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Abstract

Wireless Fidelity (WiFi) is the fastest growing wireless technology to date. In addi-
tion to providing wire-free connectivity to the Internet WiFi technology also enables
mobile devices to connect directly to each other and form highly dynamic wireless
adhoc networks. Such distributed networks can be used to perform cooperative com-
munication tasks such ad data routing and information dissemination in the absence
of a fixed infrastructure. Furthermore, adhoc grids composed of wirelessly networked
portable devices are emerging as a new paradigm in grid computing. In this paper
we review computational and algorithmic challenges of high-fidelity simulations of
such WiFi-based wireless communication and computing networks, including scal-
able topology maintenance, mobility modelling, parallelisation and synchronisation.
We explore similarities and differences between the simulations of these networks
and simulations of interacting many-particle systems, such as molecular dynam-
ics (MD) simulations. We show how the cell linked-list algorithm which we have
adapted from our MD simulations can be used to greatly improve the computa-
tional performance of wireless network simulators in the presence of mobility, and
illustrate with an example from our simulation studies of worm attacks on mobile
wireless adhoc networks.
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1 Introduction

Modern world has become increasingly mobile. As a result, traditional ways of
connecting users to the Internet (and to each other) via physical cables have
proved inadequate. Wireless communications [1], on the other hand, poses no
restrictions on the user’s mobility and allows a great deal of flexibility, both on
the part of users and service providers. Wireless connectivity for voice via mo-
bile telephony made it possible for people to connect to each other regardless
of location. This has had a profound influence on the business of telecom-
munications, as well as the society as a whole [2]. New wireless technologies
targeted at computer networks promise to do the same for Internet access,
connecting wirelessly not only laptops and portable devices but also millions
of cars, sensors, consumer devices, etc to each other and to the global Internet.

The most successful, and fastest growing, example of such wireless technologies
is WiFi (Wireless Fidelity)[3]. Like cellular technology, WiFi uses a number of
base stations to connect user devices to an existing fixed network (these base
stations are called access points). However, unlike cellular systems which are
centralised, WiFi systems operate in a highly distributed fashion. Each WiFi
device is responsible for managing its own connectivity, mobility and access to
the radio spectrum. Furthermore, unlike cellular systems, nearby WiFi devices
can directly connect to each other and form self-organising wireless adhoc
networks [4,5]. Such networks are highly dynamic and flexible. They can be
created (and torn down) on the fly in order to route data packets between
participating devices, or to the closest Internet gateway. Adhoc technology can
also be used to connect together a collection of WiFi accesspoints which then
form a so-called mesh network [6]. This can help to greatly extend the range
of WiFi coverage without the need for connecting every single accesspoint to
the fixed network.

Initially WiFi technology was used to provide connectivity to “nomadic” users
in coffeshops, airports etc, and for wire-free Internet access in homes and of-
fices. The last few years, however, have seen the emergence of much more am-
bitious applications of this technology. For example, it is expected that WiFi-
based wireless access will enable the coverage of entire cities, thus providing
citizens on the move with high-speed (11-54 megabits per second) connec-
tivity. Other frontiers in WiFi technology include high-speed Internet access
to automobile users, and WiFi-based vehicular adhoc networks and vehicular
grids [7].

In addition to the above applications in telecommunications, wireless adhoc
grids based on WiFi and related technologies are emerging as a new paradigm
in grid computing [8,9]. Adhoc grid environments enable mobile users to join
together wirelessly and share computing resources, services and information
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[9]. One example of such adhoc grids are wireless sensor grids for medical,
industrial and environmental monitoring. Another one are wireless computa-
tional grids where WiFi-enabled devices are networked together in order to
perform complex computing and data aggregation tasks, which are beyond
the capabilities of a single device [7].

The increasing complexity and the very large scale of such emerging WiFi
systems has created a need for scalable high-fidelity simulation platforms that
can help scientists, engineers and network planners accurately predict and
optimise their performance prior to large-scale deployment. The aim of this
paper is to review computational challenges that are involved in creating such
simulation platforms, including scalable topology construction and mobility,
parallel and distributed simulations on grid platforms, and synchronisation.
We also show that there are interesting similarities between the simulations
of WiFi-based wireless networks and molecular dynamics (MD) simulations of
interacting many-particle systems, and illustrate how these could be exploited
in practice.

The rest of this paper is organised as follows. In section 2 we give a brief de-
scription of the main ingredients for simulations of WiFi-based networks. This
is followed by an examination of the computational and algorithmic challenges
of such simulations, and how to address these. Section 4 describes, as an ex-
ample, aspects of our simulation studies of computer worm attacks on mobile
wireless adhoc networks. We close the paper in section 5 with conclusions.

2 Modelling Ingredients

There has been significant previous research in modelling [12] and simulations
of wired communication networks [10,11]. However, modelling of wireless net-
works is very distinct from modelling of wired networks in that the physical
medium properties, i.e. radio propagation and interference, cannot be sep-
arated from the higher layer network protocols, because strong interactions
impact performance and drive engineering design decisions. Furthermore the
ability of users to (rapidly) change their physical location while maintaining
connectivity greatly increases the dynamism of these networks, in comparison
to fixed networks. In this section we shall focus on describing these distinctive
ingredients for the modelling of WiFi-based wireless networks. Other compo-
nents in high-fidelity simulations of these networks, which are outside the scope
of the current paper include modelling of various packet routing mechanisms
[1,14] and transport protocols [13] in WiFi environments.

Building on the idea of creating parallels between these networks and inter-
acting many-particle systems, we first consider the simplest building block of
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such networks, namely a single pair of communicating WiFi devices. We then
consider many such pairs operating in the vicinity of each other, and discuss
the interaction topologies and operational rules of the resulting systems.

2.1 A single pair of WiFi devices

At present WiFi devices are constrained by regulators to operate in pre-defined
frequency bands. Depending on the IEEE standard used in the device these
frequency bands are either in the 2.4-2.5 GHz or in the 5.2-5.8 GHz range.
Each of these bands is divided into a number of frequency channels.

Consider two WiFi devices i and j which communicate with each other using
a common frequency channel, fi. The received radio signal strength at device
j resulting from a transmission by device i depends on a variety of effects.
These include free space attenuation of radio waves, the response of the envi-
ronment and mobility; the latter will be neglected for clarity of presentation
but will be picked up in section 2.5. Effects due to the environment include
reflection at surfaces, diffraction due to obstacles, and transmissions through
walls. Phenomenologically, in the absence of detailed information on the en-
vironment, these effects can be described using the so-called pathloss model
[15], which states that signal power at a receiving device j is related to the
signal power of the transmitting node i via the following equation:

P ij =
P i

cfi
rα
ij

. (1)

In the above equation rij is the distance between node i and node j, P i

and P ij are the transmit power and the received power, respectively, and cfi

is a frequency-dependent constant. For free space propagation α = 2, but
depending on the specific indoor/outdoor propagation scenario it is found
empirically that this exponent can vary typically between 2 and 5. A data
transmission by node i is correctly received at node j, i.e. i can establish a
communication link with j, provided that:

P ij

ν
=

P i/cfi
rα
ij

ν
≥ βth. (2)

In the above equation βth is a sensitivity threshold and ν is the noise level at
node j.

Condition (2) translates into a maximum transmission range for node i:

ri
t =

(

P i

cfi
βthν

)1/α

, (3)
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such that device i can establish a wireless link with device j only if j is within
a circle of radius ri

t.

2.2 A collection of WiFi devices: Interference effects

In the above we considered a stand-alone sender-receiver pair of WiFi devices.
In reality, however, many pairs of nearby wireless nodes may simultaneously at-
tempt to establish links, either between themselves or to nearby access points.
Due to the broadcast nature of radio transmissions, a radio signal transmitted
towards a specific node can interfere with communications of many nearby
network nodes and contribute to their noise level. Consequently, a successful
transmission from node i to node j depends not only on the transmit power of
node i and its distance to node j but also on the activity of all other nearby
nodes. In particular, aggregate transmission of nearby devices may result in
a situation where a transmitter-receiver pair cannot establish a link despite
the fact that they are within the range of each other. Such interference effects
need to be accurately taken into account in modelling data communications
in wireless networks in order to obtain realistic results [16].

To model interference, for each signal transmitted from a sender i to a receiver
j the aggregate received power resulting from all other nearby sender devices
needs to be computed. Signal arrival at node j is then considered successful
only if the ratio of the received power from i to aggregate noise is above the
sensitivity threshold, βth. Computing the impact of interference on the trans-
missions of devices is one of the most computationally expensive components
in the simulations of wireless networks as it requires the computation of O(N2)
pairwise interactions. However, taking advantage of the fact that the interfer-
ence effect decays as 1/rα with the distance between two devices, one usually
limits the computation of the interference terms to devices which are within a
so-called interference range of a given device. Conventionally the interference
range is chosen to be rj

i = 2rj
t

1 .

2.3 Medium Access Control (MAC)

The interference problem is perhaps the most important issue in deployment
of high-density WiFi networks. WiFi technology attempts to mitigate this
problem using a distributed random access mechanisms called Medium Ac-
cess Control (MAC). The MAC protocol used by WiFi-based wireless devices

1 The precise choice of the interference range depends on both the decay exponent
α and the density of nodes in the system and may have to be increased significantly
in order to obtain accurate results [17]
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follows the IEEE 802.11 standard [3], which specifies a set of rules that enable
nearby devices to coordinate their transmissions in a distributed manner, in
such a way that devices whose radio transmissions may interfere with each
other do not get access to the same frequency channel at the same time.

The IEEE 802.11 MAC is a complex protocol and we do not attempt to
describe here the full model of this protocol. Instead we focus on the most
relevant aspect of this protocol, the so-called listen-before-talk (LBT) rule.
This rule dictates that each device should check the occupancy of the wireless
medium before starting a data transmission and refrain for a random time
from transmitting if it senses that the medium is busy. Roughly speaking, the
net effect of this mechanism is to create an interference-free “exclusion zone”
around each transmitting device (which is roughly of the size ∼ π(2ri

t)
2),

thereby reducing (but not entirely eliminating) the possibility of packet colli-
sions. The presence of the MAC introduces novel spatio-temporal correlations
in the dynamics of data communications which need to be taken into account
in realistic simulations of these networks [35].

2.4 Graph representation of interactions in WiFi Networks

From the above models of radio propagation, an abstract communication
graph for a collection of WiFi devices can be constructed. This is achieved
by creating an edge between node i and all other nodes in the plane that are
within the transmission range of i, and repeating this procedure for all nodes
in the network. In general wireless devices may use different transmit powers
such that the existence of a wireless link from i to j does not imply that a link
from j to i also exists. Consequently the resulting communication graph is
directed. Assuming, however, that all devices use the same transmit power P ,
and a corresponding transmission range rt, the topology of the resulting net-
work can be described as a two dimensional random geometric graph (RGG)
[18]. Similarly, one constructs an interference graph for the network by creat-
ing an edge between any two nodes which are within a radius ri of each other.
Fig 1. shows, as an examples, the communication and interference graphs cre-
ated by a collection of WiFi devices distributed randomly in a 1000 × 1000
m2 rectangular area.

Mathematically, a graph is represented by a corresponding adjacency matrix A,
where the element aij = 1 if two nodes are connected, and zero otherwise. Since
the adjacency matrices corresponding to the communication and interference
graphs of WiFi networks are usually sparse, they can be efficiently encoded in
the computer memory in the form of neighbour lists.
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Fig. 1. The communication (left panel) and the corresponding interference graph
(right panel) of a wireless adhoc network created by WiFi devices uniformly dis-
tributed in a 1000 × 1000 m

2 rectangular area.

2.5 Modelling User Mobility

The movement of users carrying WiFi devices can greatly influence the per-
formance of WiFi systems. The impact of user mobility is twofold. First of all,
as a result of mobility, devices continuously move in and out of each others’
transmission and/or interference ranges and this will result in time-dependent
network topologies. Secondly, mobility causes spatio-temporal variations in the
user density, and consequently, the traffic load offered to each access point.

Accurately modelling user mobility is therefore of great importance in high-
fidelity simulations of WiFi system. Several mobility models have been pre-
sented in recent simulation studies of WiFi and Bluetooth-based mobile wire-
less networks. The most widely used of such models assume random and un-
correlated movements of individual devices. These include the random walk
model and variations thereof, such as the random-waypoint model [19]. How-
ever, such simple models are unable to reproduce important features of user
mobility patterns, which result from a combination of correlations [22], envi-
ronmental constraints [22] and social interactions between users [20].

Fortunately there has been much previous research on agent-based realistic
modelling of both human and vehicular mobility [22,21], and such models can
be coupled to network simulators in order to examine in detail the impact of
user mobility. Very recently, for example, we used microscopic car-following
models to investigate various properties of vehicular adhoc networks operating
in realistic highway traffic scenarios [27].

A computational issue in coupling high-fidelity mobility simulators to wireless
network simulators is the large difference in the time scales of the two types of
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simulations. For example, car-following models typically update the position
of vehicles every second. On the other hand, a typical timestep of wireless
network simulations is ∼ 1 µs. To ensure accurate results the combined sim-
ulations of mobility and wireless communication should be performed using
the smallest time-step in the problem. In the above example, this means a 106

increase in the update frequency of the vehicular traffic simulator [25].

3 Computational Challenges

3.1 Network topology construction and maintenance

One of the most computationally intensive portion of the simulations of WiFi
networks is the construction of the neighbour lists which encode the topology
of the network. In static networks these neighbour lists can be constructed
once and for all at the beginning of each simulation. In networks comprising
mobile nodes, the neighbour lists need to be updated with every update of
nodes’ positions. Consequently, optimisation of neighbour list construction
algorithm becomes critical to the performance of the simulation code.

A brute force implementation of the neighbour list construction involves check-
ing the distance of each node from all the other nodes in the system in order
to determine its neighbours. This approach involves a double nested loop it-
eration over all the nodes in the system and scales as O(N2), where, N is the
number of nodes in the network. The computation becomes very expensive as
we go to larger networks, higher node densities and to networks with highly
dynamic nodes (such as vehicular networks).

A similar issue is faced in simulations of interacting many-particle systems
such as molecular dynamics simulations, where, for each particle in the sys-
tem, the interaction forces with the remaining particles need to be calculated
to simulate its dynamics. Analogous to the transmission/interference range
in WiFi networks, in MD simulations of liquids with short-range interaction
potentials, the interaction force computation is truncated at a cut-off radius,
rc. When rc is equal to or smaller than one-third of the linear dimension of the
simulation box, a cell-linked list method is often adopted which brings down
the force computations from an O(N2) calculation to O(N) (in this case N is
the number of particles in the many-particle simulation system).

The cell-linked list approach [28] applied to the construction of network topol-
ogy in WiFi systems works as follows. First the two-dimensional network
area/simulation cell is divided into sub-cells such that the linear dimension of
each sub-cell is equal to the transmission (interference) range. Any node in
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Fig. 2. Figure illustrating the cell linked list method [28] applied to a simulation
of WiFi networks. The network area is sub-divided into sub-cells with a linear
dimension equal to the the transmission range, rt. For the central node in cell 5,
only the other occupants in its own sub-cell and those in the immediate neighbouring
sub cells (1,2,3,4,6,7,8,9) feature in its neighbour list.

a sub-cell can only interact with nodes in its own sub-cell and in the imme-
diate neighbouring sub-cells and is invisible to nodes in all other sub-cells in
the network. This is illustrated in Figure 2, where, in order to determine the
neighbour list for the central node in cell 5, one only needs to consider nodes
within cell 5 and in the immediate neighbouring cells (1,2,3,4,6,7,8,9). The
brute force method of constructing neighbour lists with two nested loops over
all particles in the system is replaced by 1) a loop over all nodes to determine
which sub-cells they lie in - an O(N) operation and 2) a loop over all nodes
to find their neighbour nodes in the immediate neighbouring sub-cells - an
O(N × Nc) algorithm, where Nc is the average number of nodes per sub-cell.

We note that the above decomposition of the simulation system into linked
cells is naturally suited to domain decomposition parallelisation of the simu-
lations, which we shall discuss in the next section.

3.2 Parallel and distributed simulations on grid platforms

Due to the short-range nature of wireless communications, parallel simulations
of WiFi-based systems on massively parallel computers or tightly coupled grid
platforms can be performed most effectively using domain decomposition. The
area in which WiFi devices operate is divided into a number of regular sub-
domains with dimensions larger than the maximum interference radius of the
wireless devices that comprise the network. The entire communication stack
of all devices within each subdomain is then allocated to one processor and
inter-processor communications are only performed when nodes move from one
processor to another, or there are radio signal propagation across sub-domain
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boundaries.

Several parallel simulators tools for WiFi-based mobile wireless networks which
exploit the domain decomposition strategy have been proposed and imple-
mented in recent years [23,24,25,30]. However, there is very limited published
work in examining the performance of these simulators in the context of large-
scale parallel simulations. Benchmark studies performed on relatively small
number of processors (6 − 12 PEs) however, indicate that only sub-linear
parallel speedups can be achieved, presumably due to a combination of com-
munications and synchronisation overheads.

In addition to domain-decomposition, a task farming strategy can be exploited
in simulations of large-scale wireless networks in order to perform Monte Carlo
runs over an ensemble of network realisations and/or to explore the perfor-
mance for a range of system parameters. In this case multiple runs of the same
code are spawned on a set of slave processors and the results are collected and
further processed by the master processor at the end of computation. Unlike
domain decomposition, task farming requires no synchronisation and very lim-
ited interprocess communications. Therefore linear parallel speedups can be
achieved even for simulations performed on loosely coupled grid platforms.

3.3 Synchronisation

A WiFi network consists of a number of devices each having its own internal
set of states (e.g. the number of data packets in the incoming queue of a
laptop, or the random backoff time of the MAC protocol). These states change
stochastically (and therefore asynchronously) in response to events which are
generated either internally or due to interactions with other devices in the
system. For example, the arrival of a voice call will change the state of the
outgoing data queue of a WiFi-enabled mobile phone.

Parallel simulations of interacting systems with such asynchronous dynamics
(also known as Parallel Discrete Event Simulations) requires the use of a syn-
chronisation protocol among the processing elements (PES) in order to ensure
that causality errors are not introduced in the simulation results. An overview
of the synchronisation of parallel discrete event simulation and a comprehen-
sive discussion of commonly used synchronisation schemes can be found in
[29]. Conservative synchronisation schemes are conventionally used in parallel
simulations of wireless networks [17,31]. Each PE defines its own lookahead as
the minimum duration (measured using the simulation clock) for which it will
not send any message on its outgoing links. Periodically, a global minimum
of all PE’s simulation time plus their lookahead values is computed. Each PE
can then process all events inside its own domain that take place within this
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time window safely without the need of additional synchronisation.

When the number of processing elements becomes large, conservative syn-
chronisation schemes may result in large fluctuations in the rates at which
different PES progress, hence greatly reducing the computational scalability
of the parallel discrete event simulation [32]. It has been demonstrated recently
[32] that by changing the communication topology of PES from a regular grid
to a small-world-type topology, the above problem can be eliminated and high
parallel efficiency achieved. We are currently in the process of implementing
such schemes in the parallel version of our wireless network simulator and the
results will be reported elsewhere.

4 Case Study: Simulations of Worm Attacks on Mobile Wireless

Adhoc Networks

Worms are self-replicating computer viruses which can propagate through
computer networks without any human intervention [26]. With wireless net-
works becoming increasingly popular, many security experts predict that these
networks will soon be a main target of attacks by worms and other type of
malware [33,34]. In addition to individual devices, open resource sites in wire-
less information or computational grids could well be the next wave of targets
for such wireless worm attacks. A qualitative understanding of such attacks is
of great importance, both in assessing their risk and for the design of effective
detection and prevention strategies.

Worm and virus attacks on the Internet have been the subject of extensive
empirical, theoretical and simulation studies, and there have been a number of
studies on securing conventional wired grids against such attacks [37]. Inves-
tigation of virus spreading in wireless networks and wireless grids in general
and worms in particular is, however, at its infancy. In a recent study [35] we
used Monte Carlo simulations to investigate the spreading of worm epidemics
in static wireless adhoc networks. These studies point out to important dif-
ferences between the propagation patterns of worms in wired and wireless
networks and highligh the importance of incorporating interference effects,
network topology and medium access control for realistic modelling of data
communications in these networks.

In this section we briefly describe aspects of these simulations and further
advance them by incorporating the impact of device mobility in the dynamics
of worm propagation.
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4.1 Worm propagation model

Following [35] we assume that wireless worms primarily utilise multihop for-
warding for their propagation in adhoc networks, a mechanism which does not
require any Internet connectivity. With respect to an attacking worm we use
the so-called susceptible-infected-removed (SIR) model from mathematical bi-
ology [36], adapted to the context of wireless communications. We assume that
nodes in the network to be in one of the following three states: vulnerable,
infected, or immune. Infected nodes try to broadcast the worm to their neigh-
bours at every possible opportunity. Vulnerable nodes can become infected
with probability λ when they receive a transmission containing a copy of the
worm from an infected neighbour. Finally, infected nodes get patched and be-
come immune to the worm with probability δ. We denote by S(t), I(t) and
R(t) the population of vulnerable, infected and immune nodes, respectively.

4.2 Simulation details

We simulated the propagation of worms in mobile wireless adhoc networks
comprising N devices in a L2 = 1000×1000 m2 area. At the start of each sim-
ulation the devices were spread randomly in the simulation area, after which
they were allowed to move following simple random walks (Periodic boundary
conditions were used at the edges of the simulation area). The worm spread-
ing dynamics was simulated on top of the resulting time-dependent network
using Monte Carlo simulations. Each Monte Carlo run starts by infecting a
single randomly chosen node and proceeds for a certain number of simulation
timesteps, iupdate, after which the positions of the nodes are updated according
to the random walk model. We use this form of updating in order to mimic
the difference in the timescales between the spreading process and the user
mobility. Each simulation continues in this fashion until the epidemic dies out
(i.e. no infected node is left in the network). We typically average our results
over 500 Monte Carlo runs in order to obtain statistically significant data.
Furthermore, the results were also averaged over simulations starting from
different initial infected seeds.

4.3 Results

First we consider the improvement in computational performance gained from
using the cell linked-list algorithm for updating the network topology. A com-
parison of the performance of the cell-linked list and brute force method for
different movement update frequencies, ν = 1/iupdate, is shown in Figure 3. It
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Fig. 3. Scaling of the computational cost vs. inverse update frequency for the simu-
lation of an adhoc network composed of dynamic nodes whose positions are updated
periodically with frequency ν. The CPU times are compared for two simulations in
which, respectively, the brute force method and the cell linked list method were
used.

can be seen that using the cell-linked list algorithm greatly reduces the com-
putational cost associated with updating network topology and, as expected,
this reduction becomes more significant as the update frequency increases.

Next we consider the impact of node mobility on the dynamics of worm prop-
agation in the network. As an example, the time evolution of the population
of infected nodes, I(t), is plotted in Figure 4. The results were obtained for
mobile wireless adhoc network composed of 4000 nodes and using λ = 0.3 and
δ = 0.1. The nodes’ positions were updated every 1, 2, 5, 10 and 20 time-steps
during the worm propagation, i.e 1

ν
= 1, 2, 5, 10, 20. It can be seen that node

mobility has a significant impact on the spreading dynamics. In particular, as
mobility increases (i.e. the network is updated more frequently) the epidemic
peak (the maximum number of infected devices) becomes more pronounced
and also occurs at earlier times. These results indicate that dynamic adhoc
networks are more vulnerable to worm attacks than static networks.

Qualitatively, we can explain the above behaviour in the following way. In
a fixed wireless adhoc network the maximum number of nodes to which an
infected device can spread the worm in the course of its infection is limited
by the total number of devices which are within its transmission range. On
average this is given by nA, where n is device density and A = πr2

t is the total
area covered by device’s transmission. Switching on mobility enables infected
devices to sweep on a larger area than A, hence increasing the maximum num-
ber of nodes that each device can infect before getting patched. Consequently,
both the speed and the magnitude of the epidemic are increased with increased
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Fig. 4. Population of infected nodes vs. simulation time in an adhoc network com-
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ν. The evolution of the infected node population for different update frequencies is
plotted.

device mobility.

5 Conclusions

WiFi and related technologies not only allow users to access the Internet on
the move, they are also enabling mobile devices to connect directly to each
other and form adhoc networks for distributed voice, video and data communi-
cation. Such adhoc networks also form a flexible communication backbone for
wireless adhoc grids, an emerging paradigm in distributed and grid computing.
With the proliferation of WiFi-enabled mobile devices such grids will enable
innovative applications based on sharing and federating computing and infor-
mation resources of billions of wireless devices such as sensors, smartphones,
PDAS and laptops.

In this paper we described aspects of computational modelling of such WiFi-
based wireless networks, and examined some of the important computational
challenges which are involved in high-fidelity simulations of these networks.
We argued that viewing these networks in terms of interacting many-particle
systems provides a useful framework for understanding and addressing some
of these challenges. We demonstrated this point by using the cell-linked list
technique, which is widely used in simulations of such systems, for scalable up-
dating of network topology in large-scale simulations of mobile wireless adhoc
networks. Furthermore, we discussed parallel simulations of WiFi-based wire-
less networks and showed that conventional parallelisation strategies used in
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parallel simulations of interacting many-particle systems, such as domain de-
composition, are readily applicable to such simulations. However, these strate-
gies need to be complimented with scalable inter-processor synchronisation
schemes in order to deal with the asynchronous nature of interactions in wire-
less networks.

High-fidelity simulation platforms for WiFi-based wireless networks capable
of effectively utilising the power of computational grid and massively parallel
computing are currently at their infancy. Such platforms, however, will be
necessary in planning and optimising the highly complex next generation WiFi
networks. They are also important in realistically analysing the potentials and
challenges of future adhoc grid platforms [8,9], such as security, scalability, and
intermittent network connectivity resulting from mobility.

Our experience shows that in designing such platforms one can greatly benefit
from computational and algorithmic techniques developed in other branches
of computational science. In addition to scalable network topology construc-
tion and parallelisation, which were discussed in the current paper, another
example that comes to mind is the use of fast multipole expansion techniques
for O(N) interference computation in wireless networks with long-range radio
signal propagation [38]. At the same time, high-fidelity simulations of WiFi-
based wireless networks presents an array of new computational challenges
which are the subject of our ongoing and future research.
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