	Page 1

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 1 -

.

Seminar Report on

A Vectorizing Compiler for Multimedia
Extension
Submitted By :

Venkateswarlu.N.P.
In Partial fulfillment of requirement for degree of

Master of Techonology(M.Tech)

In

Software Engineering

DEPARTMENT OF COMPUTER SCIENCE

COCHIN UNIVERSITY OF SCIENCE AND TECHONOLOGY

COCHIN – 682 022.

	Page 2

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 2 -

.

DEPARTMENT OF COMPUTER SCIENCE

COCHIN UNIVERSITY OF SCIENCE AND TECHONOLOGY

CERTIFICATE

Certified that the seminar report entitled

A Vectorizing compiler for Multimedia Extension

Is a bonafide record of the seminar presented by

Venkateswarlu.N.P.

Of semester I towards the partial fulfillment of the requirements for the award

of M.Tech Degree in Software Engineering of Cochin University of Science

and Techonology, during the academic year 2005 – 2006.

Seminar Co-ordinator :

Dr. Sumam Mary Idicula, P.hD.

Dr.K.Poulose Jacob, P.hD.

Dcs,CUSAT.

HOD, DCS

CUSAT.

	Page 3

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 3 -

.

ABSTRACT
This Seminar Report, describes an implementation of

Vectorizing Compiler for Intel’s MMX (MultiMedia

Extensions).

This

compiler

would

identify

data

parallel sections of the code using scalar expansion

and array dependence analysis. To enhance the scope

for application of the subword semantics, this

compiler

performs

several

code

transformations.

These

include

strip

mining,

scalar

expansion,

grouping

and

reduction,

loop

fission

and

distribution.

There

after

inline

assembly

instructions corresponding to the data parallel

sections are generated. This compiler uses Stanford

University

Intermediate

Format(SUIF),

a

public

domain compiler tool, for implementation.

The performance of the code generated by this

compiler is evaluated for a multimedia benchmarks.

Initial

performance

results

reveal

that,

this

compiler

generated

code

produces

a

reasonable

performance improvement (speedup of 2 to6.5) over

the

code

generated

without

the

vectorizing

transformations/inline assembly

.

	Page 4

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 4 -

.

Contents
1). Introduction

2). Background

2.1). Dependency Relations

2.2). The SUIF FrameWork

2.3). Intel MMX

3). Vectorization for MMX

3.1). Vectorization process for MMX

3.2). Identification of Data Parallel Sections

3.3). Scalar Expansion and Strip Mining

3.4). Reduction processing

3.5). Loop Distribution

3.6). Code Generation

3.7). Implementation on SUIF Framework

4). Results and Discussion

4.1). Benchmarks

4.2). Experimental Setup

4.3). Comparison with Non-MMX

4.4). Results

5). Related Work

6). Conclusion

	Page 5

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 5 -

.

1). INTRODUCTION ::
Multimedia is the integration

of Visual (video, Images, animation), audio (music,

speech) and textual information. It is basically

information represented in different ways by these

different media data-types. Media Processing is the

decoding, encoding, interpretation, enhancement of

digital multimedia information. This information is

typically in the form of large volumes of low

precision or short data-types. The large volume of

data makes compression a necessary step before

storage. The media processing applications have been

dominating the personal computing domain. They are

* Small native data types

* Large data-set sizes

* Large amount of inherent data parallelism

* Computationally intensive features

* Multiple concurrent media streams

* Large I/O requirements

These applications have traditionally been

supported by special-purpose chips, also known as

media-processors, but with the rise in the fraction

of such applications, it become necessary to enhance

their performance preferably without an increase in

the cost, and hence without the support of a special

hardware.

This high computational demand on short data

types for media applications has been effectively

addressed by modern processors but the introduction

of subword parallelism. Subword parallelism is a

specific instance of data parallelism in which a

	Page 6

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 6 -

.

data word is the data-set. Subword parallelism is

exhibited by instructions which act on a set of

lower precision data packed into a word, resulting

in the parallel processing of the data-set. Most of

the

current

processors

support

64-bit

words,

although Intel X86 processors support 32-bit words,

they have 64-bit floating-point units.

The

word size processors determines the width

of general purpose registers and data-paths for

integer and address calculations.

Inorder

to

support

and

exploit

subword

parallelism,

modern

processors

extend

their

Instruction Set Architecture. These extensions ,

popularly referred to as the multimedia extensions.

e.g., Intel’s MMX (MultiMedia Extension), Sun’s VIS

(Visual Instruction Set), Hewlett Packard’s MAX-2

(Multimedia Acceleration eXtension) and PowerPC’s

AltiVec. Since the same instruction applies to all

data-elements in the word, this is a form of small-

scale SIMD (Single Instruction Multiple Data).

An application written in a high-level

language would not benefit from these extensions to

the ISA, Unless the compiler generates object code

making use of these instructions. Unfortunately,

this has not been the case for subword parallelism.

Vectorization technique, which has traditionally

been used by compilers for vector and SIMD machines,

can be applied for this purpose. In simple terms, a

vectorizing compiler identifies instructions in the

loop, whose successive instances can be executed in

parallel, without affecting the semantics of the

program.

In the absence of compiler support for

subword parallelism, the application programmer is

currently

forced

to

write

his

application

at

	Page 7

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 7 -

.

assembly level, which is both tedious and error

prone.

a). Enhanced System Libraries:

Selected library

routines are hand-coded in assembly to exploit the

extended set of instructions.

b). Macro Calls for Extended Set of -
Instructions :

The system header files define a set of macros

that

provide

a

higher

level

interface

to

the

extended set of instructions.

In

case

of

hardware

supported

enhanced

libraries, the programmer can make use of system

version

of

some

function

calls

which

exploits

subword parallelism within the function. However,

this

loses

out

certain

opportunity

that

a

vectorizing

compiler

can

achieve.

For

example

inlining a function may improve the parallelism and

reduce the function overhead. A compiler may be able

to exploit this enhanced parallelism while inlining

would not be possible in hardware enhanced library

functions

since

the

source

code

would

not

be

available. Using macro calls in program to exploit

subword parallelism require the user to be aware of

the code segment which can be optimized by the

multimedia

extensions

and

the

macros

provided.

Further,

the

code

transformations

have

to

be

performed manually. Lastly, programming with the

macro

calls

is

as

hard

as

with

the

assembly

equivalent.

The above reasons strongly motivate the need for

a vectorizing compiler as a general approach for

exploiting

the

subword

parallelism.

Further

	Page 8

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 8 -

.

supporting

different

architectures

as

well

as

changes in the multimedia instruction set in this

approach would require modifications only to the

code

generation

module.

This

also

allows

easy

portability of the application. Lastly, compiler

support approach makes the process(of Vectorizing)

transparent

to

the

user,

reduce

the

errors

associated with assembly coding and improve the

performance of applications.

This Vectorizing compiler is a source to

source vectorizing

C compiler for Intel’s MMX. The

compiler takes a C source file as input. Variours

code transformations such as strip mining, scalar

expansion, condition distribution are applied. The

output is a C source file, with the data parallel

sections coded in inline assembly. This allows the

rest of the code to be optimized by the native C

compiler.

This

vectorizing

compiler

uses

Stanford

University Intermediate Format (SUIF), a public

domain compiler tool, for out implementation. The

performance of the code generated by this compiler

is evaluated with number of benchmarks (Kernels and

Multimedia applications).

2). Background :
This

section

provides

the

background required to understand the vectorizing

techniques and Intel’s MMX.

2.1). Dependency Relations :
The control flow in a program

is represented by a Control Flow Graph, which is a

directed graph, where each node could be a statement

or a sequence of statements, based on the level of

	Page 9

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 9 -

.

abstraction., and an edge represents a control

transfers

between

a

pair

of

nodes.

Control

dependence, which can be derived from the control

flow graph, restricts the order of execution of

statements in a program. A statement S` may or may

not

be

executed

based

on

the

execution

of

a

statement S. This represents that statement S` is

control dependent on S.

Two statements S and S`

are said to be data dependent if there is one access

each in S and S` to the same location and al least

one of the two accesses is a write. Data dependences

are represented by a Data Dependency Graph whose

nodes are the statements of the program and directed

edges represent dependences. The arcs of the data

dependency graph are classified as Forward and

Backward arcs. An arc or dependency from S to S` is

said to be lexically forward when S1 follows S in

the program order and is said to be lexically

backward when S follows S` in the program order.As

long

as

the

control

flows

along

the

program

sequence, the dependence arcs will be lexically

forward but control transfers against the program

sequence, as in the case of a loop, can introduce

lexically backward arcs. Consider the example code

below, for(i=1; i<=N; i++)

for(j=1; j<=N; j++)

s1 :

= A[i-1][j];

s2 : A[[i][j] = . . .;

s3 :

= A[i][j] + . .;

endfor

endfor

In the above example S1 and S2 are Lexically

backward and S2 and S3 are Lexically forward depend.

	Page 10

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 10 -

.

*

DDG
* CFG
In the dependence graph for this code shows, the

arc from S2 to S3 is lexically forward and the arc

from S2 to S1 is lexically backward.

Array elements are typically defined and

used by statements in a loop. These statements are

usually

executed

more

then

once.

It

therefore

becomes necessary to discuss about instances of

execution

of

the

statement.

The

instances

are

identified by an iteration vector.

Index Variable iteration vector :
Iteration

vector

of the form (i1,i2,i3,..,ik), where i1,i2,i3. .are

the values of the loop indicies enclosing the

statement, ordered from outer to inner. In the

previous example the (normalized)iteration vectors

for

statement

S1

are

(1,1),(1,2),

.

.,(1,N),(2,1),(2,2),. .,(2,N),(N,1)..(N,N).

Consider the data dependence from S2 to S1 in

the example. It can be seen that the dependence

S1

S3

S2

S1

S2

S3

Lexically backward

Lexically forward

	Page 11

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 11 -

.

would not have been present in the absence of the

enclosing loops. Such dependence are said to be

loop-carried.

2.2). The SUIF Framework :
The

compiler

research

community

has

a

great

need

ofr

compiler

infrastructures on which new techonology can be

implemented and evaluated. SUIF(Stanford University

Intermediate Format) compiler system is a platform

for

research

on

compiler-techniques

for

high-

performance machines. SUIF is a research compiler

used for experimenting and developing new compiler

algorithms. It fosters code reuse, sharing, and

modularity. The compiler is structured as a small

kernel

plus

a

toolkit

consisting

of

various

compilation analysis and optimizations built using

the

kernel.

The

kernel

performs

three

major

functions :

* Defines an intermediate representation of

programs : The program representation is designed to

support

both

high-level

program

restructuring

transformations as well as low-level analyses and

optimizations.

*

Supports

a

set

of

program

manipulation

primitives : These routines are used for performing

several transformations.

* Structure the interface between different

compiler passes : Compilation passes are implemented

as separate programs that communicate via files,

termed as SUIF files. SUIF files always use the same

output format so that passes can be reordered simply

by running programs in a different order. Different

	Page 12

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 12 -

.

passes can communicate by annotating the program

representation.

The SUIF kernel provides an Object-Oriented

implementation of the SUIF intermediate format. The

intermediate

format

is

a

mixed-level

program

representation. Besides the low-level constructs

such

as

SUIF

instructions,

this

representation

includes

three

high-level

constructs:

loops,

conditionsal

statements,

and

array

access

operations.

PASSES :
Scc, is the driver for the SUIF ANSI C

Compiler.

Porky, makes various transformations to the SUIF

code. The purpose of the transformations could

either

be

to

allow

subsequent

passes

to

make

simplifying assumptions, such as the assumption that

there are no branches in a loop body or try to

rearrange the code to make it easier for subsequent

passes to get information without getting rid of any

particular construct.

S2c, to read the specified SUIF file and print-

out

its

translation

into

the

standard

C

language.This passes is augment with inline assembly

code for data parallel sections.

2.3). Intel MMX :
This section gives an overview

of

Intel’s

MMX(Multimedia

Extension)

and

its

different facets, namely the register stack, the

adta

stack,

the

data

types

supported

and

the

instruction set.

	Page 13

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 13 -

.

2.3.1). Multimedia Registers : The MMX register

set consists of eight 64-bit registers, aliased onto

the registers of the floating-point register stack.

MMX instructions access these registers directly

using the register names MM0 through MM7. while

operating in the MMX mode, the aliasing mechanism

would ensure that accessing these registers as

floating point units would result in NaNs(Not a

Number).

2.3.2). Multimedia data types : Intel has

introduced

the

following

new

64-bit

quantities*Packed Bytes : Eight bytes packed into

the 64-

bits.

*Packed Words :Four 16-bit words packed into 64-

bits.

*Packed Double-Words: Two 32-bit double-words

packed 64-bits.

*Quad word : One 64-bit quantity.

2.3.3). MMX Instruction set : The MMX instruction

set can be classified as

Data Transfer Instructions : The MOVD and MOVQ

instructions move packed data(respectively 32 and 64

bit data) between MMX registers and memory or

between MMX registers and themselves. The 32-bit

data transfer instructions always more the low-order

32bits of the MMX register. The register-to-register

version of the MOV instruction implementation the

operation of moving data between MMX and integer

registers.

	Page 14

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 14 -

.

Arithmetic
Instructions
:

These

instructions

include introduction to perform add, subtract, and

multiply on packed operand types.

Comparison
Instructions
:

These

instructions

independently

compare

all

the

respective

data

elements of the two packed data types in parallel.

They generate a mask of 1’s and 0’s depending on

whether the condition is true or false. These masks

can then be used by logical instructions to select

elements.

Logical Instructions : these perform logical

operations on quard registers.

Shift Instructions : MMX implements two versions

of logical left, right and arithmetic right shift

operations.

Conversion Instructions : These convert data-

elements in packed registers.The execution of the

multimedia instructions to exploit data parallelism

on the subwords in the multimedia registers. This is

referred

to

as

subword

parallelism

or

subword

semanitics.

3). Vectorization for Multimedia Extensions :
Vectorization has traditionally been used

for vector and SIMD machines. Compilers for

personal computers have never found a need for

these techniques. The introduction of the subword

model has however changed the situation and forced

the review of vectorization techniques.

	Page 15

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 15 -

.

3.1). Vectorization for MMX : The Compiler was

implemented on the SUIF compiler framework. The

compiler has been structured as a set of passes. The

application is converted into SUIF intermediate

format and the passes are applied on the

intermediate format. A overview of the vectorizing

compiler is given

* Overall process of Vectorizing Compiler

The motivation example for understanding the

vectorinzing compiler is below

for(i=1; i<=N; i++)

for(j=1; j<=N; j++)

for(k=1; k<=n; k++)

C1 : if(A[k-1]==. .)

S1 : A[k] = test +..;

S2 : test = . . ;

Endfor

‘C’

scc

porky

Condition

distribution

Scalar

expansion

Strip mine

Dependency

graph

Reduction

processing

Loop

distribution

S2c

CFG

‘C’

Inline assembly

	Page 16

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 16 -

.

S3 : B[i][j] = B[i-1][j]+test;

Endfor

Endfor

* Motivating Example

3.2). Identification of Data Parallel sections :
What

statements

can

be

executed

in

parallel using the subword semantics?.

Assume S1(in conjunction with C1) is executed using

subword

semantics

i.e.,

operands

of

successive

instances of S1 are packed in multimedia registers

and are operated in parallel upon by multimedia

instructions. When these operations are executed in

parallel, it can be seen that certain instances of

C1 would make use of the wrong value of A[k-1]. This

is due to the fact that the kth instance of C1 is

executed in parallel with the (k-1)th instance of

S1, instead of waiting for it to complete and

produce the required result, i.e A[k-1].

Clearly, S2 cannot be executed in parallel using

subword semantics since successive iterations write

to the same location test, and hence when performed

in parallel would result in an inconsistent state of

the memory location. This is a case of output

dependence between the successive instances of

statement S2. On the other hand, S3 access the same

memory location only in successive iterations of i.

Hence instances involving successive iterations of

j(and same iteration of i) can be executed in

parallel. Thus the aim of this phase is to identify

the statements which could be executed in parallel

without violating the semantics of the program.

	Page 17

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 17 -

.

Only a singleton SCC that is not self-dependent is

a candidate for exploiting subword parallelism. The

presence of a self-dependence arc indicates that

successive instances cannot be executed in parallel.

In identifying SCCs in the dependence graph, and

hence vectorizable loops, we must take into account

the

fact

that

due

to

the

domain

constraint.

Statements in a conditional body are executed based

on the conditional test. Such a statement S when

pulled out of the loop, must be pulled out in

conjunction with the test condition. Any lexically

backward dependence between the statement and test

would therefore be equivalent to a self-dependence.

In order to facilitate the identification of such

dependence

loops,

condition

distribution

is

performed. As in the case of loop distribution,

control is distributed over the statements of the

then-part and the else-part. Condition distribution

is also known in the literature as IF-conversion.

Implementation :

The Control Flow Graph was constructed using the

Mach-SUIF CFG library support.

The

module

then

builds

the

array

data

flow

component of the data dependence graph.Dependence

vectors are determined for each pair since array

definitions are ambiguous. Based on the level of

dependence, it can be determined if the dependence

is

either

loop-independent

or

carried

by

the

innermost enclosing loop, and in that case, an arc

will be added between the pair of references.

	Page 18

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 18 -

.

For each outer for-loop, the module identifies the

strongly connected component of the data dependence

graph.

Single statement strongly connected components,

which are not self-dependent are annotated as data

parallel. They can therefore be executed using the

subword semantics. Provided the result type is

sufficiently short.

Illustration : Conditional distribution is first

performed on the code, transformation. In Strongly

Connected Component graph where X1,S1, and S2 are

contained in a strongly connected component. Since

there are no singleton SCCs, statements in the

innermost

loops

such

are

not

vectorizable.

Considering level 2 and the appropriate dependence

graph for it, one can find out that statement S3

forms a singleton SCC (without a self-arc) at

level 2. hence S3 can be executed using subword

semantics.

For(i=1; i<N; i++)

For(j=1; j<N; j++)

For(k=1; k<N; k++)

X1 : C1.temp = A[k-1];

S1 : if(c1.temp==..) A[k]=test+..;

S2 : test-..;

Endfor

S3 : B[i][j] = b[i-1][j]+test;

Endfor

Endfor

* Condition Distribution

	Page 19

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 19 -

.

* DDG and SCC

3.3). Scalar Expansion and Strip-Mining :
In

the

figure shown above, it can be seen that S2 can also

be executed using subword semantics but for the

output dependence arc on itself. This arc wouldn’t

have been there if test had been an array reference

indexed through k. Then successive iterations would

write to different memory locations. This is the

idea behind scalar expansion transformation.

Definitions of a scalar variable in a loop results

in an output dependence arc to itself. This arc can

be broken by replacing the scalar variable by an

array, essentially provided each iteration with a

memory location to write on. This is known as

X1

X1

S1

S2

S3

Scc :

x1,s1,s2

Scc:

s3

	Page 20

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 20 -

.

scalar expansion. The scalar expansion of variable

x

is

possible

if

it

satisfies

the

following

constraints:

•

x is the target of atleast one definition : If

this is not the case, there is no gain as no

self-arc is broken.

•

X is not a target of a single statement

recurrence:

A

single

statement

recurrence

involves an anti-dependence and true dependence

arc in addition to the output-dependence arc.

Again, there is no gain from expanding the

scalar

as

true

dependence

would

prevent

vectorization.

•

X is not an induction variable: In this case

the

iteration

index

must

be

expanded

for

correct results. This operation could be quite

costly in our case.

In MMX only a small number atmost 8 operations can

be

executed

in

parallel.

Hence

not

all

the

iterations

of

the

vectorizable

loop

will

be

executed in parallel. These loops must therefore be

portioned

into

smaller

sections

which

can

be

handled in parallel. This is known as strip-mining.

The number of iterations that can be handled in

parallel is equal to the vector length of the

processor. Strip-mining results in a nested loop,

the outer loop with the same bounds as the original

loop, and vector length stride, and the inner loop

performing the iterations corresponding to the

stride. Usually there is also a remainder section,

similar to the inner loop, completing the final

strip.

	Page 21

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 21 -

.

Illustration : Application of the strip-mining

of

the

j

and

k

loops

and

scalar

expansion

transformation to our earlier example results in the

following code. Here VL denotes vector length. The

remainder loop has not been shown in this example

for simplicity. Lastly, due to the fact that S3 is

in a singleton SCC at the j-loop level, and in order

to exploit subword parallelism on S3, the j loop in

strip-mined.

The data dependence graph is shown below ::

X1 : Exp_C1_temp[k-stride_k+1] = A[k-1]

X2 : Exp_C1_temp[0] = C1_temp

X3 : Exp_test[0] = test

S1 : if(Exp_C1_temp[k-stride_k+1]==..)

A[k] = Exp_test[k-stride_k]+..

S2 : Exp_test[k-stride_k+1] = ..

X4 : test = Exp_test[VL]

X5 : C1_temp = Exp_C1_temp[VL]

S3 : B[i][j] = B[i-1][j] + test

X1

X5

S2

S1

X4

S3

	Page 22

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 22 -

.

The data dependency graph is shown in previous page,

Note that the dependence levels for the arcs have

changed due to strip-mining. The broken arc on S2

and the broken arc from S1 to S2 show respectively

the output and anti dependences broken by scalar

expansion. Because of this, S2 is no longer in the

SCC consisting of X1 and S1, and it(S2) forms a

single SCC with no self-arc. Hence the instances of

S2 can now be executed in parallel using the subword

semantics.

3.4). Reduction Processing : To further expand the

scope of statements/loops that can be vectorized,

grouping and reduction techniques are applied.

For(i=0; i<N; i++)

R1 : dotproduct = dotproduct + A[i]*B[i];

Endfor

The statement R1 is an example of a single statement

recurrence, with true and output dependence arc to

itself. The data dependence graph for this example

is shown below

dt`

dt`

* Dependence Graph (a) before and (b) after Reduction

Processing.

Scalar expansion removes the arc associated

with the output dependence but leaves the true

dependence arc and hence the self-loop. This would

R1

R1

	Page 23

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 23 -

.

not help in increasing the scope of parallelism in

the case.

Since addition is associative, the order of

summation does not affect the result, except in case

of overflow. So the data can be portioned and

partial sums can be determined. These partial sums

can be later accumulated into the result. Strip-

mining, which partitions the iterations of the loop

can be used to partition the data. Each iteration of

the inner loop computes different partial sums.

3.5). Loop Distribution :
After the code

transformations,

the

loop

control

can

be

distributed. As mentioned earlier, to enable loop

distribution in the presence of back arcs, the

strongly connected components in the body of the

loop are identified and topologically sorted. This

would result in a graph in which all the arcs are

lexically forward. The loop control can then be

distributed over the strongly connected components.

As mentioned earlier, the single statement strongly

connected components, which are not self-dependent

can be annotated as data parallel instructions.

Implementation : For each outer for-loop,

The strongly connected components are identified

from the data dependence graph.

The strongly connected components are ordered using

topological sort.

* Statements are now reordered so that Statements

belonging to the same strongly connected components

are grouped together in the program order.

*

Strongly

connected

components

are

in

the

topologically sorted order.

	Page 24

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 24 -

.

* Loop control is now distributed over each

strongly connected component.

* Single statement strongly connected components

which are not self-dependent and whose result type

is conducive to subword execution are annotated as

data parallel statements.

3.6). Code Generation : The extensive use of the

C programming language for system applications has

performance

a

necessity

rather

than

a

luxury.

Commercial,

as

well

as

open-source

compilers,

therefore it makes a wide variety of machine-

dependent

and

machine-independent

optimizations.

Therfore it makes sense to use such a compiler to

leverage the scalar optimizations performed by it,

while the vectorizable sections are handled by our

modules.

Hence in this report the inline assembly code is

generated only for the vectorizable sections of the

code. Inline assembly allows the programmer to

introduce assembly instructions in a C-code. The

code generator takes the SUIF abstract syntax tree

file

as

input

and

emits

the

inline

assembly

equivalent of the data parallel code fragments.

Implementation : The code generation phase is

based on expression-tree traversal and involves the

following steps

Perform post-order traversal of the expression

tree.For each node do

If it is a variable symbol, emit instruction to

load the variable into general-purpose register. Pop

a register out of the stack. Move the contents of

the

register

to

the

multimedia

register.

The

multimedia register is the destination register.

	Page 25

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 25 -

.

If it is an array reference instruction, emit

code instruction to load the address of reference

into a general-purpose register. Pop a register out

of the multimedia.

If it is not an array instruction, emit code

corresponding to the instruction, and register value

returned

by

the

children

nodes.

The

register

corresponding to the left chills is the destination

register.

If not left child of its parent, push destination

register back onto back.Return destination register.

3.7). Implementationon SUIF Framework :

The

Techniques

for

identification

of

data

parallel

sections

and

the

different

code

transformations were implemented as Passes of the

SUIF

frame

work.

As

part

of

constructing

the

dependence graphs the CFG library is used. The array

dependence analysis module which uses

the SUIF

dependency library. The S2c pass is modified to

generate the (inlined assembly) code.

These compilation passes are implemented as

separate programs that communicate via SUIF files.

Different passes can communicate by annotating the

program representation.

The

code

transformation

passes

involved

extensive reordering the structures considerably.

Reordering would typically require that the node be

removed from its parent and inserted before or after

another nodes as per the requirement.The internal

mechanism for such a change would be handled by

SUIF.

Limitations :

	Page 26

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 26 -

.

The

compiler

considers

only

for-loops

as

candidates for vectorization. Do-while and while-do

are ignored.

Loop transformations such as loop splitting,

loop interchange, etc are not performed. These

transformations can enhance the vectorizability of

the loop.

The compiler generates some overhead in the form

of unnecessary strip-mining and scalar expansions.

This overhead will be incurred in the absence of a

subsequent pass which can reverse the effect of

unnecessary strip-mining and scalar expansion. It is

known that such reversing would be difficult to

implement.

4). Results and Discussion :
In

this

section

the

performance

of

this

vectorinzing

compiler

is

evaluated.

The

kernels

from

media

processing applications and run them on Intel MMX

architecture and measure their performance. The

reasons

for

considering

kernels

rather

than

multimedia application itself, are as follows,Media

processing

applications

typically

send

a

major

fraction of the execution time on a few small data

parallel

kernels.

Studying

the

performance

improvement in the kernel gives us a direct measure

of how much of the subword parallelism is being

exploited by vectorizing compiler. The complete

applications typically contain sequential and non-

vectorizable code as well as code which operate on

full

words

which

do

not

contribute

to

any

improvement in performance in the MMX architecture,

	Page 27

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 27 -

.

whether they are hand-tuned, or exposed by an

optimizing vectorizing compiler.

4.1). Benchmarks : Benchmark is results of

running a computer program. It gives the performance

difference between to programs or subsystems.

Dissolve, is a video processing application. It

is typically used during the editing of a video

sequence. The application takes two video frames as

input, computes a weighted average of the pixels in

the frame and output a new frame. The new frame can

then be used as a filler between the input frames.

Chroma-Keying,is an image processing utility. It

basically replaces the background of the given image

with an alternate background

Vector dot product is an algebraic computation

common in signal processing applications. The inputs

are two 1-dimensional vectors and the output is the

sum of the product of individual elements of the

vector.

Sum

of

absolute

difference

(SAD),

is

the

processing kernel for motion-estimation algorithm.

Motion

estimation

is

used

in

MPEG-encoder

to

compress

the

input

stream

using

the

implicit

temporal coherence between successive frames of

video. This (SAD) kernel is a key target for

performance improvement through MMX. As a matter of

fact, VIS includes an instruction to perform this

operation.

	Page 28

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 28 -

.

4.2). Experimental SetUp :
The kernels listed above are not computationally

intensive, but are usually invoked several times.The

kernel is compiled by the native compiler(gcc)and

that of the kernel compiled on our vectorizing

compiler. The former is referred to as non-MMX code

as the gcc compiler does not generate MMX extension

instructions. While latter is referred to as the

vectorized code or MMX code. To generate the MMX

code, this compiler passes are applied to the kernel

to get the source code augmented with the inline

assembly instructions. This code is then compiled

with the native compiler gcc, and linked to the main

routine.

Exec. Time for non-MMX code

Speedup = ---------------------------

Exec. Time for Vectorized code

	Page 29

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 29 -

.

4.3). Results and Discussion :
Unoptimized code

Exec. Time (in micro sec)

Kernel

MMX code

Non-MMX

code

Theoretical

Speedup

1). Video Dissolve

2). Chroma-Keying

3). SAD

(Sum of Absolute

Difference).

225.680

904.520

8.856

1460.300

4751.120

47.030

6.47

5.25

5.31

So, the initial results shown that the performance

of vectorizing compiler is approximately 2 to 6.5

time over non-vectorizing compiler.

4.4). Related Work :
SUIF vectorizing compiler is an

implementation of vectorizing techniques on the SUIF

platform. The target architecture is UCB’s Torrent

architecture,

which

is

a

traditional

vector

	Page 30

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 30 -

.

architecture. An optimizer for VIS extension. The

optimizer makes use of the SUIF vectorizing compiler

as its backbone. Code generation had been completed

only

for

parallel

add

and

parallel

contional

copy.Multimedia extensions are exploited in a Java

JIT compiler. A vectorizing compiler for VIS has

been proposed.

The

Sum

of

Absolute

Difference

example,

our

vectorizing compiler is able to perform necessary

code transformation, such as scalar expansion and

reduction. In case of hardware supported enhanced

libraries, the programmer can make use of a system

version of absolute() function.These system enhanced

functions cannot be inlined since the source code

would not be available. On the other hand, using

macro calls requires the user to be aware of the

code

segment

which

can

be

optimized

by

the

multimedia extensions and the macros provided.

	Page 31

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 31 -

.

5). Conclusion :
This

report

presents

the

implementation of vectorizing compiler for Intel’s

Multimedia Extension. This extension is targeted at

the

data

parallel

kernels

of

media

processing

applications. Vectorization techniques, which have

traditionally used by compilers for vector and SIMD

processors, are used by our compiler to extract

subword parallelism from a sequential code. To

enhance

the

scope

for

application

of

subword

semantics,

this

compiler

performs

several

code

transformstions. These include strip-mining, scalar

expansion,

grouping

and

reduction,

and

loop

distribution.

The performance of this compiler can be improved by

extending the vectorization to instruction in the

source code.

	Page 32

A Vectorizing Compiler for MultiMedia Extensions

M.Tech(SE), DCS, CUSAT.

- 32 -

.

6). References :
* Suif Compiler group : An Overview of the SUIF

Compiler System. Stanford university compiler group.

*

Compilers,

Principles,

Techniques

and

Tools,

A.V.Aho, J.D.Ullam, and R.Sethi. Addision-Wesley

Publishing House, reading, MA,1986.

* The SUIF Control Flow Graph Library, Harvard

University, Cambridge, MA,1996.

* SUIF Compiler Group - www-suif.stanford.edu
