the key tree using the
changed keys at the lower levels. To revoke multiple users,
instead of sequentially distributing the changed keys for each
revoked user, the group controller processes all the key
updates in a single step. This reduces the cost of changing a
key multiple times if it is known to multiple revoked users. In
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1. Technically, the cost of rekeying in [3] (and schemes based on it) is
more than the number of keys that a user maintains. However, it can be
reduced by the approach used in this paper. Hence, we have considered
this optimization of [3] in determining the cost of join.
2. Note that for computing the join costs of [17], we have assumed that
the group controller uses the procedure outlined in [7], [13], [14], [15], [16],
thereby reducing the cost considerably.
[22], the group controller maintains a key tree similar to [17].
Each node in the key tree is associated with a public key and a
private key pair. To revoke multiple users, the group
controller traverses the tree and determines the common
ancestors of the remaining users. The group controller uses
the public keys of these ancestors to send the new group key
to the remaining users. The remaining users use the private
keys known to them and determine the new group key from
the information sent by the group controller.
Methodology of experiments and terminology. The
purpose of the simulations from this section is to compare
the cost of revocation and storage of our scheme with that of
[17], [22]. We consider several group sizes (from 256 to 8,192)
and consider the case where the number of revoked users is
small (5), medium (25), or large (100). We denote the
algorithm from [17] by Batch LKH, the algorithm from [22]
by Resilient LKH, and our algorithm by Our Algorithm. In the
simulations, we assume that the algorithms maintain full and
balanced hierarchies (respectively, trees) of keys. For each
experiment, we selected a random set of users to be revoked
from the group, and recorded the number of encrypted
messages sent by the group controller for the new group key.
We simulated the algorithms with hierarchies of
degrees d ¼ 3; 4, and 5. For each experiment, we computed
the average cost of user revocation over 100 trials.
We considered degrees 3, 4, and 5. For our algorithm, we
present all three values and for [17], [22], we present the
best value (lowest revocation cost). The results from our
simulations are shown in Figs. 3 and 4.
Based on these figures, as the degree of the hierarchy
increases, the rekeying cost reduces due to the reduction of
the height h of the hierarchy. From these results, we observe
that our algorithms perform much better than the existing
solutions. Specifically, the cost of rekeying in our algorithm
is 66-79 percent less than that of [17] and 43-74 percent less
than that of [22]. Finally, the algorithm in [17] is an
optimization to the logical key hierarchy in [3] for handling
multiple user revocations. Hence, our algorithm reduces the
rekeying cost to a value that is less than that in [3].
Another important observation in this context is illustrated
in Fig. 5. Specifically, in this figure, we compare the
upper bound identified in Section 3.2 with the experimental
value. As shown in Section 3.2, the upper bound for rekeying
cost is given by the formula minfððh _ pÞ:r þ dp_1Þj1 _
p _ hg. From this figure, it follows that the experimental
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Fig. 3. Rekeying costs for revoking (a) 1 user, (b) 5 users, and (c) 10 users.
Fig. 4. Rekeying costs for revoking (a) 25 users, (b) 50 users, and (c) 100 users.
TABLE 1
Computational and Storage Complexity for Group Controller
value is a close estimate to the upper bound that is computed
analytically. For this reason, the group controller can use this
analytical estimate in deciding the choice of degree that
should be chosen so that the rekeying cost remains within
acceptable limits.
6 ADAPTING TO HETEROGENEITY OF USERS
Our algorithms also enable the group controller to deal with
heterogeneous set of users who have different capabilities.
We illustrate this by a simple example. Consider the case
where the basic structure at the root level has a degree 2, the
users rooted at the left child of the root can only maintain a
small number of keys, and the users rooted at the right child
of the root can maintain a large number of keys. Now, we
can use a smaller degree for the tree rooted at the left child
and a larger degree for the tree rooted at the right child.
With such a design, the users in the left tree will receive
only a small number of keys, whereas the users in the right
tree will receive a large number of keys. It follows that for
the right tree, the group controller can take advantage of
reduced rekeying cost provided by the use of a tree with
larger degree, while still allowing users with lower
capabilities to participate in the group communication.
Based on the above discussion, we can use a higher
degree for the basic structure at the root to accommodate
users with multiple storage (respectively, computational)
requirements. In such a key tree structure, the users rooted
at each child node have the same requirements and
capabilities. Thus, by partitioning the group at the basic
structure, the group controller can deal with heterogeneous
users in a fine-grained manner.
In this section, we evaluate the performance of our
algorithms when the group controller uses variable degrees
in the key tree. Specifically, we examined two cases of
variations in the degree of the key tree. In each case, the
group controller maintains a key tree of a different degrees
for two or more child nodes of the root node. We evaluate
our algorithms using simulations on groups of size 256, 512,
and 1,024 users.
Case 1: Two variations in key tree degree. In this case, the
basic structure at the root has a degree of two, and the key
tree rooted at the left child node has a smaller degree than the
tree rooted at the right child node. We considered the cases
when the degrees for the left and right child nodes are h2; 4i
and h2; 5i, respectively. For these key tree structures, we
compared the rekeying cost and the work done by the users
(to change all the revoked keys) to the scenario when the
degree of key tree is uniform. In Fig. 6 (respectively, Fig. 7),
we show the rekeying cost when 25 percent (respectively,
50 percent) of users have low storage cost. From these results,
we observe that when using these key tree structures, the
overall rekeying cost for the group controller does not
increase significantly from the case where the key tree has a
uniform degree.
In Figs. 8 and 9, we show the work done by the users to
change the compromised keys. We note that the average
number of key changes is considerably smaller for these key
structures as the degree of one of the key trees is smaller,
and hence, the work done by the users in this key tree is
smaller. From these results, along with the users with
smaller storage, we can also place users with lower
computational capability in the key tree with the smaller
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Fig. 5. Comparison of theoretical upper bounds versus experimentally results for rekeying cost to revoke (a) 5 users, (b) 25 users, and (c) 100 users.
Fig. 6. Rekeying costs for (a) 25 percent and (b) 50 percent low storage users.
degree. This result is especially useful for mobile environments
where users have sufficient storage capability but
have limited battery power for computational purposes.
Case 2: Three variations in key tree degree. In this case,
the basic structure at the root node has a degree of 3. This
indicates that there are three kinds of requirements (storage
and/or computational) for the users in the group. We
considered the degree combinations h2; 4; 5i and h3; 4; 5i for
the three children of the root node. To describe the division of
users into different tree partitions, we will consider an
example. In a h2; 4; 5i variable key tree where 25 percent users
have low storage, these 25 percent of users are part of the tree
with degree ¼ 2, and the remaining users are equally divided
into the tree partitions with degrees 4 and 5, respectively.
Similarly, in a h3; 4; 5i, the users with low storage are part of
the tree with degree ¼ 3 and the remaining users are equally
partitioned into degrees 4 and 5. In Figs. 10 and 11, we show
the rekeying cost and in Figs. 12 and 13, the average key
changes per user for different groups. As in Case 1, we note
that the rekeying cost does not increase significantly for the
group controller and the average number of key changes by
the users is smaller as a majority of the users store a smaller
number of keys.
7 REDUCING STORAGE REQUIREMENTS FURTHER
In this section, we provide additional approaches for
reducing the storage requirements of users. The first
approach, described in Section 7.1, is based on [28] and
is aimed at providing adaptation where long-term users
are provided preferential treatment in that they store less
keys and need to perform less computation when group
membership changes. The second approach, described in
Section 7.2, reduces the storage by permitting users to
generate shared keys using their personal keys. This
scheme is suited in situations where group revocations
occur at some periodic times. For brevity, we only present
the scheme for the basic structure. It can be extended in a
straightforward manner for hierarchical structure.
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Fig. 7. Rekeying costs for (a) 25 percent and (b) 50 percent low storage users.
Fig. 8. Average key changes per user for (a) 25 percent and (b) 50 percent low storage users.
Fig. 9. Average key changes per user for (a) 25 percent and (b) 50 percent low storage users.
7.1 Adapting for Long-Term and Short-Term Users
In this section, we describe a key assignment technique to
adapt to the storage requirements of long-term and shortterm
users. Long-term users are those users who have been
in the group a relatively longer period than the other group
users. Short-term users are users who have been in the
group for a relatively short time. In our key assignment, we
assign keys in such a way that the longer a user stays in the
group, the number of keys stored by that user is relatively
smaller than the keys stored by short-term users. We can
view this result as rewarding long-term users for their long
standing membership.
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Fig. 10. Rekeying costs for (a) 25 percent and (b) 50 percent low storage users.
Fig. 11. Rekeying costs for (a) 25 percent and (b) 50 percent low storage users.
Fig. 12. Average key changes per user for (a) 25 percent and (b) 50 percent low storage users.
Fig. 13. Average key changes per user for (a) 25 percent and (b) 50 percent low storage users.
Toward this end, we use one-way hash chains to generate
the keys stored by the users. One-way chains are of the form
hðsÞ; h2ðsÞ; . . . ; hmðsÞ, where h is a one-way hash function
and s is a random seed. Hence, using an intermediate value
hkðsÞ in this chain, the higher values hkþ1ðsÞ; hkþ2ðsÞ; . . . , in
the chain can be generated by using h. Furthermore, due to
the one-way nature of the hash function, by knowing an
intermediate value hkðsÞ, it is not possible for a user to
deduce the previous values hk_1ðsÞ; hk_2ðsÞ; . . . , in the hash
chain. The above hash chain can be trivially extended to the
case where different one-way functions are used in each
step. In this case, the hash chain would be of the form
h1ðsÞ; h2ðh1ðsÞÞ; h3ðh2ðh1ðsÞÞÞ . . . ,. Note that even in this
case, if a node has a value in this hash chain, then it can
find all subsequent values. However, it cannot find previous
values in the hash chain.
Now, using these concepts, we describe our technique for
arranging the keys among the users. For a group of d users
u1; u2; . . . ; ud, we use d _ 1 (or more) hash functions
h1; h2 . . . ; . Now, consider a user subset fua; ub; ucg, where
a < b < c. For such a subset, we consider the chain
hua; ub; uci. For such a chain, we assign secrets as follows:
ua is assigned a seed secret sa; ub is assigned secret hb_aðsaÞ,
and uc is assigned hc_bðhb_aðsaÞÞ. Thus, the secret provided
to uc (respectively, ub) can be used for communicating with
the set fa; b; cg (respectively, fa; bg. For example, in set
{u2; u3; u5}, u2 will get s2; u3 will get h1ðs2Þ, and u5 will get
h2ðh1ðs2ÞÞ. Thus, by having only a small set of secrets (some),
users can generate secrets needed for different subsets.
However, a single one-way hash chain is not sufficient to
assign keys to every possible subset of the users. For
example, in the above scenario, there is no unique secret for
the set fua; ucg. Since the basic key structure from Section 3.1
requires that a key be maintained for each subset of users,
there is a need for additional one-way hash chains. Hence,
there is need for multiple one-way hash chains to assign
keys to all possible subsets of users. Next, we present our
key assignment technique that assigns keys to every
possible user subset.
Our key assignment is inductive in nature. It also has the
property that in any chain, the users are labeled in increasing
order. Moreover, the last user added to the set is present in
every chain (as the last user). For n ¼ 1, i.e., where there is
only one user, say u1, there is only one chain hu1i.
For inductive case, assume the key assignment for
n users and we need to obtain the key assignment for
n þ 1 users. Let un be the user with the highest label in the
existing system and unþ1 be the new user. Now, based on
our assumptions, un is the last user in all the one-way hash
chains formed for the set of n users. The list of hash chains
for n þ 1 users is obtained as follows:
. For each hash chain (associated with the set of
n users), include a hash chain where unþ1 is added to
the end of that hash chain.
. For each hash chain (associated with the set of
n users), include a hash chain where un is replaced
by unþ1.
For example, the hash chains associated with fu1; u2g are
hu1; u2i and hu2i. And the hash chains associated with
fu1; u2; u3g are hu1; u2; u3i; hu2; u3i; hu1; u3i, and hu3i. A
separate seed secret is associated with each user. The
secrets used in any chain are derived from the seed secret of
the first user in that chain. The remaining secrets are
computed based on the scheme described above.
Theorem 5. In a system of n users, the above key assignment
ensures that: 1) the maximum number of keys that any user
stores is at most 2n_1 keys; 2) the number of one-way chains
required is 2n_1; and 3) every subset of n users is associated
with a unique key.
Proof. The proof follows trivially by induction. tu
Addition of users to the group. When new users are
added, the above scheme permits extending the existing
hash chains to obtain the new hash chains. Note that with
this addition, the new user would receive the necessary keys
from the group controller. Observe that the existing users
can generate these keys from the keys they already have.
Adaptive storage. Consider the key distribution for a
group of n users, say u1; u2; . . . ; un. Observe that u1 only
needs to store one key, namely, its seed s1. User u2 needs to
store two keys s2 and hðs1Þ. User u3 needs to store four keys,
and so on. Thus, storage of users added earlier (respectively,
long-term users) is less compared to that of recently
added users.
Revocation of users. When a user, say um, is revoked, the
keys known to um cannot (respectively, should not) be used.
However, the remaining users can continue to communicate
using their secrets that were not known to um. Since the
original setup ensures that given any subset of users, there
exists a key that is known to all of them, this property
continues to be true of remaining users as well. We leave it to
the reader to verify that the adaptivity properties (as well as
the properties in Theorem 5) continue to be satisfied, i.e., the
user with the smallest label will have one key, the next will
have two, and so on. Furthermore, observe that the set of
keys that users have is exactly those that they would have if
we begin with a group consisting of the smallest logical label
and continue to add users based on their increasing label.
Note, however, that with this approach, even if a user is
revoked, its logical label cannot be used when a new user is
added subsequently. Instead, when a new user is added, its
logical label should be larger than all existing users. For
example, if the current group is fu1; u2; u3g, user u2 leaves,
and a new user is added, it should be given a logical label of
u4. Based on the discussion in the previous paragraph, this
requirement does not change the number of keys that users
need to maintain. However, this requirement necessitates
the need for additional hash functions. For example, for the
set fu1; u3; u4g, hash function h3 is needed for the one-way
chain hu1; u4i. For this reason, we have included additional
hash functions. If periodic rekeying is used to rekey all the
keys in the system, then the user numbering can be restored
after periodic rekeying. Furthermore, periodic rekeying
would also assist in hierarchical setting. In particular, with
hierarchical structure, the group controller could change the
basic structures to which users belong. By changing the
basic structures in this manner, it would be possible to
provide additional trade-off between keys maintained by
users and the length of time they are part of the group.
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7.2 Another Approach Using a Family of One-Way
Functions
In this section, we give an additional scheme where group
revocations occur at periodic times, for example, once a day.
Hence, after one rekeying, there is substantial time. Hence,
in such an approach, we can have the rekeying cost split
into a critical cost (that must be completed to ensure that
group communication can proceed) and noncritical cost
(that can be completed at a later time as long as it is
completed before the subsequent rekeying). Our technique
has the following attractive features:
. The group controller has to store only N keys, one
for each user. The remaining keys are generated
using these values. The cost of storage for the group
controller using this scheme is lower than that of
LKH [3], where 2N _ 1 keys need to be stored and
that of the complete key tree algorithm where
2d:N keys have to be stored.
. The cost of storage at the users is reduced by a factor
of 2 when compared the storage required for the
complete key tree algorithm. The revocation cost
remains the same as the key distribution is essentially
our original complete hierarchical structure.
. The cost of updating the shared keys during a
membership change is OðlogNÞ messages for the
group controller.
We introduce additional notation used in this technique.
We use gi to denote the ith member of a family of one-way
functions g. The property of a one-way function is such that,
given x, it is easy to compute gðxÞ but not the vice versa.
When a one-way function g is applied to a key k, we say that
the resulting value is a blinded value of that key. Blinded
keys that need to be given to a user i are blinded using the
one-way function gi.
We describe our technique for the cases when the tree
degree is, 2, 3, and 4. Similar to the description of the
complete key tree algorithm, we will only describe the key
distribution for the basic structure using our technique. The
construction of hierarchical structures is similar to that of
the complete key tree algorithm.
Case 0: d ¼ 2. We denote the two users by u1 and u2 and
the personal keys known to them by k1 and k2, respectively.
The group controller distributes g2ðk1Þ to user u2. For this
case, the only key that needs to be distributed is the shared
key between u1 and u2. Toward this, the group controller
achieves this by assigning g2ðk1Þ to k12. As we can observe,
both u1 and u2 have this value, albeit u1 can generate it at
runtime. Note that this key distribution scheme is similar to
the one-way function tree scheme described in [5].
Case 1: d ¼ 3. We denote the three users by u1; u2, and
u3, and their personal keys by k1; k2, and k3, respectively.
We need to associate a shared key with every possible
subset in this group. The subsets in this case are fu1; u2g,
fu1; u3g, fu2; u3g, and fu1; u2; u3g. Now, user u1 gets g1ðk2Þ
and u2 gets g2ðk1Þ. The group controller performs the
assignment k12 ¼ g1ðk2Þ _ g2ðk1Þ for the shared key between
u1 and u2. Similarly, for generating the keys k13 and k23,
respectively, the group controller gives u1 and u2, and the
blinded values g1ðk3Þ and g2ðk3Þ, respectively. To generate
the key k123, user u3 is given the blinded value g3ðk12Þ. The
required subset keys are generated as follows: k13 ¼ g1ðk3Þ,
k23 ¼ g2ðk3Þ, and k123 ¼ g3ðk12Þ. Thus, the maximum user
storage cost in this technique is three keys.
Case 2: d ¼ 4. We denote the four users by, u1; u2; u3; u4,
and their personal keys by k1; k2; k3; k4, respectively. To
distribute keys to these users, we group them into smaller
logical subgroups of size two. For example, users u1 and
u2 form one subgroup s1, and u3 and u4 form the other
subgroup s2. Note that this division is merely for the key
distribution purposes, all the users essentially belong to the
same basic logical structure of the key hierarchy.
Now, within the subgroups, we use the key distribution
from Case 0. In subgroup s1 to generate key k12, the group
controller distributes g2ðk1Þ to user u2, and in s2 to generate
key k34, the group controller distributes g4ðk3Þ to u4. To
generate the remaining keys, we use the following logical
groupings: ðs1; u3Þ; ðs1; u4Þ; ðs2; u1Þ, and ðs2; u2Þ. Now, for
each of these grouping, we use the key distribution for the
Case 1, when d ¼ 3. For the grouping s1; u3, the users u1; u2,
and u3 receive the values g1ðk3Þ; g2ðk3Þ, and g3ðk12Þ,
respectively. Similarly, for the grouping s1; u4, the users
u1; u2, and u4 receive the values g1ðk4Þ; g2ðk4Þ, and g4ðk12Þ,
respectively. For the groupings s2; u1 and s2; u2, the only
values distributed are g1ðk34Þ to user u1 and g2ðk34Þ to user
u2. The hash values required to generate k13; k14; k23, and k24
need not be distributed for this grouping as they are already
distributed in earlier groupings. Finally, to generate the
key k1234, the group controller distributes g3ðk124Þ to user u3.
The resultant key distribution for degree d ¼ 4 is as follows:
. u1 ¼ fk1; g1ðk3Þ; g1ðk4Þ; g1ðk34Þg;
. u2 ¼ fk2; g2ðk1Þ; g2ðk3Þ; g2ðk4Þ; g2ðk34Þg;
. u3 ¼ fk3; g3ðk12Þ; g3ðk124Þg; and
. u4 ¼ fk4; g4ðk2Þ; g4ðk3Þ; g4ðk12Þg.
For example, the key k134 shared by users u1; u3; u4 is
assigned the value g1ðk34Þ. From observation of the above
key distribution, we note that all three users are in
possession of this key (or can generate it at runtime). The
other keys for the remaining subsets can be generated
similarly. Thus, the maximum storage cost for this case is
five keys (for user u1).
In Fig. 14, we compare the keys maintained by our
algorithm for degree value 4, with the keys maintained in [3].
We use log scale for representing the group size and the keys
stored by the group controller in Fig. 14a. As we can see, the
number of keys is manageable by using the algorithms in
Section 3.2 and there is a trade-off by which maintaining a
larger number of keys per user, it is possible to reduce the
cost of rekeying. We note that the number of secrets can be
further reduced by using approaches in this section.
Revocation of users. To describe user revocation, we
note that each user knows the same set of keys (or can
generate them dynamically), that this user would have
received in the complete key tree algorithm. Hence, the
revocation process is identical to that of the complete key
tree algorithm, i.e., the cost of revocation in terms of
messages sent and encryptions performed is the same as in
the complete key tree algorithm.
Shared key updates. Unlike the complete key tree
algorithm, the shared keys in this technique cannot be
updated using the new group key. The reason for this is that
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in this technique, some of the shared keys are generated by
using other shared keys known to other users. Hence, any
changes in the shared keys will not preserve the relationship
between these keys. Whereas in the complete key tree
algorithm, the shared keys are independent of each other,
and hence, could be updated locally by the users. In this
technique, due to the dependence of keys on one another,
the shared keys cannot be updated locally. Hence, any local
changes in the shared keys will have to be communicated to
the corresponding users. The group controller needs to
generate the new shared keys explicitly and distribute them
to the users who need these keys. The issue of this key
generation is outside the scope of the paper. However, we
note that while the cost of changing keys in this fashion is
high, it is a noncritical cost, i.e., these keys must be updated
before any further users are revoked. Hence, this cost would
be applicable for scenarios where revocations occur
periodically, e.g., once a day, and thus, the cost of this
rekeying would not be an impediment.
8 COMPOSITION WITH EXISTING ALGORITHMS
In this section, we describe how our scheme can be
combined with other existing key management techniques.
As a case study, we describe the composition of our
hierarchical algorithm with the logical key hierarchy in [3].
A major motivation for such a combination is to reduce
the storage and computational overhead of the users. To
achieve this, the group controller determines the utility of
different keys at each level during user revocation over a
period of time and discards those keys which are the least
useful. For example, the group controller can maintain only
logical keys at lower levels in the hierarchy if additional
shared keys, as required in our hierarchical algorithms, are
not useful. Combining logical key hierarchy with our
algorithms achieves a trade-off between the rekeying cost
and the work done by the users. Depending on the current
configuration of users, the group controller can use the
appropriate combination of these algorithms.
With this motivation, in this section, we evaluate the
effect of combining logical key hierarchy with our algorithms.
To combine these algorithms, we partition the key
tree into two parts. In the first partition, for the key tree
starting from the leaf nodes up to a height, say h1, the
group controller maintains keys from the logical key
hierarchy. For this partition, the rekeying of the users is
done using the algorithms from [3], [17], i.e., the group
controller distributes the shared keys, and then, distributes
the group key. In the second partition, for the key tree
starting from h1 þ 1 to h (the height of the key tree), the
group controller maintains the keys from our algorithms.
For this partition, the rekeying is done using our algorithms,
i.e., the group controller only distributes the group
key and the users change the shared keys locally. Note that
it is more effective to use our algorithms at higher levels as
they can be used to send the group key to a larger number
of users. Hence, in this discussion, we only consider the
case where the logical keys are used at lower levels in the
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Fig. 15. Rekeying cost for (a) 1,024, (b) 512, and (c) 256 users using degree 3 key tree.
Fig. 14. Number of keys stored by the (a) group controller and (b) each user.
key tree and keys from our algorithms are used at higher
levels in the key tree.
Note that, for simplicity, we used a uniform degree
throughout the key tree, i.e., both the logical key hierarchy
and our algorithm had the same degree. We considered the
effect of these algorithms when the key tree has degree 3 and
4. We compared the rekeying cost and the work done by the
users in these combined algorithms against the case when
these algorithms are used in a stand-alone manner, i.e., only
logical key hierarchy or only our algorithms are used. In
Figs. 15 and 16, we show the rekeying cost for the combined
algorithms. We denote the logical key hierarchy algorithm
by LKH. For example, LKH ¼ 25 percent indicates that
logical keys are used from height 0 (leaf nodes) to height dh
4e
in the key tree and keys from our algorithms are used from
height dh
4e þ 1 to h (root) in the key tree. Also, LKH ¼
0 percent denotes that only keys from our algorithms are
used in the key tree and LKH ¼ 100 percent denotes that
only keys from the logical key hierarchy are used in the key
tree. In Figs. 17 and 18, we show the average number of key
changes by the users. From these results, we note that the
combination of logical key hierarchy and our algorithms
provide a trade-off between the rekeying cost with the work
done by the users.
BRUHADESHWAR AND KULKARNI: BALANCING REVOCATION AND STORAGE TRADE-OFFS IN SECURE GROUP COMMUNICATION 71
Fig. 17. Average key changes per user for groups of (a) 1,024, (b) 512, and (c) 256 users using degree 3 key tree.
Fig. 18. Average key changes per user for groups of (a) 1,024, (b) 512, and (c) 256 users using degree 4 key tree.
Fig. 16. Rekeying cost for (a) 1,024, (b) 512, and (c) 256 users using degree 4 key tree.
9 CONCLUSION
In this paper, we presented a family of algorithms that
provide a trade-off between the number of keys maintained
by the users and the time required for rekeying due to the
revocation of multiple users. We showed that our algorithms
reduce the cost of rekeying by 43-79 percent when
compared with the previous solutions in [17], [22] while
keeping the number of keys manageable. We also described
schemes—based on the use of one-way hash chains—that
allow one to reduce the number of keys further without
increasing the rekeying cost.
We also illustrated that our algorithm enables the group
controller to deal with heterogeneous set of users that have
different capabilities. With this capability, users with high
capability can benefit from it (by reducing the rekeying
cost), while users with low capability can still participate.
We also showed that our algorithm can provide differential
service to users that are long term versus those that are
short term. We also demonstrated that our hierarchical
algorithm can be combined with the logical key hierarchy in
[3]. Such hybrid schemes provide additional options for the
group controller to adapt to heterogeneous systems where
users have varying requirements and capabilities.
Our algorithms are also suited for overlay multicast
applications. In overlay multicast [29], [30], [31], the end
nodes perform the processing and forwarding of multicast
data without using IP multicast support. As these tasks
result in increased overhead at the end nodes, reducing
control traffic is an important problem for overlay multicast.
Our algorithms reduce the overhead at the end nodes by
reducing the number of group key update messages sent by
the group controller. These benefits are also desirable in
wireless systems which are constrained in battery power. In
[32], the measurements on wireless network interface cards
show that transmission consumes more battery power than
reception if the idle listening time of the interface is small. As
streaming multicast sessions result in minimal idle time, the
energy consumption is dominated by the amount of
transmitted data. Thus, in heterogeneous systems which
compose of wired and wireless systems, our algorithms can
be used to improve battery longevity of wireless systems by
reducing the amount of traffic they need to transmit forward.
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