Today, there are 1.5 billion television sets in use around the world. 1 billion people are on the Internet. But nearly 3 billion people have a mobile phone, making it one of the world's most successful consumer products. But is it the best u can get from a mobile phone???Can’t it be made better???Cant it be made cheaper??? Building a better mobile phone would enrich the lives of countless people across the globe. A group of mobile and technology leaders with the goal of making a better mobile experience formed The Open Handset Alliance. Each member of the Alliance is strongly committed to greater openness in the mobile ecosystem (i.e. thinking together, working together). Increased openness will enable everyone to innovate more rapidly and respond better to consumers' demands. Their first joint project as a new Alliance is Android. Android is the first open, complete, and free platform created specifically for mobile devices.
Just like writing great services upon free tools like Linux and GNU, and now with android, you will be able to do the exact same thing on your mobile phone
The softwares are free
The source is completely available
And we expect great new powerful applications to be developed on it.
Android is an open software platform for mobile development. It is intended to be a complete stack that includes everything from the operating system, middleware and up through applications.
Open
Android was built from the ground-up to enable developers to create applications that take full advantage of all a handset has to offer. It is built to be truly open. For example, an application could call upon any of the phone's core functionality such as making calls, sending text messages, or using the camera, allowing developers to create richer and more cohesive experiences for users. Android is built on the open Linux 2.6 Kernel. Furthermore, it utilizes a custom virtual machine that has been designed to optimize memory and hardware resources in a mobile environment. Android will be open source; it can be liberally extended to incorporate new cutting edge technologies as they emerge. The platform will continue to evolve as the developer community works together to build innovative mobile applications.
All applications are created equal
Android does not differentiate between the phone's core applications and third-party applications. They can all be built to have equal access to a phone's capabilities providing users with a broad spectrum of applications and services. With devices built on the Android Platform, users will be able to fully tailor the phone to their interests. They can swap out the phone's homescreen, the style of the dialer, or any of the applications. They can even instruct their phones to use their favorite photo viewing application to handle the viewing of all photos.
Breaking down application boundaries
Android breaks down the barriers to building new and innovative applications. For example, a developer can combine information from the web with data on an individual's mobile phone -- such as the user's contacts, calendar, or geographic location -- to provide a more relevant user experience. With Android, a developer could build an application that enables users to view the location of their friends and be alerted when they are in the vicinity giving them a chance to connect.
Fast & easy application development
Android provides access to a wide range of useful libraries and tools that can be used to build rich applications. For example, Android enables developers to obtain the location of the device, and allows devices to communicate with one another enabling rich peer-to-peer social applications. In addition, Android includes a full set of tools that have been built from the ground up alongside the platform providing developers with high productivity and deep insight into their applications.
ANDROID ARCHITECTURE
The Android Operating System Model contains the following layers
Linux Kernel
Android relies on Linux version 2.6Kernel.We use the Linux kernel as the hardware abstraction layer. So if you are an OEM (original equipment manufacturer) trying to bring up android on your device, the first thing you is to bring up Linux and install all your drivers in place. The reason we are using linux is because it provides a proven driver model, and in a lot of cases, existing drivers.it also provides memory management, process management, a security model networking, a lot of core OS infrastructure, etc are robust and have been proven over time.The kernel also acts as an abstraction layer between the hardware and the rest of the software stack.
The next level up is the Native Libraries
Everything that you see here in green is written in C/C++. It is at this level where a lot of the core power of the android platform comes from. I am just going to go through some of the components that are written in here.
· Surface Manager – is responsible for composing different drawing surfaces on to the screen. So it’s the surface manager that is responsible for taking different windows owned by different applications that are running in different processes and all drawing at different times and making sure that all the pixels end up on the screen, when they are suppose to.
· Bellow that, we have two boxes, OpenGL ES and SGL. These two make up the core of our graphics libraries. OpenGL ES is a 3D library and we have a software implementation that is hardware acceleratable if the device has 3D chip on it. The SGL graphics are for 2D graphics and that is what, most of our application drawing is based upon. One interesting thing about android graphics platform is that you can combine 3D and 2D graphics in the same application.
· Moving over, we have the Media Framework which was provided by packet video, one of the members of the Open Handset Alliance and that contains almost all of the codecs to make up the core of the overall media experience. So in there, you will find MPEG4, H.264, MP3, AAC, and all tha audio and video codecs you need to build rich media experience.
· We use Free Type to render our fonts.
· We have an implementation of SQLite. We use that as the core of most of the data storage.
· We have Web Kit as the open source browser engine. It’s the same browser that is powering Google’s chrome and apple’s Safari. It has been re worked to render well on small screens.
Next is the Android Runtime
The main component of the android runtime is the Dalvik VM. The android run time was designed specifically for the android to meet the needs for running is an embedded environment, where you have limited battery, limited memory, limited CPU. The Dalvik VM runs something called dex files, .dex and these are byte codes that are the results of converting at build time, .class and . jar files. So when these files are converted .dex will become a more efficient byte code for running on small processors. They use very less memory, the data structures are designed to do memory sharing efficiently across processes whenever possible and they use a highly CPU optimized CPU interpreter. The end result is that we are able to run multiple instances of the Dalvic VM at the same time across different processes, one in each of several processes. We will see why that’s important in a while.
Applications
Android will ship with a set of core applications including an email client, SMS program, calendar, maps, browser, contacts, and others. All applications are written using the Java programming language.
The next level up from that is the Core Libraries. This is in blue, meaning that its written in the java programming language and the core library contains all of the collection classes, utilities, I/O, all the utilities and tools that you are expected to use.
[bookmark: application_framework][bookmark: runtime]Moving up again, we now have the Application Framework
This is all written in the java programming language and it is the tool kit that all applications use. These applications includes the once that come with the phone, the Home application or the phone application.It includes applications that is written by google, and it includes applications written by you and so, all applications use the same framework and the same APIs.
Again I am going to talk about what the main components are in this layer:
· An Activity Manager that manages the life cycle of applications. It also provides a common navigation backstack so that applications running in different processes can have a smoothly integrated navigation experience.
· Next is the package manager. The package manager is what keeps track of which applications are installed on your device. So if you download a new application and install over the air or otherwise install applications, it’s the package manager that is responsible for what you have and the capabilities of each of your applications are.
· The Window Manager manages windows. Its mostly a java programming language abstraction that is running on top of lower level services provided by the surface manager
· The Telephony Manager contains the APIs that we use to build the phone application that’s central to the phone experience.
· The Content Providers are unique pease of the android platform. that the frame work that enable applications to access data from other applications, or to share their own data. We use that in our Contacts application were you can make use of all the information there like name, phone number, address, email etc on other applications that you may be making and other applications can use that facility as well, to share data.
· A Resource Manager is what we use to store localized strings, bitmaps, and layout file, all of the external parts of an application that aren’t coded.
· The View system contains, buttons and lists. It also handles things like event dispatching, layout, drawing.
· Location manager, Notification manager (A Notification Manager that enables all applications to display custom alerts in the status bar) and XMPP services are some API’s that will allow develop new applications.
[bookmark: libraries][image:]
[bookmark: kernel]
The final layer on top is the applications. This is where all the applications get written. Is includes the home applications, the contacts, the browser, your applications, and everything at this layer is using the same application framework that is provided by the layers bellow.
Now, If you are going to write an application, your first step is to decompose it into the components that are supported by the android platform. Here are the 4 major once.
	APPLICATION BUILDING BLOCKS

	 Activity
	UI component typically corresponding to one screen
Eg. Mail (list your mail, an activity that reads your mail, and compose activity)

	 Intent Receiver
	Responds to notifications or status changes. Can wake up your process
(this is something different. An intent receiver is a way to register some codes that won’t be running, until they are triggered by some external event)

	 Service
	Faceless task that runs in the background
(is a task that doesn’t have a UI. Eg. music player)

	 Content Provider
	Enables applications to share data
(this is a component that allows you to share some of your data with other processes and applications. Any applications can store data in whatever way that make sense for that application. They can store it in files, they can store it in the SQLite database, in whatever makes sence for their applications but if thay want to make that data available for other applications, the content provider is the solution.we have used that in the contacts application, so that any other application can make use of the information in contacts.)

Android was designed to promote reusing and replacing components. I have an example here.on the left, i have got 4 applications that want pick a photo for some reason. The home application might want to pick a photo for wallpaper, contacts might want to pick a photo for a person’s face, gmail or mms, you may want to send a photo to someone in an outgoing message.
For these applications, for making use of the service, to pick a photo, they must make a request.The client component makes a request for specific action. In this case, i am illustrating that with a talk balloon. The gmail application is requesting to pick a photo. Now the talk balloon is a representation of a formal class in our system, called an intent. What the system does is, it will check for all of the installed components that knows how to do whatever was asked for. In this case, the system finds the built in photo galary. When the user in gmail want to pick a photo, he will be taken to the photo galary.The photogallery will fulfil, whatever was asked for by the intent.
Now, what is interesting here is, the picking of the matching component is very lately done. So you can swap software component whenever you want. So if you didn’t like the built in photo galary, may replace it with one that went online, like Picasa,
Now if you are writing a new application, you don’t have to worry about the photo picking up of photo application.it will use, what ever the user have configured for picking up a photo.
This becomes realy importent in android, because, in android,virtually in almost every application has got an intent in the middle. Now, if the user want to move from point A to point B, it will have an intent in the middle.Now each of those component is an opportunity to reuse a component or replace a component.

Now in android, every application runs on its own process.there are a lot of benifits to this. It gives you security protected memory,it means that if the application is running something CPU intensive, it wont block other activities like answering a phone.So all applications are running in there own processes. And the android system itself is responsible for starting a process or shutting them down as necessary to reclaim resources.i have an example to show how that works.
Home- Inbox-mail app- mail message- browser-map app
Create request to the system process-save the state-create a new process-launch the process

Home –not killed because its the navigation hub

Pop the map-saved parcel

instance

A digital signature scheme typically consists of three algorithms:
· A key generation algorithm that selects a private key uniformly at random from a set of possible private keys. The algorithm outputs the private key and a corresponding public key.
· A signing algorithm which, given a message and a private key, produces a signature.
· A signature verifying algorithm which given a message, public key and a signature, either accepts or rejects.

image1.png

