CS2K707(P) Seminar Report

on '

A LOGIC PROGRAMMING
APPROACH TO KNOWLEDGE
STATE PLANNING

Submitted In Partial Fulfilment Of The Degree Of

Bachelor Of Technology

by

" K.Gajaruban
Y1.301,87 CSE

TN M1 T

Department of Computer Science & Engineering
National Institute of Technology, Calicut
2004 Monsoon

- National Institute of Technology, Calicut

Department of Computer Science & Engineering

Certified that this Seminar Report entitled

A LOGIC PROGRAMMING
APPROACH TO KNOWLEDGE
STATE PLANNING

is a bonafide report of the Seminar presented by -

K.Gajaruban
- Y1.301,87 CSE

n partial fulﬁlmentlof the degree of
Bachelor of Technology

Mr.\‘\/:éi/'w .6 th i D}.ﬂ K

.Govindan

Professor and
Lecturer Head

Dept.of Computer Science & Engineering Dept.of Computer Science £ E.‘ugz‘um:rir{y.’

Seminar Coordinator

Abstract

It is a proposal of new deaclarative planning langnage namely K, which conlornm
to logic programming paradigm. This language is capable of describing the fransitions
between different knowledge states rather transitions between completely described states
of the world. Therefore this language allows planning under incomplete knowledge. Siill
it supports defanlt principles of logic programming like negation as failure. AL the same
time trausitions between completely described states of world is also possilde. So i vey
Aexible. This allows natnral and compact problem representation. A thorough analysis
of computational complexity of K is given in the report, using examples ol plauning
problems. It includes secure planning and standard planning, Under varions restrictions
these complexities range from NP to NEXPTIME. This forms a theoritical basis for the
implementations of K on top of the DLV system, resulting in DLVk. '

Contents
1 Introduction to knowledge state planning in a historical persective

2 Language K
2.1 Basic syntax

2.1.1 Actions, Fluents and Types
2.1.2 Definition 1
2.1.3 Definition 2
214 Definition 3
2.1.5 Definition 4
216 Definition 5
2.1.7 Definition 6
2.1.8 Definition 7
Semantics
2.2.1
222
2.2.3 Definition 9
2.2.4 Definition 10
22,5 Definition 11
2.26 Definition 12
2.2.7 Definition 13
228 Definition 14
2.2.9 Example
2.2.10 Plans
2.2.11 Definition 15
2.2.12 Definition 16
2.2.13 Definition 17

Planning complexity

Conclusion

APPENDIX:A AN EXAMPLE OF PROBLEM SOLVING
6.1 The Yale shooting problem

APPENDIX:B TERMINOLOGIES USED...
7.1 The Causal Calculator

7.2 Classical Logic

7.3 DLV System .

7.4 Fluents

7.5 Situation Caleulus

76 Frame Problem

7.7

Introduction to knowledge state planning in a histor-
ical persective

Planning is an important aspect of Al. So planning capability has alwayx heen a problemn from
the begining itself. A numerous methods have been studied and developed over the decades.
It started with the McCarthy’s proposal in 1950s. As a breakthrough Robinson's resolntion
method laid the basis for dednctive planning and the wellknown situaion calenlus (McCarthy
and Hayes in 1968). But due to some problems like frame problem it lost the popularity, while
STRIPS approach which is a hybrid between logic and procedural computation, gained the
importance. No other logic base planning system was evolved for a long time. Bud then ia the
last 15 years logic base planning celebrated a renaissance as a result of the following.

e Solution to the frame problem was found. So the situation caleulus led COLOG planning
language by Toronto group.

¢ Planning problems were formulated as logical satisfiable problems.(Kantz and Selmen in
1992). It was possible to solve large problems which can’t be solved cven by specialized
planning system. It led to the efficient blackbox planning system. At the same time
planning problems were reduced to be solved using logic programning, model checking
and boolean formulas. '

e Planning was brought as a task in logic base languages for reasoning ahout actious. It led
to the causal calculator(CCALC) and the C plan system which is hased on important ¢
action language.

Answer set programiming was proposed as a tool for problem solving. In this, plaiming proliems
are formulated in a domain independant planning language and are mapped to logic program
such that answer set of the program give the solution to the planning problew. Planters can
be created this way to support expressive action descriptive languages by the use of efficient
answer set engines like Smodel or DLV. This suggestion is pursued to develup this I language.
[t's named K to emphasize that this language describes states of knowledge where as the other
languages like C were based on classical logic and described the states of world. A state of
the world is characterize by the truth values of fluents. That is in a predicate deseribing the
relevant properties of domain of discourse, fluents have to take either true or false. Accordingly
an action is taken if the precondition is true in the current state. Bnt iu reality, planning
agents don’t have a complete knowledge. So number of fluents are unknown. But a decision
has to be taken based on this. To overcome this this language K adopts & three valued view of
fluents, in which their values can be true or false or unknown. So planning based on complete
knowledge is taken as a special case. It is closer in spirit to answer set semantics whereas the
other planning languages stick to classical logic. This is useful when dealing with incomplete
knowledge. K doesn’t adopt possible world’s view of knowledge states and reason about possible
cases for determining knowledge state transitions. Futhermore computaional complexity of K
is analysed, which provides a platform for theoritical DVLk implementations. It is a powerful
deaclarative planning system.

Language K

Symtax and semantics of the laguage K is discussed in detail here.

2.1 Basic syntax
2.1.1 Actions, Fluents and Types

Let E(act),E(fl) and E(typ) be disjoint sets of action, fluent and type respectively, These names
are effectively predicate symbols associated with arity(>= (). Here E(act) and (1) are nsed
to describe dynamic knowledge and E(typ) is used to describe static backgrowned kuowled ge.
We tacitly assume E(typ) contains built in predicates in particular equality (="} which sre not
shown. Furthermore let E{con) and E(var) be disjoint sets of constant and varishie syiihols
respectively.

2.1.2 Definition 1

«iven P is an element of E(act) {respectively E{fl}, E{typ)}, an action (respectivoly iluent,
type) atom is defined as p{tl....tn) where n is the arity of p and t1,.....tn are all cloments of
E(con) or E{var). An action (respectively fluent, type) literal is an action (respectively fluent,
type) ator a or it's negation -a where - is the negation symbol. An usual a literal is ground if it
doesn’t contain any variable. Given a literal | let -] denote it’s complement, that is -1=a if l=-a
. and -l=-a if I=a, where a is an atom. A set L of literals is consistant if L intersection -l. is an
empty. set. Further L.+ and L- indicate set of positive and negative literals in L respectively.
Set of all action literals is denoted by L(act). Same way for fluent and type as well. Further
L{act,fl) is the union of L{act) and L(fl). And L(dyn) stands for dynamic literals. L{dyn) L)
union L{act)+

2.1.3 Definition 2

Action and fluent declarations are of these forms. p(X1,.....Xn) requires t1,...11. Where p is
the element of L{act)+ or L(fl)+ accordingly. X1,....Xn are elements of I5(var). Where nr >= 0
is the arity of p. t1,....tm are elements of L{typ), m >= 0, and every Xi occures in t1,... tm. I
m=(} the keyword requires may be ommited. In the following we generically refer to action anc
fluent declarations as type declarations when no further distinction is necessary. Next cowes
the definition of causation rules, by which static and clyna.lmc dependencies of one [luents on
other fluents and actions are specified. :

2.1.4 Definition 3

Causation rule is an expression of the form cansed fif bl,...,bk, not bk-+1,....not bl after al,.._am,
not am+1,...,not an. where f is an element of L(ft) union false. bl,...,bl are elements of L{{l.lyp),
al,..an are elements of L. 1>= &k >= 0 and n>= m >= 0. Rules when n=0 arc referred to as
static rules and all others are dynamic rules. When 1=0 the keyword if is omitted. Likewise
when n=0 the keyword after is omitted. If l=n=0 then caused is optional. Ti access the parts

of the causation rule r the following notations are used. h(r}={f},post+(r)={bl,....bk}.post-
- (r)={bk+1,...,bl},pre=-(r)={al,...,am} pre-(r) ={am+1,...,an}, and lit(r)={{,bl,...,bl,al,...,an}.
Intmtlvely pre+(r) accesses the state before some actions happen, and post-+(r) the part after
the action has been executed. While the scope of general static rules is over all knowledge
states, it is often useful to specify rules only for the initial states.

kS

.5 Definition 4

- An initial state constraint is a static rule of the form as mentioned in the previous definition
'preceeded by keyword initially. K also allows STRIPS like conditional execution of actions,
where k allows several alternative executability conditions for an action. This is beyond the
standard STRIPS notion. :

2.1.6 Definition 5

An executability condition is an expression of the form executable a if bl,...bk not bk i 1.... not
bl where a is an element of L{act)+ and bl,...,bl are the elements of i, and I>= L »= (.
If 1=0 keyword "if’ is skipped. Given an executahility condition e, we access its purts with
hie} = {a}, pre+{e}=1,...,bk}, pre-(e)={bk+1,...,bl}, and litle) = {abi,.,bl}. Intuitively
pre-(e) refers to the state at which some action’s suitability is evaluated, here as opposed
to causation rules a state after the exexcution os actions is not considered. 8o no part of
post—(r) is needed, Neverthless post-+(e)=post-(e)=NULL is defined for convevience. For any
executability condition initial state constraint r is defined as post{r)= post.i (r} union post-(r),
pre(r)=pre+{r) union pre-(r}, and b{r) = b+(r) union b-(r), where b+ (r) = post +(r) nnion
pre-+(r), and b-(r) = post-(r) union pre-(r}. Consider an example, where L(typ) = {rs}, E(f)
= {f}. and E{act) = {ac}):

¢ dl: f(X} requires -#{X,Y). s(Y,Y).

e d2: ac(X.Y) requires s(X.Y)

* rl: caused f(X) if s(X,X). not -(X) afte ac(X,Y), not -r(X,X).

* el: executable ac(X,Y) if 5(Z,Y), not f(X), Z<> V.

Then we have h(r1)={f(X)}, pre(rl)={ac(X,Y), -1(X,X)} and post(r1)={s(X,X), -f{X}}. Fur-
ther h(el)=ac(X,Y)} and pre(el) = {s(Z,Y), f(X), Z <> Y'}; Safety restriction all rules have to
satisfy some sysnctactic restrictions, which is similar to notion of safety in logic programs. All
variables in a default negated type literal must also oceur in some literal which is not a defanlt
negated type literal. Thus safety is required only for variables appearing in default negated
type literals, while it is not required at all for variables appearing in fluent and action literals.
The reason is that the range of the latter variables appearing in fluent and action literals. The
reason is that the range of the latter variables is implicitly restricted by the respective type
. declarations. Observe that the rules in the previous examples are safe,

Planning domain and planning problems Consider any pair (D,R) where 1D s S.linite set
of action and fluent declarations and R is a finite set of safe causation riles, safe initialstate -
constraints, and safe executability conditions, an action description.

2.1.7 Definition 6

A planning domain is a pair PDD = (n,AD), where n is a Datalog programn over the literals
of L(typ) (background knowledge)which is assumed to be safe in a standard LP sense and
to have a total well founded model, and AD is an action description. We say that °D is
positive. if no default negation occurs in AD. If program n has a total well founded model
M. then M is the unique answer set of n. In particular each stratified program n has a total
well founded model. The semantic condition of a total well founded model admits a fimnited
Wse of unstratified negation, which is convenient for knowledge representation purpoeses, and
i particular for expressing default properties. Planning domains represent the universe of
discourse for solving concrete planning problems, which are defined next.

1.8 Definition 7

A planning problem p=(PD,q) is a pair of planning domain PD and a query q, where a query
ia an expression of the form

gl,....gm, not gm- 1,...,not gn ? (i)

where gl,....gn are elements of L(A) are variable free, n>= m >= 0, and i >:= 0 denotes
the plan length. '

2.2 Semantics

For defining the semantics of K planning domains and planning problenis, we start with the
preliminary definition of the typed instantiation of a planning domain. This is sinilar to the
grounding of a logic program, with the difference being that only correctly typed fluent and
action literals are generated.

2.2.1 Typed instantiation

Let substitutions and their application to syntactic objects be defined as nsual (i.c., assigmuents
of constants to variables that replace the variables throughout the ol jects).

2.2.2 Definition 8

Let PD = (n, (D,R)} be a planning domain, and let M be the (unique) answer set of u [CGelfond
and Lifschitz 1991]. Then, O(p(X1,. ... Xn))is a legal action (respectively, (luent) instance of
an action (respectively, fluent) declaration d element of D of the form (1), if QO is a substitution
defined over X1, . . . | Xn such that {O(t1),. . ., O(tm)} ? M. By Lpd, we denote the set of all
legal action instances, legal Auent instances (also referred to as positive legal Hueut. instances)
and classically negated () legal fluent instances (negative legal Auent instances). Based on this,
we now define the instantiation of a planning domain respecting type inforination as follows.

2.2.3 Definition 9

For any planning domain PD = (n, (D,R)) its typed instantiation is given by PD(down)=(n{down),
{(D,R(down)} where n(down) is the grounding of n (over E(con)) and R(down) = {O(r} - r
element of R, O element of @ }, where @ is the set of all substitutions O of the variables in v
using E(con}, such that lit(O(r)) intersection L{dyn) is a proper subset of Lpd. lu other words,
in PD(down) we replace n and R by their ground versions, but keep of the latter only rules
where the atoms of all fluent and action literals agree with their declarations. We say that a _
PD = (n, (D,R) is ground, if n and R are ground, and moreover that it is well typed, if PD
and PD(down) coincide.

2.2,4 Definition 10

A state with respect to a planning domain PD is any consistent set s proper subset of L{R)
intersection Lpd of positive and negative legal fluent instances. A tuple t = (5,A.8') where s, &’
are states and A a proper subset of L(act) intersection Lpd is & set of legnl action instances in
PD is called a state transition. Observe that a state does not necessarily contain either f or f
for each legal instance f of a fluent. In fact, a state may even be empty {s = NULL). The empty
state represents a .tabula rasa. state of knowledge about the fluent values in the planning
domain. Furthermore, in this definition, state transitions are not constrained.this will he done
in the definition of legal state transitions, which we develop now. To ease the intelligibility of

semantics, we proceed in two steps. Let us first define the semantics for positive Ipleum'ing'"
problems, i.e., planning problems without default negation, and then we define the semnties
f general planning domains by a reduction to positive planning domains. In what follows, we
“assume that PD = (n, (D,R)) is a ground planning domain that is well typed, and that M is
the unique answer set of n. For any other PD, the respective concepts arve defiued through its
typed grounding PD(down).

2.2.5 Definition 11

A state s0 is a legal initial state for a positive PD), if s0 is the smallest (under inclusion) set
such that post{c) a proper subset of s0 union M implies h{e) is alse a proper subsrt. of s, for
all initial state constraints and static rules c is an elemet of R . For a positive PIY and a state s,
aset A is an element of L(act)+ is called executable action set with respect to s, if for cach a
element of A there exists an executability condition e element of R such that h(e) = {a}, pre(e)
intersection L{fl,typ) a proper subset of s union M, and pre(e) intersection L.{act)-+ a proper
i _ subset of A. Note that this definition allows for modeling dependent actions, that is. actions
£ 3 that depend on the execution of other actions.

2.2.6 Definttion 12

Given a positive PD, a causation rule r element of R is satisfied by a state 8’ with respect to a
state transition t = (s,A,8’) if and only if either h{r) a proper subset of &’
 false} or not all of (i).(iii) hold: (i) post(r) a proper subset of " union M, {ii) pre(r) interseetion
" L{fl,typ) a proper subset of s union M, and (iii) pre(r) intersection L(act) is a proper subset of
A. A state transition t = {s,A,8’) is called legal, if A is an executable action set with respect to
s and 5° is the minimal consistent set that satisfies all cansation rules in R except initial state
constraints with respect to t. The above definitions are now generalized to s well typecd gronnd
'PD containing defanlt negation hy means of a reduction to a positive planning domain, W hich
is similar in spirit to the Gelfond.Lifschitz reduction [1991].

2.2.7 Definition 13

et PD be a ground and well-typed planning domain, and let t = (5,A,5") be a state transition.
-"_*!l hen the reduction PDt= (n, (D,Rt}) of PD by t is the planning domain where Rt is obtained
girom R by deleting (1) every causal rule, executability condition, and initial state constraint r
Blement of R for which either post-(r) intersection {8’ union M) t= NULL or pre-(r) interscction
union A union M) != NULL heolds, and (2} all default literals not L (L, element of L} from
e remaining r element of R . Note that PDt is positive and ground. Legal initial states,
utable action sets, and legal state transitions are now defined as follows.

$2.2.8 Definition 14
Let PD be any planning domain. Then, a state 50 is a legal initial state, if 50 is a legal initial
state for PDt , where t = (NULL, NULL, s0); A set A is an executable action set in P with -

Tespect to a btate s, if A is executable with respect to s in PDt with t = (s,A.NULL}); aad, a
Btate transition t = (s,A,5") is legal in PD, if it is legal in PDt .

2.2.9 Example

Reconsider the type declarations d1 and d2, eausation rule r1 and executability condition el in
_the previous example. Suppose E(con) contains two constants a anrl b, and that tll(hackgronnd
- knowledge = has the following answer set: M = {-r(a, b), r(b, a), s{a, a), s(a, b),. s(b, b})}.

Then, for example, f(u) is a legal fluent instance of d1, f(X) requires - (X, Y), s(Y, Y). where

5 !

={X=8aY= b} Snmﬂaﬂy,ﬂ'c‘[b)Y uegal ‘action instance of declaration -d2 ~aie(

Y) requires 8(X, Y). where O = {X = a, Y = b}. Thus, f(a) and ac(a, b) belong to Lpd.
The empty set 80 = AE is a legal initial state, and in fact the only onc since there are no
initial state constraints or static causation rules in PD, and thus also not in Pt for every t =
(NULL, NULL, s0). The action set A = {ac(a, b}} is executable with respect to 80, Hillt.'t‘ for
t = (s0,A,NULL), the reduct PDt contains the executability condition e=1: execntable ne (.,
b} if s(a, b), & <> b. and both s(a, b) and a <> b are contained in s0 union M. Thus, we can
easily verify that t = (30,A 1), where A = {ac(a, b}} and s1 = {f(a)} is & legal state trausition:

PDt contains a single causation rule '
r=1: caused f(a) if s(a. a} after ac(a, b). _
which results from v1 for O = {X = a, Y = b}. Ulearly, 51 satisfies this rule, as W(rl’) is
proper subset of s1, and s1 is smallest, sinee s(a. a) is an element of M and ac(a. b} clement
of A holds. On the other hand, t = (80,A"s1). wheve A’ = {ac(a, h), ac(h, 1)} is not a legal
transition: while ac(b. b} is a legal action instance. there is no executability condition for it in
PD(down)t, and thus ac{b, b) is not executable in PI} with respect to s0.

2.2.10 Plans

After having defined state transitions, we now formalize plans as suitable sequences of states
transitions which lead from an initial state to some snceess state which satisfies a given goal.

2.2.11 Definition 15

A sequence of state transitions T = ((s0.A1,51), (s1,A2,52), . . ., {sn-1,Ansn) w == (L is w
trajectory for PD, if s0 is a legal imitfial state of P and all (si-1,Aisi), 1 <= ¢ <= n, arc legal
state transitions of PID. Note that in particular, T = () is empty if n = (.

2.2.12 Definition 16

Given a planning problem p = (PD, q), where q has form (4), a sequence of action sets (A1,

, Ai), 1 >= 0, is an optimistic plan for I, if a trajectory T = ((s0,A1,81), (81, A2, s2),

, (si-1, Ai , si)) in PI) exists such that ‘I establishes the goal, that is, {g], .

gm} a proper subset of si and {gm+1, gn}.intersection si = NULL. The notion of

optimistic plan amounts to what in the literature is defined as .plan. or wlid plan. ete. The

term .optimistic. shonld stress the credulous view nuderlying this definition, with respect to

planning domains that provide only incomplete information about the initial state of affairs

and/or bear nondeterminism in the'action eflects, that is, alternative state transitions. In such

domains, the execution of an optimistic plan P is not a guarantee that the goal will be reached.
We therefore resort to secure plans (alias conformant plans), which are defined as follows.

2.2.13 Definition 17

An optimistic plan (Al, . . . , An) is a secure plan, if for every legal initial state w) and
trajectory T = ((s0, AL, s1), . . ., (si-1, Aj, 8})) such that 0 <= j <= u, it holds that (i) if |
= n then T establishes the goal, and (ii) if 7 < n. then Aj +1 is executable in 4j with respeet to
PD, that is, some legal transition (s , Aj+1. sj- 1) exists. Ohserve that plans admit in general
the concurrent execution of actions at the same time, However, in many coses, the concusrent
execution of actions may not be desired {and cxplicitly prohibited, as discussed below). and
attention focused to plans with one action at a time. More formally, we call a plan (Al

An) sequential (or nonconcurrent), if mod of Aj >= 1. for d]l 1<=j7<=u.

¢
N

gy

B

Knowledge representation in K

In this section, the use of K for modeling planning problems is explored Ly examples. Special
attention is given to features and technigues which distingnish K from similar langnages.

3.1 Deterministic Planning with Complete Initial Knbwledge

We first study a simple setting in which the planning domain is not subject to nondeterminism
and the planning agent has complete knowledge of the initial state of affairs. For later reference,
we formally introduce the following notion.

3.1.1 Definition 1

Let PD be a planning domain. Then, a legal transition {s, A, s1) in PD is detevmined, if 51 =
52 holds for every possible legal transition (s, A, s2) (ie., executing A on s leads to a wnique
new state). We call PD deterministic, if all legal transitions in it are determined. Consides
first the planning problem depicted in Figure 1, which is set in the blocksworld. This problem
illustrates the famons Sussman anomaly [Sussman 1990]. We will first deseribe the planuing
domain PDbwd = (nbw, (Dbwd , Rbwd)) of blocksworld. It involves distinguishahle hlocks
and a table. Blocks and the table can serve as locations on which other blucks can he pnt (a
block can hold at most one other block, while the table can hold arbitrarily many blocks). We
thus define the notions of block and location in the background knowledge nhw as follows:
block(a). block(b). block(e).

location(table).

location(B) : - block(B).

For representing states, we declare two fluents in FDbwd : on states the fact that some block
resides on some location, occupied is true for a location, if its capacity of holding hlocks is
exhausted. '

fluents : on(B, L) requires block(B), location(L). occupied(B} requires location(8).
Only one action is declared in ADbwd : move represents moving a block to some

location (implicitly removing it from its previous location).
actions : move(B, L) requires block(B), location(L).

Let us now specify the initial state constraints IRbwd . For the initial stafe, occupicd does
not have to be specified, as it follows from knowledge about on. Note that only positive tacts -

_are stated for on, nevertheless the initial state is unique because the fluent on is interpreted
under the closed world assumption (CWA) [Reiter 1978], that is, if on(13, L) docs not hold, we

assume that it is false.

initially : on{a, table). on(b, table). on(c, a). :

Next, we specify causation rules and executability conditions CRbwd . First a static rite is
given, defining occupied for blocks if some other block is on them.

‘always : caused occupied(B) if on(B1, B), block{B).

A move action is executable if the block to be moved and the target location are distinct {(a
block cannot be moved onto itself). A move is not executable if either the block or the target
location is occupied.

executable move(B, L) if B <> L.’
nonexecutable move(B, L) if occupied(B).
nonexecutable move(B, L} if occupied(L).

The action effects are defined by dynamic rules. They state that a moved biock is on the
target location after the move, and that a block is not on the location on which it resided hefore
it was moved.

caused on(B, L) after move(B, L).

caused - on(B, L1) after move(B, L), on{B, L.1), L. <> L1.

Next we state that the fluent on should stay true, nnless it becomes false explicitly. Note that
we need not specify this property for uccupied, as it follows from on via the static rue.
inertial on{B, L).

It is worthwhile noting that in this exampie the fluents are represented positively aad their
negation is usually implicit via the closed worid assumption. Therefore, for example we do not
need to declare -on(B, L) as inertial. There is one exception in a rule describing a negative
action effect: Here, the negation becomes known explicitly, and its purpose is the termination
of the inertial truth of an instance of on. However, we do not need to remyember this negative
knowledge by inertia. In this sense, K allows to formalize forgetting. about information, snch
that we can keep only the necessary. information in the domain of discourse,

In order to solve the original planning problem, we associate the following gonl ¢hwd for
plan length 3 to PDbwd , yielding Pbwd :
goal : on(c, b), on(b, a), on(a, table) ? (3)

Pbwd allows a single sequential plan of length 3:

({move(c, table)}, {move(b, a)}, {move(c, b)})

Thus, the above plan requires to first move ¢ on the table, then to move b on top of a, and
finally, to move ¢ on b. It is easy to see that this sequence of actions leads to the desired goal,
Since this domain is deterministic and has a unique initial state, all optimistic plans are also
secure. We remark that the above representation is tailored for sequential planning, since the
executability conditions do not take possible parallel movés properly into account. For example,
moving the same object to different locations would have to be excluded, if parallel moves were
allowed,

e

g 30

3

" In the example of Section 3.1, it is assumed that the initial state is correct (with respect to -

"I.2 Planning with Incomplete Initial State Descriptiong =

the domain in question) and fully specified (thus unique). In this section we explore how these
implicit requirements can be weakened. As an accompanying example problem, suppose that
there is a further block d in the original planning problem of blocks mentioned firsl The exact
location if d is unknown, but we know that it is not on top of c¢. Furthermore, there is a
slightly different goal involving d. The problem is depicted in second exainple. We will define a
corresponding planning domain PDbwi = ((nbwi , (Dbwi , Rbwi)) by extending PDbwd . The
additional knowledge about the initial state is represented by adding -on(d, ¢). to IRbwi . and
the background knowledge nbwi is obviously enriched by the fact block(d).

Let us first consider the necessary extensions for handling cases in which the initial state
description cannot be assumed to be correct (e.g., when completing the partial initial state
description, incorrect initial states can arise). The following conditions should be verified for
each block:

e {i) It is on top of a unique location,
e (ii) it does not have more than one block on top of it, and

e (iii) it is supported by the table (i.e., it is either on the table or on a stack of Dlocks that
is on the table) [Lifschitz 1999b].

It is straightforward to formulate conditions (i) and (ii) and include them into [IRbwi: initinlly :
forbidden on(B, L), on{(B, L1}, L. <> L1. forbidden on(B1, B), on{B2, B}, block(13}. B1 < B2
For condition (iii), we add a fluent supported to FDbwi , which ghould he trne for any block ina
lega! initial state: fluents : supported(B) requires block{B). We add the definition of supported
and a constraint stating that each block must be supported to IRbwi .
initially : cansed supported(B) if on(B, table).
caused supported(B) if on(B, B1), supported(B1).
forbidden not supported(B). _
Any planning problem involving the domain defined so far does not admit any plan if the initial
state is either incorrectly specified or incomplete in the sense that not all block locations are
known (as supported will not hold for these blocks). Note that the action move preserves the
properties (i), (i), (iii) above for sequential plans; it is therefore not necessary to check these
properties in all states if concurrent actions are not allowed. Next we show how incomplete
initial states can be completed in K. To this end, we use the keyword total (defined hefore},
and simply add total on{X, Y). to [Rbwi . In this way, all pessible completions with respeet to
on(X, Y) serve as candidate initial states, only some of which satisfy the initial state constraints,
making them legal initial states. For example, the state in which on(d, a) holds is not legal
as the constraint which checks condition (i) is violated. Finally, let us consider the plauning
problem Pbwi = (PDbwi , qbwi), where qbwi is
goal : on(a, c), onfc, d), on(d, b), on(b, table) ? (i)
Usually, when dealing with incomplete knowledge, we look for plans which establish the goal
for any legal initial state (in this particular case cagse no matter whether on{d, b) or on(d. table)
holds), so we are interested in secure plans. The following secure sequential plan exists for Phwi
and j = 4: ({move(d, table)}, {move(d, b)}, {move(c, d)}, {move(a, c)}).

1t is easily verifiable that this plan works on each legal initial state: Since d-is not oeenpied
in any legal initial state, the first action can always be executed. In some cases, one is interested
in a plan that works for some possible initial state: For Pbwi , an optimistic plan exists for j
=2
({move(c, d)}, {move(a, c}}).
It works only for the initial state in which on(d, b) holds, and fails for all other admissible
initial states. Hence, it is not a secure plan. ‘

Planning complexity

The results on the complexity of planning in K are related to several results in the planning
literature. First and foremost, planning in STRIPS can be easily emulated in K plauning
domains, and thus results for STRIPS planning carry over to respective planning problems in
K, in particular Optimistic Planning, which by the results in Bylander [1994] and Erol et al.
[2000] is PSPACEcomplete. As for finding secure plans (alias conformant or valid plans), there
have been interesting results in the recent literature. Turner [2002] has analyzed in a recent
paper the effect of various assumptions on different planning problems, including conformant
planning and conditional planning under domain representation based ou classical propositional
logic. In particular, Turner reports that deciding the existence of a classical (i.c.. optimistic)
plan of polynomial length is NP-complete, and NP-hard alveady for length T where actions
are always executable. Furthermore, he reports that deciding the existence of a conformant
(i.e., secure) plan of polynomial length is I£ P3 complete, and E P3 hard alreadly for length
1. Furthermore, the problem is reported E P2 complete if, in this terminelogy, the Manning
domain is proper, and E P2 hard for length 1 in deterministic planning donmins. Tuier’s results
match our complexity results, announced in Eiter et al. [2000]; This is intuitively sound, sinee
answer set semantics and classical logie, which underlies ours and his framework, respectively,
have the same computational complexity. Giunchiglia {2000} considered couformant planning
in the action language C, where concurrent actions, constraints on the action effects, and
nondeterminism on both the initial state and effects of the actions are allowed. All these features
are provided in our language K as well. Furthermore, Giunchiglia presented the planning system
C-plan, which is based on SAT solvers for computing, in our terminology, optimistic aud secure
plans following a two-step approach. For this purpose, transformations of finding optimistic
plans and security checking into SAT instances and QBFs are provided. The same approach
is studied in Ferraris and Giunchiglia [2000] for an extension of STRIPS in which part of the
action effects may be nondeterministic. While not explicitly analyzed, the structures of the
QBFs emerging in Giunchiglia [2000] and Ferraris and Giunchiglia [2000] reflect, owr complexity
results for Optimistic Planning and Security Checking

Rintanen [1999a] considered planning in a STRIPS style framework. He showed that, in
our terminology, deciding the existence of a polynomial length sequential optimistic plan for
every totalization of the initial state, given that actions are deterministic, is 5 P2 complete.
Furthermore, Rintanen showed how to extract a single such plan P which warks for all these
totalizations, from an assignment to the variables X witnessing the tmth of a QBF X"Y2
@ that is constructed in polynomial time from the planming instance. Tlms, the associated
problem of deciding whether such a plan P exists is in E P3 . Note that intuitively, checking
suitability of a given optimistic plan is in this problem more difficult than Security Checking,
since only the operability of sorne trajectory vs all trajectories must be checked for each initial
state. However, the problems have the same complexity (E P2hardness for Rintanen’s problem
is obtained by slightly adapting the proof of Theorem mentioned hefore}, and are thus polyno-
mially intertranslatable. Following Rintanen’s and Giunchiglia’s approach, {inding secure plans
for planning problems in K can be mapped to solving QBFs. However, since our framework
is based on answer set semantics, the respective QBFs will be more involved due to intrinsic
minimality conditions of the answer set semantics. Baral et al. [2000] studied the complexity
of planning under incomplete information about initial states in the language A [Gelfond and
Lifschitz 1993}, which is similar to the framework in Rintanen [1999a] and gives rise to proper,
deterministic planning domains. They show that deciding the existence of an, in onr terminol-
ogy, polynomial-length secure sequential plan is E P2 complete. Notice that we have considered
this problem for plans of fixed length, for which this problem is DP -complete and thas simpler.
From our results on the complexity of planning in the langnage K, similar complexity rosults
may be derived for other declarative planning languages, such as STRIPS-like formalising as

10

Rintanen [1999a] and the language A {Gelfond and Lifschitz 1993}, or the fragment of C’
restricted to causation of literals (cf. Giunchiglia [2000]), by adaptations of our complexity
proofs. The intuitive reason is that in all these formalisms, state transitions ave similar in
gpirit and have similar complexity characteristics. In particular, our results on Scewre Planning

- should be easily transferred to these formalisms by adapting our proofs for the appropriate
problem setting.

Lo o

11

5 Conclusion

In the report I've dealt with an approach to knowledge state planning based on nomnonototonic
logic programming. The syntax and symantics of K are also introduced as per defined by the
authors. The usage of K in various problems comprising of incomplete initial states is also
discussed in detail here. In particular I've mentioned how knowledge states inther than workl
states can be represented in planning problems. For the completion the planming e miplexity is
also discussed here,

['ve given an example to enlighten the approach of problem solving usin I8,

'APPENDIX:A AN EXAMPLE OF PROBLEM SOLV-
ING -

" This appendix contains encoding of a well-known planning problem, wlich showld furtler il-
lustrate the practical use of language K.

6.1 The Yale shooting problem

Another example for dealing with incomplete knowledge is a variation ol the fanous Yale
Shooting Problem (see Hanks and McDermott [1987]).We assume heve that the agent has a
gun and does not know whether it is initially loaded. This can be modeled as follows:
fluents : alive. loaded.

actions : load. shoot.

always : executable shoot if loaded.

executable load if not loaded.

caused - alive after shoot.

caused - loaded after shoot.

caused loaded after load.

initially : total loaded.

alive,

goal : -alive 7 (1)

The total statement leads to two possible legal initial states: s1 = {loaded, alive} and 82 = {-
loaded, alive}. With s1 shoot is executable, while it is not with 2. Execenting shoot establishes
the goal, so the planning problem has the optimistic plan =shoot= which is not secnre becanse
of s2.

7 APPENDIX:B TERMINOLOGIES USED...

Here [give a short description of the terms or principles used which may not be familing to the
readers. -

7.1 The Causal Calculator

The Causal Caleulator {CCalce) is a system for representing commonsense kuowledge about.
action and change. It implements a fragimment of the causal logic.

7.2 Classical Logic

Typically, a logic consists of a formal or informal language together witll w dednctive system
and/or a model-theoretic semantics. The language is, or corresponds to, a part of a natural
language like English or Greek. The deductive system 1s to capture, codify, or simiply 1ecord
which inferences are correct for the given language. and the semantics is to captae, codily, o
record the meanings. or truth-conditions, or possible truth conditions, for at least part. of the
langnage.

7.3 DLV System

DLV is a deductive database system, based on disjunctive togic programming, which offers
front-ends to several advanced KR formalisms

7.4 Fluents

A fluent is a function whose domain is the space Sit of situations. If the range of the [uction
is (true, false), then it is called a propositional fluent. If its range s Sit. then it is called a
situational fluent. Fluents are often the values of functions. Tlms raining(x) is 0 Hnent such
that raining{x)(s) is true if anc only if it is raining at the place x in the sitnation s. We can
also write this assertion as raining(x,s) making use of the well-known cipnivalenes between a
function of two variables and a function of the first variable whose value is a function of the
“second variable. '

7.5 Situation Calculus

Situation calculus is an aspect of the logic approach to AL A situation is a snapshot of the world
at some instant. Situations are rich objects in that it is not possible to completely deseribe a
situation, only to say some things about it. From facts about situations and general laws nhout
the effects of actions and other events, it is possible to infer something about futnre situations.

7.6 Frame Problem

The frame problem is described a stubborn difficulty arising in a first-order logic fornmlation,
- the situation caleulus, in specifying which things remain unchanged when veasoning about
changes in a domain. Since then, the frame problem has achieved a famous or rather notorions
reputation in the Artificial Intelligence community as an example of a seeniingly simnple, specific
problem in Al uncovering deeper and even philosophical difficulties for the task of ercating
artificial intelligence. ‘

7.7 Golog Programming Language

It is a new logic programming language called GOLOG whose interpreter antomatically main-
tains an explicit representation of the dynamic world being modeled, on the basis of wser sup-
plied axioms about the preconditions and effects of actions and the initial state of the world.
This allows programs to reason about the state of the world and consider the eflects of various
possible courses of action before committing to a particular behavior.

References
[1] Thomas Eiter and Wdlfmxg Faber, ACM transaction on computaional logic
April 2004, Pages 206-263.
[2] http reference, http:/ Jwww kr.tuwin ac.at /stafffaxel /planning/
[3] http reference, http://www formal.stanford edn/jme/
[4] http reference, htt]);/ /citeseer.ist. psu.edu/update/548838/

[5] http reference, http:// citeseer.ist.psu.edu/eiterQ0planning.html

