Department of Computer Science

Operating Systems Lab

 Rajagiri School of Engineering and Technology, Kochi - 39

Experiment No:9
Date: 10-Nov-2010

HELLO WORLD KERNEL MODULE
PROBLEM DEFINITION

To implement a “Hello world” kernel module
THEORETICAL BACKGROUND

What Is A Kernel Module?

 Modules are pieces of code that can be loaded and unloaded into the kernel upon demand. They extend the functionality of the kernel without the need to reboot the system. For example, one type of module is the device driver, which allows the kernel to access hardware connected to the system. Without modules, we would have to build monolithic kernels and add new functionality directly into the kernel image. Besides having larger kernels, this has the disadvantage of requiring us to rebuild and reboot the kernel every time we want new functionality.

How Do Modules Get Into The Kernel?

You can see what modules are already loaded into the kernel by running lsmod, which gets its information by reading the file /proc/modules.

How do these modules find their way into the kernel? When the kernel needs a feature that is not resident in the kernel, the kernel module daemon kmod execs modprobe to load the module in. modprobe is passed a string in one of two forms:

· A module name like softdog or ppp.

· A more generic identifier like char-major-10-30.

If modprobe is handed a generic identifier, it first looks for that string in the file /etc/modprobe.conf. If it finds an alias line like:

	alias char-major-10-30 softdog

it knows that the generic identifier refers to the module softdog.ko.

Next, modprobe looks through the file /lib/modules/version/modules.dep, to see if other modules must be loaded before the requested module may be loaded. This file is created by depmod -a and contains module dependencies. For example, msdos.ko requires the fat.ko module to be already loaded into the kernel. The requested module has a dependency on another module if the other module defines symbols (variables or functions) that the requested module uses.

Lastly, modprobe uses insmod to first load any prerequisite modules into the kernel, and then the requested module. modprobe directs insmod to /lib/modules/version/, the standard directory for modules. insmod is intended to be fairly dumb about the location of modules, whereas modprobe is aware of the default location of modules, knows how to figure out the dependencies and load the modules in the right order. So for example, if you wanted to load the msdos module, you'd have to either run:

	insmod /lib/modules/2.6.11/kernel/fs/fat/fat.ko

insmod /lib/modules/2.6.11/kernel/fs/msdos/msdos.ko

or:

	modprobe msdos

What we've seen here is: insmod requires you to pass it the full pathname and to insert the modules in the right order, while modprobe just takes the name, without any extension, and figures out all it needs to know by parsing /lib/modules/version/modules.dep.

Linux distros provide modprobe, insmod and depmod as a package called module-init-tools. In previous versions that package was called modutils. Some distros also set up some wrappers that allow both packages to be installed in parallel and do the right thing in order to be able to deal with 2.4 and 2.6 kernels. Users should not need to care about the details, as long as they're running recent versions of those tools.

Now you know how modules get into the kernel. There's a bit more to the story if you want to write your own modules which depend on other modules (we calling this `stacking modules'). But this will have to wait for a future chapter. We have a lot to cover before addressing this relatively high-level issue.

Before we delve into code, there are a few issues we need to cover. Everyone's system is different and everyone has their own groove. Getting your first "hello world" program to compile and load correctly can sometimes be a trick. Rest assured, after you get over the initial hurdle of doing it for the first time, it will be smooth sailing thereafter.

Modversioning

A module compiled for one kernel won't load if you boot a different kernel unless you enable CONFIG_MODVERSIONS in the kernel. We won't go into module versioning until later in this guide. Until we cover modversions, the examples in the guide may not work if you're running a kernel with modversioning turned on. However, most stock Linux distro kernels come with it turned on. If you're having trouble loading the modules because of versioning errors, compile a kernel with modversioning turned off.

Using X

It is highly recommended that you type in, compile and load all the examples this guide discusses. It's also highly recommended you do this from a console. You should not be working on this stuff in X.

Modules can't print to the screen like printf() can, but they can log information and warnings, which ends up being printed on your screen, but only on a console. If you insmod a module from an xterm, the information and warnings will be logged, but only to your log files. You won't see it unless you look through your log files. To have immediate access to this information, do all your work from the console.

Compiling Issues and Kernel Version

Very often, Linux distros will distribute kernel source that has been patched in various non-standard ways, which may cause trouble.

A more common problem is that some Linux distros distribute incomplete kernel headers. You'll need to compile your code using various header files from the Linux kernel. Murphy's Law states that the headers that are missing are exactly the ones that you'll need for your module work.

To avoid these two problems, I highly recommend that you download, compile and boot into a fresh, stock Linux kernel which can be downloaded from any of the Linux kernel mirror sites. See the Linux Kernel HOWTO for more details.

Ironically, this can also cause a problem. By default, gcc on your system may look for the kernel headers in their default location rather than where you installed the new copy of the kernel (usually in /usr/src/. This can be fixed by using gcc's -I switch.

Simple module

hello-1.c
	/*

 * hello-1.c - The simplest kernel module.

 */

#include <linux/module.h>
/* Needed by all modules */

#include <linux/kernel.h>
/* Needed for KERN_INFO */

int init_module(void)

{

printk(KERN_INFO "Hello world 1.\n");

/*

 * A non 0 return means init_module failed; module can't be loaded.

 */

return 0;

}

void cleanup_module(void)

{

printk(KERN_INFO "Goodbye world 1.\n");

}

Kernel modules must have at least two functions: a "start" (initialization) function called init_module() which is called when the module is insmoded into the kernel, and an "end" (cleanup) function called cleanup_module() which is called just before it is rmmoded. Actually, things have changed starting with kernel 2.3.13. You can now use whatever name you like for the start and end functions of a module, the new method is the preferred method. However, many people still use init_module() and cleanup_module() for their start and end functions.

Typically, init_module() either registers a handler for something with the kernel, or it replaces one of the kernel functions with its own code (usually code to do something and then call the original function). The cleanup_module() function is supposed to undo whatever init_module() did, so the module can be unloaded safely.

Lastly, every kernel module needs to include linux/module.h. We needed to include linux/kernel.h only for the macro expansion for the printk() log level, KERN_ALERT.

printk()
Despite what you might think, printk() was not meant to communicate information to the user, even though we used it for exactly this purpose in hello-1! It happens to be a logging mechanism for the kernel, and is used to log information or give warnings. Therefore, each printk() statement comes with a priority, which is the <1> and KERN_ALERT you see. There are 8 priorities and the kernel has macros for them, so you don't have to use cryptic numbers, and you can view them (and their meanings) in linux/kernel.h. If you don't specify a priority level, the default priority, DEFAULT_MESSAGE_LOGLEVEL, will be used.

Take time to read through the priority macros. The header file also describes what each priority means. In practise, don't use number, like <4>. Always use the macro, like KERN_WARNING.

If the priority is less than int console_loglevel, the message is printed on your current terminal. If both syslogd and klogd are running, then the message will also get appended to /var/log/messages, whether it got printed to the console or not. We use a high priority, like KERN_ALERT, to make sure the printk() messages get printed to your console rather than just logged to your logfile. When you write real modules, you'll want to use priorities that are meaningful for the situation at hand.

Compiling Kernel Modules

Kernel modules need to be compiled a bit differently from regular userspace apps. Former kernel versions required us to care much about these settings, which are usually stored in Makefiles. Although hierarchically organized, many redundant settings accumulated in sublevel Makefiles and made them large and rather difficult to maintain. Fortunately, there is a new way of doing these things, called kbuild, and the build process for external loadable modules is now fully integrated into the standard kernel build mechanism. To learn more on how to compile modules which are not part of the official kernel (such as all the examples you'll find in this guide), see file linux/Documentation/kbuild/modules.txt.

So, let's look at a simple Makefile for compiling a module named hello-1.c:

Makefile for a basic kernel module
	obj-m += hello-1.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

From a technical point of view just the first line is really necessary, the "all" and "clean" targets were added for pure convenience.

Now you can compile the module by issuing the command make . You should obtain an output which resembles the following:

	hostname:~/lkmpg-examples/02-HelloWorld# make

make -C /lib/modules/2.6.11/build M=/root/lkmpg-examples/02-HelloWorld modules

make[1]: Entering directory `/usr/src/linux-2.6.11'

 CC [M] /root/lkmpg-examples/02-HelloWorld/hello-1.o

 Building modules, stage 2.

 MODPOST

 CC /root/lkmpg-examples/02-HelloWorld/hello-1.mod.o

 LD [M] /root/lkmpg-examples/02-HelloWorld/hello-1.ko

make[1]: Leaving directory `/usr/src/linux-2.6.11'

hostname:~/lkmpg-examples/02-HelloWorld#

Note that kernel 2.6 introduces a new file naming convention: kernel modules now have a .ko extension (in place of the old .o extension) which easily distinguishes them from conventional object files. The reason for this is that they contain an additional .modinfo section that where additional information about the module is kept. We'll soon see what this information is good for.

Use modinfo hello-*.ko to see what kind of information it is.

	hostname:~/lkmpg-examples/02-HelloWorld# modinfo hello-1.ko

filename: hello-1.ko

vermagic: 2.6.11 preempt PENTIUMII 4KSTACKS gcc-3.3

depends:

Nothing spectacular, so far. That changes once we're using modinfo on one of our the later examples, hello-5.ko .

	hostname:~/lkmpg-examples/02-HelloWorld# modinfo hello-5.ko

filename: hello-5.ko

license: GPL

author: Peter Jay Salzman

vermagic: 2.6.11 preempt PENTIUMII 4KSTACKS gcc-3.3

depends:

parm: myintArray:An array of integers (array of int)

parm: mystring:A character string (charp)

parm: mylong:A long integer (long)

parm: myint:An integer (int)

parm: myshort:A short integer (short)

hostname:~/lkmpg-examples/02-HelloWorld#

Lot's of useful information to see here. An author string for bugreports, license information, even a short description of the parameters it accepts.

Additional details about Makefiles for kernel modules are available in linux/Documentation/kbuild/makefiles.txt. Be sure to read this and the related files before starting to hack Makefiles. It'll probably save you lots of work.

Now it is time to insert your freshly-compiled module it into the kernel with insmod ./hello-1.ko (ignore anything you see about tainted kernels; we'll cover that shortly).

All modules loaded into the kernel are listed in /proc/modules. Go ahead and cat that file to see that your module is really a part of the kernel. Congratulations, you are now the author of Linux kernel code! When the novelty wears off, remove your module from the kernel by using rmmod hello-1. Take a look at /var/log/messages just to see that it got logged to your system logfile.

CONCLUSION

The Hello World Kernel module has been implemented successfully.

REFERENCES

[1]Peter Jay Salzman, Michael Burian,Ori Pomerantz, The Linux Kernel Module Programming Guide, http://www.tldp.org/LDP/lkmpg/2.6/html/c38.html

© Class No: 15

