

TECHNICAL SEMINAR
On
APACHE TOMCAT WEB SERVER

Contents
1. Introduction………………………………………1
2. Distributing Tomcat……………………………...6
3. Using Tomcat with the Apache Web Server……7
4. Apache Connectors………………………….……8
5. Features…………………………………………...9
6. Installation of apache web server………….…...10
7. Directories of Apache Web Server……….…….13
8. Tomcat Directory Structure…………….……...14
9. Development of an web application…….……...17
10. Testing some simple servlets……….…….....22
11. Start and Shut down of Web Server…….....23
12. Flow of processing the Request….……….…24
13. References……………………....………........25

INTRODUCTION:
Tomcat is a free, feature-complete servlet container that servlet and JSP developers can use to test their code. Tomcat is also Sun's reference implementation of a servlet container, which means that Tomcat's first goal is to be 100% complaint with the versions of the Servlet and JSP specification that it supports.
However, Tomcat is more than just a test server: many individuals and corporations are using Tomcat in production environments because it has proven to be quite stable. Indeed, Tomcat is considered by many to be a worthy addition to the excellent Apache suite of products.
Despite Tomcat's popularity, it suffers from a common shortcoming among open source projects: lack of complete documentation.
One of the earliest web servers was developed by Rob McCool at the National Center for Supercomputer Applications, University of Illinois, Urbana-Champaign, referred to colloquially as the NCSA project, or NCSA for short. In 1995, the NCSA server was quite popular, but its future was uncertain as Rob left NCSA in 1994. A group of developers got together and compiled all the NCS bug fixes and enhancements they had found and patched them into the NCSA code base. The developers released this new version in April 1995, and called it Apache, which was a sort of acronym for "A PAtCHy Web Server".
Apache was readily accepted by the web-serving community from its earliest days, and less than a year after its release it unseated NCSA to become the most used web server in the world (measured by the total number of servers running Apache), a distinction that it has held ever since (according to Apache'sweb site).
Incidentally, during the same period that Apache's use spread, NCSA's popularity plummeted and by 1999 was officially discontinued by its maintainers.
Today the Apache web server is available on pretty much any major operating system – as of this writing, downloads are available for 29 different operating systems. Apache can be found running on the some of the largest server farms in the world as well as on some of the smallest devices (including the Linux-based Sharp Zaurus hand-held). In Unix data centers, Apache is as ubiquitous as air conditioning and UPS systems.
While Apache was originally a somewhat mangy collection of miscellaneous patches, today's versions are state-of-the-art, incorporating rock-solid stability with bleeding edge features. The only real competitor to Apache in terms of market share and feature set is Microsoft's Internet Information Services (IIS), which is bundled free with certain versions of the Windows operating system. At the time of writing, Apache's market share was estimated at around 56%, with IIS at a distant 32% (statistics courtesy of http://www.netcraft.com/survey/, June 2002).
It is also worth nothing that Apache has a reputation of being much more secure than Microsoft IIS. When new vulnerabilities are discovered in either server, the Apache developers fix Apache far faster than Microsoft fixes IIS.
The Apache Software Foundation
In 1999, the same folks who wrote the Apache server formed the Apache Software Foundation (ASF).
The ASF is a non-profit organization created to facilitate the development of open source softwareprojects. According to their web site, the ASF accomplishes this goal by:
❑ Providing a foundation for open, collaborative software development projects by supplying hardware, communication, and business infrastructure
❑ Creating an independent legal entity to which companies and individuals can donate resources and be assured that those resources will be used for the public benefit
❑ Providing a means for individual volunteers to be sheltered from legal suits directed at the Foundation's projects
❑ Protecting the Apache brand, as applied to its software products, from being abused by other organizations
In practice, the ASF does indeed sponsor a great many open source projects. While the best known of these projects is likely the aforementioned Apache web server, the ASF hosts many other well-respected and widely used projects.
TOMCAT
The Tomcat project has its origins in the earliest days of Java's servlet technology. Servlets plug into special web servers, called servlet containers (originally called servlet engines). Sun created the first servlet container, called the Java Web Server, which demonstrated the technology but wasn't terribly robust. Meanwhile, the ASF folks created the JServ product, which was a servlet engine that integrated with the Apache web server.
In 1999, Sun donated their servlet container code to the ASF, and the two projects were merged to create the Tomcat server. Today, Tomcat serves as Sun's official reference implementation (RI), which means that Tomcat's first priority is to be fully compliant with the Servlet and JSP specifications published by Sun. JSP pages are simply an alternative, HTML-like way to write servlets.
A reference implementation also has the side benefit of honing the specification. As developers seek to put in code that has been defined in the specifications, problems in implementation requirements and conflicts within the specifications are highlighted.
A reference implementation is in principal completely specification-compliant and therefore can be very valuable, especially for people who are using very advanced parts of the specification. The reference implementation is available at the same time as the public release of the specifications, which means that Tomcat is usually the first server out there that provides the enhanced specification features when a new specification version is completed.
The first version of Tomcat was the 3.x series, and it served as the reference implementation of the Servlet 2.2 and JSP 1.1 specifications. The Tomcat 3.x series was descended from the original code that Sun provided to the ASF in 1999.
In 2001, Tomcat 4.0 (codenamed Catalina) was released, and was a complete redesign of the Tomcat architecture and had a new code base. The Tomcat 4.x series, which is current as of this writing, is the reference implementation of the Servlet 2.3 and JSP 1.2 specifications.
At the time of writing, the latest stable version is 4.0.4. Hints of Tomcat 5.0 are on the horizon, as the new Servlet 2.4 and JSP 2.0 specifications are nearing release and Tomcat 5.0 will need to implement those specifications.

Distributing Tomcat
Tomcat is open source software, and as such is free and freely distributable. However, if you have much experience in dealing with open source software, you're probably aware that the terms of distribution can vary from project to project.
Most open source software is released with an accompanying license that states what may and may not be done to the software. There are at least forty different open source licenses out there, each of which has slightly different terms.
Providing a primer on all of the various open source licenses is beyond the scope of this chapter, but the license governing Tomcat will be discussed here and compared with a few of the more popular open source licenses.
Tomcat is distributed under the Apache License, which can be read from the $CATALINA_HOME/LICENSE file. The key points of this license state that: Any documentation included with a redistribution must give a nod to the ASF
 Products derived from the Tomcat sourcecode can't use the terms "Tomcat", "The Jakarta Project", "Apache", or "Apache Software Foundation" to endorse or promote their software without prior written permission from the ASF.
Tomcat has no warranty of any kind However, through omission, the license contains these additional implicit permissions:Tomcat can be used by any entity, commercial or non-commercial, for free without limitation. Those who make modifications to Tomcat and distribute their modified version do not have to include the sourcecode of their modifications
Those who make modifications to Tomcat do not have to donate their modifications back to the ASF
Thus, you' re free to deploy Tomcat in your company in any way you see fit. It can be your product ion web se rver or your te st servle t conta ine r used by your developers. You can also redistribute Tomcat with any commercial application that you may be selling, provided that you include the license and give credit to the ASF. You can even use the Tomcat source code as the foundation for your own commercial product

Using Tomcat with the Apache Web Server
Tomcat's purpose is to provide standards-compliant support for servlets and JSP pages. The purpose of servlets and JSP pages is to generate web content such as HTML files or GIF files on demand using changing data. Web content that is generated on demand is said to be dynamic. On the other hand, web content that never changes and is served up as-is is called static. Web applications commonly include a great deal of static content, such as images or Cascading Style Sheets (CSS).
While Tomcat is capable of serving both dynamic and static content, it is not as fast or feature-rich as the Apache web server with regard to static content. While it would be possible for Tomcat to be extended to support the same features that Apache does for serving up static content, it would take a great deal of time; Apache has been under development for many years. Also, because Apache is written entirely in C and takes advantage of platform-specific features, it is unlikely that Tomcat, a 100% Java application, could ever perform well as Apache.
Recognizing that the advantages of Apache would complement the advantages of Tomcat, the earliest versions of Tomcat included a connector that enabled Tomcat and Apache to work together. In this arrangement, Apache receives all of the HTTP requests made to the web application. Apache then recognizes which requests are intended for servlets/JSP pages, and passes these requests to Tomcat.
Tomcat fulfils the request and passes the response back to Apache, which then returns the response to the requestor. The Apache connector was initially crucial to the Tomcat 3.x series, because its support for both static content and its implementation of the HTTP protocol were somewhat limited.

The Tomcat 4.x series, however, features a much nicer implementation of HTTP and better support for serving up static content, and should by itself be sufficient for people who aren't looking to max out performance but simply need HTTP standards compliance. However, as mentioned above, Apache will most likely always have superior performance and options when it comes to serving up static content and communicating with clients via HTTP, and, for this reason, anyone who is using Tomcat for hightraffic web applications may want to consider using Apache and Tomcat together.
Apache Connectors
For interfacing with Apache, Tomcat 4.x supports two different types of connectors: AJP and WARP;
AJP and WARP refer to two different protocols that govern how the connector communicates with Apache. The Apache JServ Protocol (AJP) dates back to the Apache JServ product. The first connector to implement this protocol, called mod_jserv, was written for the initial JServ product and continued to function with the Tomcat 3.x series. The newest AJPbased connector is mod_jk2.
The WARP protocol was created for the Tomcat 4.x series, and mod_webapp is the name of the only connector that currently implements this protocol. The WARP protocol is intended to provide greater flexibility and greater performance than the AJP protocol. Getting the Apache connectors to work properly can be tricky, and finding helpful documentation is even trickier.

Components
Tomcat version 4.x was released with Catalina (a servlet container), Coyote (an HTTP connector) and Jasper (a JSP engine).
Catalina
Catalina is Tomcat's Servlet container. Catalina implements SunMicrosystem’s specifications for servlet and JavaServerPages (JSP). In Tomcat, a Realm element represents a "database" of usernames, passwords, and roles (similar to Unix groups) assigned to those users. Different implementations of Realm allow Catalina to be integrated into environments where such authentication information is already being created and maintained, and then utilize that information to implement Container Managed Security as described in the Servlet Specification.
Coyote
Coyote is Tomcat's HTTP Connector component that supports the HTTP 1.1 protocol for the web server or application container. Coyote listens for incoming connections on a specific TCP port on the server and forwards the request to the Tomcat Engine to process the request and send back a response to the requesting client.
Jasper
Jasper is Tomcat's JSP Engine. Tomcat 5.x uses Jasper 2, which is an implementation of the sun Microsystem’s JavaServerPages 2.0 specification. Jasper parses JSP files to compile them into Java code as servlets (that can be handled by Catalina). At runtime, Jasper detects changes to JSP files and recompiles them.

Features
Tomcat 5.x
· Implements the Servlet 2.4 and JSP 2.0 specifications
· Reduced garbage collection, improved performance and scalability
· Native Windows and Unix wrappers for platform integration
· Faster JSP parsing

Installation of apache web server
 1. Download the Apache Tomcat Software
Go to http://tomcat.apache.org/download-55.cgi and download and unpack the zip file for the current release build of Tomcat 5.5.
Using Tomcat with JDK 1.5 (Java 5) is preferred, but if you use Tomcat with JDK 1.4, you have to also download and unpack the “Compat” zip file. The the preconfigured Tomcat version already contains the “Compat” files and can be used with either Java 5 (1.5) or Java 1.4.
Save the zip file(s) on your PC and unzip into a location of your choice. You specify the top-level directory (e.g., C:\) and the zip file has embedded sub directories (e.g., apache-tomcat-5.5.17). Thus, C:\apache-tomcat-5.5.17 is a common resultant installation directory. Note: from this point forward, I’ll refer to that location as install_dir. For Windows, there is also a .exe installer; I prefer the .zip file, but see the .exe installer section for notes on the differences between the two.
Alternatively, you can use my preconfigured Jakarta Tomcat version. This version already has the port changed to 80, servlet reloading enabled, the invoker servlet turned on, and the “Compat” package included. It also comes with a sample development directory, autoexec.bat file, startup/shutdown shortcuts, and shortcuts for deploying applications.
2. Set theJAVA_HOME Variable
Next, you must set the JAVA_HOME environment variable to tell Tomcat where to find Java. Failing to properly set this variable prevents Tomcat from compiling JSP pages. This variable should list the base JDK installation directory, not the bin subdirectory. For example, on almost any version of Windows, if you use JDK 1.5_08, you might put the following line in your C:\autoexec.bat file.
set JAVA_HOME=C:\Program Files\Java\jdk1.5.0_08
On Windows XP, you could also go to the Start menu, select Control Panel, choose System, click on the Advanced tab, press the Environment Variables button at the bottom, and enter the JAVA_HOME variable and value directly. On Windows 2000 and NT, you do Start, Settings, Control Panel, System, then Environment. However, you can use C:\autoexec.bat on those versions of Windows also (unless a system administrator has set your PC to ignore it).
 3. Change the Port to 80
Assuming you have no other server already running on port 80, you’ll find it convenient to configure Tomcat to run on the default HTTP port (80) instead of the out-of-the-box port of 8080. Making this change lets you use URLs of the form http://localhost/blah instead of http://localhost:8080/blah. Note that you need admin privileges to make this change on Unix/Linux. Also note that some versions of Windows XP automatically start IIS on port 80. So, if you use XP and want to use port 80 for Tomcat, you may need to disable IIS (see the Administrative Tools section of the Control Panel).
To change the port, edit install_dir/conf/server.xml and change the port attribute of the Connector element from 8080 to 80, yielding a result similar to that below.
<Connector port="80" ...
 maxThreads="150" ...
You can also:
Use my preconfigured Jakarta Tomcat version. Apache Tomcat 5.5.17 with all server.xml, context.xml, and web.xml changes, plus the sample HTML, JSP, and Java files.
Download my modified server.xml for Tomcat 5.5. From Apache Tomcat 5.5.17, but should work on most versions of Tomcat 5.5. Right-click or shift-click on the link to download the file.

4. Turn on Servlet Reloading
The next step is to tell Tomcat to check the modification dates of the class files of requested servlets, and reload ones that have changed since they were loaded into the server’s memory. This slightly degrades performance in deployment situations, so is turned off by default. However, if you fail to turn it on for your development server, you’ll have to restart the server every time you recompile a servlet that has already been loaded into the server’s memory. Since this tutorial discusses the use of Tomcat for development, this change is strongly recommended.
You can also:
Use my preconfigured Tomcat version. Tomcat 5.5.17 with all server.xml, context.xml, and web.xml changes, plus the sample HTML, JSP, and Java files.
Download my modified context.xml for Tomcat 5.5. From Tomcat 5.5.17, but should work on most versions of Tomcat 5.5. Right-click or shift-click on the link to download the file.
5. Enable the Invoker Servlet
The invoker servlet lets you run servlets without first making changes to your Web application’s deployment descriptor (i.e., the WEB-INF/web.xml file). Instead, you just drop your servlet into WEB-INF/classes and use the URLhttp://host/servlet/ServletName (or http://host/webAppName/servlet/ServletName once you start using your own Web applications; see Section 2.11 of the book for details on Web apps). The invoker servlet is extremely convenient when you are learning and even when you are doing your initial development. You almost certainly want to enable it when learning, but you should disable it again before deploying any real applications.
To enable the invoker servlet, uncomment the following servlet and servlet-mapping elements in install_dir/conf/web.xml. Do not confuse this Apache Tomcat-specific web.xml file with the standard one that goes in the WEB-INF directory of each Web application.
invoker org.apache.catalina.servlets.InvokerServlet invoker /servlet/
You can also:
Use my preconfigured Tomcat version. Tomcat 5.5.17 with all server.xml, context.xml, and web.xml changes, plus the sample HTML, JSP, and Java files.
Download my modified web.xml for Tomcat 5.5. From Tomcat 5.5.17, but should work on most versions of Tomcat 5.5. Right-click or shift-click on the link to download the file.
6. Change DOS Memory Settings
If you use Windows 98/Me, you may also have to change the DOS memory settings for the startup and shutdown scripts. If you get an “Out of Environment Space” error message when you start the server, you will need to right-click on install_dir/bin/startup.bat, select Properties, select Memory, and change the Initial Environment entry from Auto to at least 2816. Repeat the process for install_dir/bin/shutdown.bat. This step is not necessary in recent versions of Windows.
7. Set the CATALINA_HOME Variable (Optional)
If you are going to make copies of the Tomcat startup or shutdown scripts (e.g., startup.bat and shutdown.bat), it is also helpful to set theCATALINA_HOME environment variable to refer to the top-level directory of the Apache Tomcat installation (e.g., C:\apache-tomcat-5.5.17). This variable identifies the Tomcat installation directory to the server. However, if you are careful to avoid copying the server scripts and you use only shortcuts (called “symbolic links” on Unix/Linux) instead, you are not required to set this variable. I recommend using shortcuts and not bothering with CATALINA_HOME.
8. Using the Preconfigured Tomcat Version (Optional)
Please see the preconfigured Tomcat page on installing Jakarta Tomcat 5.5 with all settings already made. Just unzip the file, set yourJAVA_HOME and CLASSPATH variables, and you are read to go.
DIRECTORIES OF APACHE WEB SERVER
To create servlets, you really should have two directory structures:
A development directory, in which you can write and partially debug your code
A deployment directory, in which you put “live” code
Tomcat requires a particular set of directories for your web application
It is extremely picky about having everything in the right place!
Since your web application must typically co-exist with other web applications, you should use packages to avoid name conflicts
This further complicates the Tomcat directory structure
A package statement in Java must be the very first line of code in the file
Example:
package com.example.model;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class MyServlet extends HttpServlet { ... }
This implies that
This program is in a file named MyServlet.java, which is
in a directory named model, which is
in a directory named example, which is
in a directory named com

TOMCAT DIRECTORY STRUCTURE
· myApplicationDirectory/ -- this is your top level directory
· myWebForm.html
· myJspPage.jsp
· WEB-INF/ -- must have this directory, named exactly like this
· lib/ -- mostly for external .jar files
· classes/ -- must have this directory, named exactly like this
· com/ -- The com.example.model package directory
· example/
· model/
· myModel.class -- in package com.example.model;
· web/
· myServlet.class --in package com.example.web;
· web.xml -- this is the deployment descriptor, it must have this name

[image: http://1.bp.blogspot.com/_vgTLQ5mShiI/SFeeo4zQCbI/AAAAAAAAAKs/t17obZCgfi8/s400/tomcat-port-8080-change.jpg]

Development of an web application in apache tomcat web server

Configuring your system for servlet development involves the following four steps:
1. Creating a development directory
2. Making shortcuts to the Tomcat startup and shutdown scripts
3. Setting your CLASSPATH
4. Bookmarking the servlet & JSP javadocs
Details on each step are given below.
 1. Create a Development Directory
The first thing you should do is create a directory in which to place the servlets and JSP pages that you develop. This directory can be in your home directory (e.g., C:\Documents and Settings\Your Name\My Documents\Servlets+JSP on Windows 2000) or in a convenient general location (e.g., C:\Servlets+JSP). It should not, however, be in the Tomcat deployment directory (e.g., anywhere within install_dir/webapps).
Eventually, you will organize this development directory into different Web applications. For initial testing of your environment, however, you can just put servlets either directly in the development directory (for packageless servlets) or in a subdirectory that matches the servlet package name. Many developers simply put all their code in the server’s deployment directory (within install_dir/webapps). I strongly discourage this practice and instead recommend one of the approaches described in the deployment section. Although developing in the deployment directory seems simpler at the beginning since it requires no copying of files, it significantly complicates matters in the long run. Mixing locations makes it hard to separate an operational version from a version you are testing, makes it difficult to test on multiple servers, and makes organization much more complicated. Besides, your desktop is almost certainly not the final deployment server, so you’ll eventually have to develop a good system for deploying anyhow.
Note that the preconfigured Tomcat version already contains all the test files, has shortcuts from the development directory to the deployment locations, and has shortcuts to start and stop the server.
 2. Make Shortcuts to Start and Stop the Server
Since I find myself frequently restarting the server, I find it convenient to place shortcuts to the server startup and shutdown scripts inside my main development directory or on my desktop. You will likely find it convenient to do the same.
For example, one way to make these shortcuts is to go to install_dir/bin, right-click on startup.bat, and select Copy. Then go to your development directory, right-click in the window, and select Paste Shortcut (not just Paste). Repeat the process for install_dir/bin/shutdown.bat. If you put the shortcuts on your desktop, you can also assign keyboard shortcuts to invoke them. On Unix, you would use ln -s to make a symbolic link to startup.sh, catalina.sh (needed even though you don’t directly invoke this file), and shutdown.sh.
3. Set Your CLASSPATH
Since servlets and JSP are not part of the Java 2 platform, standard edition, you have to identify the servlet classes to the compiler. The server already knows about the servlet classes, but the compiler (i.e., javac) you use for development probably doesn’t. So, if you don’t set your CLASSPATH, attempts to compile servlets, tag libraries, filters, Web app listeners, or other classes that use the servlet and JSPAPIs will fail with error messages about unknown classes. Here are the standard Tomcat locations:
· install_dir/common/lib/servlet-api.jar
· install_dir/common/lib/jsp-api.jar
You need to include both files in your CLASSPATH.
Now, in addition to the servlet JAR file, you also need to put your development directory in the CLASSPATH. Although this is not necessary for simple packageless servlets, once you gain experience you will almost certainly use packages. Compiling a file that is in a package and that uses another class in a user-defined package requires the CLASSPATH to include the directory that is at the top of the package hierarchy. In this case, that’s the development directory I just discussed. Forgetting this setting is perhaps the most common mistake made by beginning servlet programmers!
Finally, you should include ”.” (the current directory) in the CLASSPATH. Otherwise, you will only be able to compile packageless classes that are in the top-level development directory.
Here are two representative methods of setting the CLASSPATH. They assume that your development directory is C:\Servlets+JSP. Replace install_dir with the actual Tomcat installation path (e.g., C:\apache-tomcat-5.5.17). Also, be sure to use the appropriate case for the filenames, and enclose your pathnames in double quotes if they contain spaces.
Any Windows Version from Windows 98/Me Onward. Use the autoexec.bat file.
· Sample code: (Note that this all goes on one line with no spaces—it is broken here only for readability.) set CLASSPATH=.; C:\Servlets+JSP; install_dir\common\lib\servlet-api.jar; install_dir\common\lib\jsp-api.jar
· Sample file to download and modify: autoexec.bat
Note that these examples represent only one approach for setting the CLASSPATH. Many Java integrated development environments have global or project-specific settings that accomplish the same result. But these settings are totally IDE-specific and won’t be discussed here. Another alternative is to make a .bat file or ant build script whereby -classpath … is automatically appended onto calls to javac.
Windows NT/2000/XP. You could use the autoexec.bat file as above, but a more common approach is to use system settings. On WinXP, go to the Start menu and select Control Panel, then System, then the Advanced tab, then the Environment Variables button. On Win2K/WinNT, go to the Start menu and select Settings, then Control Panel, then System, then Environment. Either way, enter theCLASSPATH value from the previous bullet.
4. Bookmark the Servlet and JSP API Documentation
Just as no serious programmer should develop general-purpose Java applications without access to the JDK API documentation (in Javadoc format), no serious programmer should develop servlets or JSP pages without access to the API for classes in the javax.servlet packages.

Testing some simple servlets
Compile and Test Some Simple Servlets
OK, so your environment is all set. At least you think it is. It would be nice to confirm that hypothesis. Verifying this involves the following three steps:
1. Testing a packageless servlet
2. Testing a servlet that uses packages
3. Testing a servlet that uses packages and utility classes
Details on each step are given below.
1: A Servlet That Does Not Use Packages
The first servlet to try is a basic one: no packages or utility (helper) classes. Rather than writing your own test servlet, you can just download HelloServlet.java into your development directory, compile it, and copy the .class file to install_dir/webapps/ROOT/WEB-INF/classes. Right-click on the link to download the file to your system. Note: in all versions of Apache Tomcat, the location for servlets in the default Web application is install_dir/webapps/ROOT/WEB-INF/classes. However, in recent versions of Tomcat (including Tomcat 5.5.17), the system doesn’t create the directory for you automatically. No problem: just create it yourself. (Remember that case matters:WEB-INF is upper case, classes is lower case.) Note that my preconfigured Apache Tomcat version already contains the classes directory and already has the sample servlets.
There are two reasons why it is preferable to use install_dir/webapps/ROOT/WEB-INF/classes:
1. It is standard. The ROOT directory follows the normal structure of a Web application (see Section 2.11 of the book): HTML/JSP files go in the main directory, the web.xml file goes in WEB-INF, unjarred Java classes go in WEB-INF/classes, and JAR files go in WEB-INF/lib. So, if you use WEB-INF/classes, you are using a structure that works on all servers that support servlets 2.2 and later. On the other hand, install_dir/shared/classes is a Tomcat-specific location that is supported on few, if any, other servers.
2. It is specific to a Web application. Once you become comfortable with the basics, you will almost certainly divide your projects up into separate Web applications. By putting your code in WEB-INF/classes, you are ready for this, since your code is already part of a Web application (the default one for Tomcat). So, the code can easily move to another Web application, and it will not interfere with any future applications. On the other hand, install_dir/shared/classes results in code that is shared by all Web applications on your server. This is almost never what you want for servlets.
If you get compilation errors, go back and check your CLASSPATH settings (see the earlier section on this topic)—you most likely erred in listing the location of the JAR files that contains the servlet and JSP classes. Once you compile HelloServlet.java, put HelloServlet.class in install_dir/webapps/ROOT/WEB-INF/classes. After compiling the code, access the servlet with the URL http://localhost/servlet/HelloServlet (or http://localhost:8080/servlet/HelloServlet if you chose not to change the port number as described earlier). You should get a simpleHTML page that says “Hello”. If this URL fails but the test of the server itself succeeded, you probably put the class file in the wrong directory or forgot to enable the invoker servlet. Test 2: A Servlet That Uses Packages
The second servlet to try is one that uses packages but not utility classes. Again, rather than writing your own test, you can download and install HelloServlet2.java. Since this servlet is in the coreservlets package, it should go in the coreservlets directory both during development and when deployed to the server. Once you compile HelloServlet2.java, put HelloServlet2.class in install_dir/webapps/ROOT/WEB-INF/classes/coreservlets. For now, you can simply copy (not move!) the coreservlets subdirectory from the development directory to install_dir/webapps/ROOT/WEB-INF/classes. An upcoming section will provide some other options for the deployment process.
Once you have placed the servlet in the proper directory, access it with the URL http://localhost/servlet/coreservlets.HelloServlet2. You should get a simple HTML page that says “Hello (2)”. If the first test succeeded but this test failed, you probably either typed the URLwrong (e.g., used a slash instead of a dot after the package name) or put HelloServlet2.class in the wrong location (e.g., directly in install_dir/webapps/ROOT/WEB-INF/classes directory instead of in the coreservlets subdirectory).

 3: A Servlet That Uses Packages and Utilities
The final servlet you should test to verify the configuration of your server and development environment is one that uses both packages and utility classes. HelloServlet3.java is a servlet in the coreservlets package that uses the ServletUtilities class to simplify the generation of the DOCTYPE (specifies the HTML version—useful when using HTML validators) and HEAD (specifies the title) portions of the HTML page. Those two parts of the page are useful (technically required, in fact), but are tedious to generate with servlet println statements. Since both the servlet and the utility class are in the coreservlets package, they should go in the coreservlets directory.
Deployment Descriptor
Java web applications use a deployment descriptor file to determine how URLs map to servlets, which URLs require authentication, and other information. This file is named web.xml and resides in the app's WAR under the WEB-INF/ directory. Web.xml is part of the servlet standard for web applications.
A web application's deployment descriptor describes the classes, resources and configuration of the application and how the web server uses them to serve web requests. When the web server receives a request for the application, it uses the deployment descriptor to map the URL of the request to the code that ought to handle the request.

The deployment descriptor is a file named web.xml It resides in the app's WAR under the WEB-INF / directory. The file is an XML file whose root element is <web-app>.
Here is a simple web.xml example:
Eg:
<web-app xmlns=http://java.sun.com/xml/ns/javaee version=”2.5”>
	<servlet>
		<servlet-name> cominSoon</servlet-name>
		<servlet-class> mysite.server.comingSoonServlet</servlet-class>
	</servlet>
	<servlet-mapping>
		<servlet-name> cominSoon</servlet-name>
		<url-pattern> /*</url-pattern>
	</servlet-mapping>
</web-app>
Servlets and Url Paths

Web.xml defines mappings between URL paths and the servlets that handle requests with those paths. The web server uses this configuration to identify the servlet to handle a given request and call the class method that corresponds to the request method (e.g. the doGet() method for HTTP GET requests).
To map a URL to a servlet, you declare the servlet with the <servlet> element, then define a mapping from a URL path to a servlet declaration with the <servlet-mapping> element.

The<servlet> element declares the servlet, including a name used to refer to the servlet by other elements in the file, the class to use for the servlet, and initialization parameters. You can declare multiple servlets using the same class with different initialization parameters. The name for each servlet must be unique across the deployment descriptor.

Start and Shut down of Tomcat Web Server

 Start Up Tomcat

There are two techniques by which Tomcat can be started:

* Via an environment variable:
 - Set an environment variable CATALINA_HOME to the path of the directory
 into which you have installed Tomcat
 - Execute the shell command:

 %CATALINA_HOME%\bin\startup (Windows)

 $CATALINA_HOME/bin/startup.sh (Unix)

* By modifying your current working directory:
 - Execute the following shell commands:

 cd %CATALINA_HOME%\bin (Windows)
 startup (Windows)

 cd $CATALINA_HOME/bin (Unix)
 ./startup.sh (Unix)

After startup, the default web applications included with Tomcat 4.1 will be
available by browsing:

 http://localhost:8080/

Shut Down Tomcat

There are two techniques by which Tomcat can be stopped:

* Via an environment variable:
 - Set an environment variable CATALINA_HOME to the path of the directory
 into which you have installed Tomcat
 - Execute the shell command:

 %CATALINA_HOME%\bin\shutdown (Windows)

 $CATALINA_HOME/bin/shutdown.sh (Unix)

* By modifying your current working directory:
 - Execute the following shell commands:

 cd %CATALINA_HOME%\bin (Windows)
 shutdown (Windows)

 cd $CATALINA_HOME/bin (Unix)
 ./shutdown.sh (Unix)
Running The Web Application On Tomcat Web Server
 After the entire Web Application is developed and deployed into the WebApps folder of the Tomcat Web Server we need to run the server.
Specify the path of the folder in the browser which is supported by the Tomcat Web Server. Now the browser accepts the HTTP request from the client and forwards it to the Server. The server process the request received from the client and sends the response back to the client in the HTTP format.

Flow of processing the Request
· The user submits an HTML form
· Tomcat finds the servlet based on the URL and the deployment descriptor (web.xml) and passes the request to the servlet
· The servlet computes a response the servlet writes an HTML page containing the response
· Tomcat returns the HTML page to the user

[image: http://www.migrate2cloud.com/blog/wp-content/uploads/2010/07/diagram-blog.jpg]
REFERENCES:
 http://www.ccl.net/cca/software/UNIX/apache/
 tomcat3.1b1-faq.html, READMET1SB.shtml,
 solaris-t3.2/README.shtml
 http://www-itg.lbl.gov/Private/apache_build.html
 http://www-itg.lbl.gov/Grid/projects/WebServer-SG.html

image1.jpeg

image2.jpeg

