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ABSTRACT


                           In robotics, activity-recognition systems can be used to label large robot-generated activity data sets. It enables activity-aware human–robot interactions (HRIs). It also opens ways to self-learning autonomous robots. The recognition of human activities from body-worn sensors is a key paradigm in wearable computing. In this field, the variability in human activities, sensor deployment characteristics, and application domains has led to the development of best practices and methods to enhance the robustness of activity-recognition systems. We argue that these methods can benefit many robotics use cases. We review the activity-recognition principles followed in the wearable computing community and the methods recently proposed to improve their robustness. These approaches aim at the seamless sharing of activity-recognition systems across platforms and application domains. Finally, we outline the current challenges in wearable activity recognition.












CHAPTER 1

 INTRODUCTION




                                             Recognizing, sharing, and reusing robot behaviors across multiple robot platforms with various similarities are challenging. Although descriptions for objects [e.g., computer-aided design (CAD) models and recognition models] and environments (e.g., geo coordinates, local coordinates, and feature maps) are largely interchangeable across different robot hardware, robot task descriptions are typically hardware dependent. This has prevented the generation of generic data sets for robot behaviors. However, such data sets are important and underpin many of the algorithmic advances in object recognition or in the creation of joint world models. It has also hindered the progress of robot cognition and robot learning by preventing the robots to understand and learn from each other’s actions. Driven by the rapid progress in mobile sensing and computing, wearable computing has developed powerful methods for the automatic recognition, categorization, and labeling of human actions and behaviors from sensor data. Because of the stringent requirements dictated by user acceptance, these methods are typically robust to human variability and hardware-dependent factors, including variability in sensor type and placement. This makes them a potentially useful tool for the automatic recognition and labeling of robot behaviors and may lead to new opportunities for research in robotics. We detail three domains in which the methods of activity recognition can play a role in robotics. 
1) Annotation of Large-Scale Activity Data Sets. 
2) Human–Robot Interaction.
3) Robot Self-Learning.








CHAPTER 2



HISTORY


                                      The concept of wearable computing was first brought forward by Steve Mann, who, with his invention of the 'Wear Comp' in 1979 created a pioneering effort in wearable computing. Although the effort was great, one of the major disadvantages was the fact that it was nothing more than a miniature PC. Absence of lightweight, rugged and fast processors and display devices was another drawback. The 1980s brought forward the development of the consumer camcorder, miniature CRTs etc. brought forward the development of the multimedia computer. With the advent of the internet and wireless networking technologies, wearable devices have developed a great deal. After its invention wearables have gone through 18 generations of development, with research going on at prestigious institutions like MIT, Georgia Tech and Carnegie Mellon University.













CHAPTER 3

WEARABLE COMPUTERS

                                             Wearable computers are miniature electronic devices that are worn by the bearer under, with or on top of clothing. This class of wearable technology has been developed for general or special purpose information technologies and media development. Wearable computers are especially useful for applications that require more complex computational support than just hardware coded logics. One of the main features of a wearable computer is consistency. There is a constant interaction between the computer and user, i.e. there is no need to turn the device on or off. Another feature is the ability to multi-task. It is not necessary to stop what you are doing to use the device; it is augmented into all other actions. These devices can be incorporated by the user to act like a prosthetic. It can therefore be an extension of the user’s mind and/or body. Wearable  computers are usually either integrated into the user's clothing or  can  be  attached  to  the  body  through  some  other  means ,  like  a wristband. The computer evolution has moved from mainframes, to the desktop, and now the computing power is moving onto the person. The user actually "wearing" the computer, s/he can utilize the power and functionality virtually anywhere in their environment. This technology is developing and changing rapidly primarily due to vast changes in computer speed, wireless technology and miniaturization of components.
                                  Areas of study include user interface design, augmented reality, pattern recognition, use of wearables for specific applications or disabilities, electronic textiles and fashion design. There are three operational modes in this new interaction between human and computer:
Constancy: The computer runs continuously, and is 'always ready' to interact with the user. Unlike a hand-held device, laptop computer, or PDA, it does not need to be opened up and turned on prior to use. 
Augmentation: Traditional computing paradigms are based on the    notion that computing is the primary task. Wearable computing, however, is based on the notion that computing is NOT the primary task. The assumption of wearable computing is that the user will be doing something else at the same time as doing the computing. Thus the computer should serve to augment the intellect, or augment the senses.  
Mediation: Unlike hand held devices, laptop computers, and PDAs, the wearable computer can encapsulate It doesn't necessarily need to completely enclose us, but the concept allows for a greater degree of encapsulation than traditional portable computers.


Fig 3.1  Main Block Diagram



CHAPTER 4

WEARABLE COMPUTING

                                                  Wearable computing, as originally presented by Mann in 1996, emphasized a shift in computing paradigm. Computers would no longer be machines separate from the persons using them. Instead, they would become an unobtrusive extension of our very bodies, providing us with additional ubiquitous sensing, feedback, and computational capabilities. As implied by its name, wearable computing never considered implanting sensors or chips into the body. Rather, it emphasizes the view that clothing, which has become an extension of our natural skin, would be the substrate that technology could disappear into). The prevalence of mobile phones now offers an additional vector for on-body sensing and computing .Mann and Starner were among the first to show that complex contextual information can be obtained by interpreting on-body sensor data and that this would lead to novel adaptive applications. A wearable system can perceive activities, defined here to include both gestures and behaviors, from a first-person perspective. This leads to new forms of applications known as activity based computing or interaction-based computing. Such applications can offer information or assistance pro-actively based on the user’s situation as well as support explicit interaction in unobtrusive ways through natural gestures or body movements.









CHAPTER 5
WEARABLE ACTIVITY RECOGNITION




                Activity and gesture recognition are generally tackled as a problem of learning by demonstration. The user is instrumented with the selected sensors and is put into a situation where he performs the activities and gestures of interest. The sensor data are acquired with ground-truth annotations describing what the user performs or experiences. The resulting data set is used to train the recognition system and test its performance. The training process consists of identifying the mapping between the user’s activities or gestures and the corresponding sensor signals. Some terminology commonly used in wearable activity recognition differs from the one used in robotics. 

· Annotation or Labeling: This is the process by which the experimenter manually provides ground-truth information about the activities of the subject, generally, when collecting an activity data set.
· Recognition or Spotting: This is the actual machine identification of an activity in the data sensor stream. Activities are said to be recognized or spotted.










CHAPTER 6

SENSORS FOR ACTIVITY RECOGNITION


                                         Sensors are used to acquire signals related to the user’s activities or gestures. User comfort is paramount. Thus, the sensors must be small, unobtrusive, and ideally invisible to the outside. The sensors are selected according to a tradeoff between wearability, computational needs, power usage, communication requirements, and information content for the activities and contexts of interest. For instance, cameras are currently seldom used in wearable computing because of the computational requirements for video analysis. Instead, sensor modalities that are computationally lighter are preferred. Common sensor modalities are body-worn accelerometers and IMUs. Accelerometers are extremely small and have low power. The IMUs contain accelerometers, magnetometers, and gyroscopes, which allow to sense the orientation of the device with respect to a reference. The IMUs are typically placed on each body segment and allow to reconstruct a body model of the user. On-body microphones are also successfully used for activity recognition, as many human activities generate characteristic sounds (using a coffee machine and brushing teeth). Clothing is a major platform to unobtrusively deploy on body sensors. For instance, the IMUs can be integrated in a worker’s jacket. There are also ongoing efforts to develop sensorized textile fibers, which allows for truly unobtrusive garment-integrated sensing. Today, the trend goes toward an increased use of multiple multimodal sensors, as this tends to increase recognition performance. Wearable systems are also complemented by object-integrated and ambient sensors. It describes systems that make use of sensors that just happen to be available, rather than requiring specific sensor deployment. This will further address comfort issues. It also emphasizes the need for new machine-learning techniques to share activity-recognition systems across different sensor domains.








CHAPTER 7

ACTIVITY-RECOGNITION CHAIN


                                                    We refer to the activity-recognition chain (ARC) as a set of processing principles commonly followed by most researchers to infer human activities from the raw sensor data. The sub symbolic processing maps the low-level sensor data (e.g., body-limb acceleration) to semantically meaningful action primitives (e.g., grasp). Meaning is attributed to the sensor data streams by comparing them to known activity prototypes. This is realized by streaming signal processing and machine-learning techniques. The outcome of the sub symbolic processing is the event indicating the occurrence of action primitives. The ARC terminates at this stage when the activities of interest consist of simple gestures, for instance, in gestural interfaces. The symbolic processing maps the sequences of action primitives (e.g., grasping and cutting) to higher-level activities (e.g., cooking). This may be realized by reasoning, expert knowledge, or statistical approaches applied to the occurrences of action primitives. Subsymbolic processing ought to be robust to the large observed variability in sensor-signal to activity-class mapping because of changing human behaviors or sensor deployments. In wearable computing, sub symbolic processing is usually co-optimized with sensor selection to maximize comfort and recognition performance. The sub symbolic processing stages are the following

· Sensor-Data Acquisition: A stream of sensor samples S is obtained.

· Signal Preprocessing: The sensor data stream is preprocessed. Typical transformations are calibration, denoising, or sensor-level data fusion.

· Segmentation of the Data Stream: The data stream is segmented into sections W that are likely to contain a gesture. Segments are identified by their start and end time in the data stream. A common type of segmentation technique is the sliding window, usually for periodic movements, or energy-based or rest-position based segmentation, when the user performs isolated gestures or returns to a rest position between gestures.

· Feature Extraction: Features are computed on the identified segments to reduce their dimensionality, yielding a feature vector X.

· Classification: A classifier, trained at design time, maps the feature vector into a predefined set of output classes (activities and gestures): X ! c; p. Usually, a ranked likelihood p of the output classes is obtained and can be used for decision fusion.

· Decision Fusion: Combines multiple information sources (multiple sensors or classifiers operating on a sensor) into a decision about the activity that occurred.

· Null-Class Rejection: In cases where the confidence in the classification result is too low, the system may discard the classified activity based on its likelihood. At this stage, the outcome is the detection of an action primitive Ai with likelihood pi at time ti. Before operation, the classifiers used in the ARC are trained using a training set containing data instances (feature vectors) X and the corresponding activity label c. Other parameters, such as the thresholds to segment activities or reject the null class or a set of features, are also optimized before operation. 
               Classifiers commonly used for activity recognition have been reviewed in together with the typical features derived from acceleration signals. If the features corresponding to activities form clusters in the feature space then the classifiers that are typically used include support vector machines, decision trees, k-nearest neighbor, or Naive Bayes classifiers. This is usually the case with isolated gestures and when static postures are recognized with features such as limb angles. It is also the case with periodic activities when frequency-domain features are used (e.g., walking leads to energy in specific frequency bands).When the temporal unfolding of the gesture is analyzed, such as sporadic gestures, approaches such as dynamic time warping  or hidden Markov models (HMMs) are used. Other methods include neural networks or fuzzy systems.  With simple statistical features, the sensor signals can be projected in a feature space where the activities form clusters suitable for classification. During the training of the recognition chain, the selection of preprocessing steps and features aims at increasing the separation between the activity classes. Some activities are well separated, leading to accurate classification, while others overlap as they are more similar. Symbolic-level processing is usually event driven, with the events corresponding to activity occurrences. Higher-level activity models are thus built on event occurrences instead of raw sensor data. Approaches typically used for symbolic processing include ontological and statistical reasoning: probabilistic and temporal logic, Bayesian networks, fuzzy. Modeling and reasoning methods used for human context inference are further reviewed in. High-level models are also usually derived from data recordings. Alternative approaches include the use of expert knowledge. Few works have attempted to use expert knowledge to detect complex gestures from raw sensor data, such as accelerometer readings. The main challenge faced is the large inter- and intra user variability, which is better captured by learning by demonstration approaches. 
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                                 Fig 7.1    Activity Recognition Chain






CHAPTER 8
SHARING ACTIVITY-RECOGNITION SYSTEMS


                                                          Human activity recognition in wearable computing is challenging because of a large variability in the mapping of sensor signals to activity classes. This variability has multiple origins, which is shown below. Semantically identical action primitives (e.g., drinking from a glass) can be executed in a large number of ways (e.g., grasp with the left or right hand, while sitting, standing, or walking at various speeds). This is referred to as intra user variability. These variations arise from personal preferences. Moreover, aging, injuries, or increased proficiency at a task also lead to variability. Although different persons may be considered as robots of identical make, in practice, there is an even higher variability in action-motor strategies between users (inter user variability) than for a single user. Personal preferences, differences in expertise, body proportions, or fitness level explain this variability. The placement of the sensors on body cannot be done with a high precision, especially when the users deploy the sensors themselves. For comfort reasons, the user must be able to detach sensors when not needed (e.g., during sleep) and reattach them when needed or to displace them when uncomfortable. The placement of sensors in loose-fitting clothing is affected by the deformation of the garment depending on the user’s activities and posture.
                                         Abstracting the specific environment in which the system can recognize activities is important to ensure cost-effective deployment on a large scale. Thus, activity-recognition methods should work for a generic class of problems (e.g., in any smart home) rather than a specific instance of the problem class (e.g., a specific smart home). Thus, the available sensor configuration depends on the sensorized objects users take with them, on the smart clothing they wear, and on the environment in which they are located. For each sensor kind and placement, there is a different sensor-signal to activity class mapping that an opportunistic activity-recognition system should be able to abstract. The wearable computing community has developed best practices and novel methods to deal with some forms of variability. In the following subsections, we present a selection of methods developed by various groups and ours. To share an ARC, there must be a common representation at some stage in the recognition chain. We organize the methods along the level at which the methods assume a common representation. We describe methods operating at the sensor, feature, classifier, and reasoning levels.

[image: ]


Fig 8.1-Representation of the level at which a common representation is assumed to share a recognition system between users (platforms) or domains.





Sensor Level Sharing: This level focuses on training an ARC on the first platform and reusing it on the second platform. This assumes that the sensor-signal to activity-class mappings are statistically identical on two platforms. This is usually not the case in practice because of the slight variations in sensor placement and human action-motor strategies. Training an ARC on one system is referred to as a user-specific system, and it is known to show degraded performance when deployed to another user. Training user-specific ARCs is costly and thus not adequate for the deployment of wearable system on a large scale. The best practice to realize an ARC that generalizes to new situations consists in training it on a data set containing the variability to be seen when the system is deployed. By collecting a data set from multiple users, the ARC can be trained to be user independent. By collecting a data set comprising multiple on-body sensor positions, the ARC can be trained to be independent of sensor placement. A similar approach in learning by demonstration in robotics could lead to platform-independent activity-recognition models by demonstrating a task to multiple platforms. The previous approach requires to foresee all the variations likely to be encountered at run time. Thus, we proposed an unsupervised self-calibration approach that removes this requirement. The self-calibration approach operates as follows:
·  The ARC continuously operates and recognizes the occurrence of activities/gestures 
·   Upon detection of an activity/gesture, the corresponding sensor data is stored as training data
·  The classifiers are retrained, including this new training data, using an incremental learning algorithm. 
Thus, the activity models are optimized upon each activity instance to better model that activity. During adaptation, the method tracks the displacement of the activity clusters in the feature space. The assumptions underlying the approach are that activities form distinct clusters in the feature space and that the speed of adaptation is matched to the speed at which the clusters shift. A translation to robotics of these principles may allow the activity models to adapt when sensors or actuators deteriorate

Feature-Level Sharing :At this level, the ARC devised for the first platform is translated to the second platform from the feature level onwards. Thus, the ARC must abstract from the specific sensors. The use case for sharing ARCs at this level include systems where the sensor modalities on the two platforms do not coincide or show large on-body displacement for which a placement-independent ARC cannot be envisioned. Kunze et al have explored approaches to elevate the processing of the ARC to abstract features. They show that features that are robust to on-body displacement can be designed using body models and by fusing multiple sensors such as an accelerometer and a gyroscope. They also show that a specific sensor modality (magnetic field sensor) can be replaced by another specific modality (gyroscope). A hybrid approach between sensor-level and feature-level sharing was further proposed by Kunze et al., who demonstrated that sensors can autonomously self-characterize the iron-body placement and orientation using machine-learning techniques. They propose to use on body sensor placement self-characterization as a way to select, among a number of preprogrammed ARCs, the one most suited for the detected sensor placement. Similarly in robotics, data from different sensors can be converted into identical abstract representations. For instance, 3-D point clouds can be measured by stereo vision or a laser-range finder.

Classifier-Level Sharing: Transfer learning allows to translate a classification problem from one feature space to another and was used to transfer perceptual categories across modalities in biological and artificial systems. Conceptually, transfer learning may thus be used to translate the capability to recognize activities from one platform to another without enforcing a similar input space (i.e., sensors and features). Thus, the transfer does not affect higher-level reasoning. Practical principles allowing a system A to confer activity-recognition capabilities to another system B are outlined in. Each system A and B is composed of a set of sensors SA, SB, ARCs ARCA, ARCB, and a unified communication protocol. The process of transfer learning works as follows. The user employs an activity-aware system A with ARCA and sensor set SA. For instance, a set of instrumented drawers is capable of reporting which one is being opened or closed in a storage-management scenario.A new system is deployed in the user’s personal area network comprising a set of unknown new sensors SB (on body and/or in the user’s surroundings) and an untrained ARCB. For instance, the user wears a new sensorized wristband with an integrated acceleration sensor. As the user performs activities, the ARCA recognizes them and broadcasts this information. The new system B receives the class labels of the recognized activities. The ARCB incrementally learns the mapping between the signals of the sensor set SB and the activity classes. Eventually, the system A can be removed. The activity-recognition capability is now entirely provided by the system B. The underlying assumptions are the two systems that coexist for a longer time to operate transfer learning. In Figure 8, we show that, as the user interacts with a set of drawers, the body-worn system incrementally learns to recognize opening and closing gestures. In robotics, this sharing approach may be used to allow the robots with different sensory inputs to learn to recognize semantically identical activities or to learn how to use a new sensor when the robot parts are upgraded, thus easing programming.
Symbolic-Level Sharing: The reasoning program to infer higher level activities from spotted action primitives is shared between platforms. As the environment in which the two platforms operate may lead to the detection of semantically different action primitives, a direct transfer of the reasoning is not always possible. Carrying out a prior concept matching can address this. For instance, to reason about the activity of a user, one needs first to know in which room he is located. One environment may have a sensor allowing to detect the action primitive “room door activated.” Another environment may have a proximity infrared sensor allowing to detect “movement in the room.” The interpretation of the sensor data requires different features and classifiers in each case. However, although the classifiers deliver semantically different action primitives they may be both found to indicate the presence of a user in a room. Thus, higher-level reasoning may remain identical if these two different concepts are first matched. They applied this method to transfer behavior-recognition capabilities from one smart home kind to another with different and a priori unknown number and placement of sensors. The system first automatically finds how sensor activations in different environments relate to identical higher-level concepts using statistical approaches. A recognition system can also learn internal hierarchical representation of activities or concepts, upon which reasoning is performed. Hu et al. further report on using Web mining to match concepts. Advances in merging concepts in ontologies support the transfer of activity-recognition reasoning across different conceptual spaces. In robotics, these principles may allow the robots to exchange the knowledge they have individually gained about the world. This may be especially relevant when principles of autonomous mental development are used, as robots can develop distinct world representations according to their capabilities.

CHAPTER 9

OTHER APPROACHES


                                            Some approaches do not fit in the taxonomy above. Action primitive spotting (hammering, screwing, and cutting) was trained on the data set of a shelf-assembly task. These primitives were reused as is to detect higher level steps of a mirror assembly task, thus considerably reducing the amount of training data needed for the new task. Most of the approaches previously described attempt to reduce or eliminate the need for training data for activity recognition on a new platform. Beigl and coworkers proposed to “crowd-source” the acquisition of training data. They addressed the issues related to shared data labeling by developing a framework suitable for end users operating on a mobile phone. Semi supervised learning allows to combine a limited number of labeled data with a large amount of unlabeled data to train classifiers. It was successfully used to train activity-recognition systems using only sparse activity labels. Recent trends seek further reduction in the data collection efforts by automatically generating activity-recognition models from online sources by data mining.
                                          Calatroni et al. argue that many existing sensors can be re purposed for activity recognition, although they were initially deployed for other uses . They show, for instance, how reed switches placed in windows for security purposes can be used to infer standing or walking by means of assumptions about human behavior when interacting with the instrumented object. They indicate several other sensors and behavioral assumptions that allow to obtain sporadic labels about the modes of locomotion of the user or his or her gestures. They suggest to incrementally train the body-worn recognition system whenever such labels are obtained, with the transfer-learning method described earlier. Eventually, the wearable system becomes capable of activity recognition even when the user does not interact with the source of labels. Since this process can be continuous, the system can perform activity recognition with many unforeseen combinations of on-body sensors as long as they provide discriminative signals. Finally, in wearable computing, the user and the technical system are tightly interacting. Thus, in some cases, the user may provide information to the wearable system, such as whether it correctly identified the last activity. This can be used in an online learning paradigm to refine activity models according to the user’s expectations. 


CHAPTER 10



CONCLUSION


                                             Activity recognition enables a WWW for robots by providing a tool to label large robot-generated activity data sets, by enabling activity-aware HRI, and by opening the way to self-learning autonomous robots capable of monitoring their own proficiency at a task. The large data sets of collective human behaviors collected in wearable computing may also be used to bootstrap humanoid robot behaviors and thus achieve more human like interactions in human robot societies. Human activity recognition has been a major object of research in wearable computing since the mid-1990s. We summarized the methods developed in the community along the ARC, which is a set of processing principles followed in most activity-recognition research. Since human activities are highly variable, we reported some of the recent advances to enhance the robustness of activity recognition systems when they are shared among different users or deployed in different application domains. Human activity recognition from on-body sensors is far from a solved problem. Some of the continuing challenges include:
· Finding more efficient sensor modalities for activity recognition. They should satisfy multiple requirements: minimize obtrusiveness, be highly discriminative of the activities of interest, and minimize subsequent computational complexity.
· Spotting rare events and short activities in a large stream of data, which is still a challenging segmentation and null-class rejection problem.
· Despite recent advances surveyed in this article, coping with human motion variability remains an open area of research.
· Deploying activity recognition to new problem domains without an expensive training phase is still elusive.
· Shared reference activity-recognition data sets are important for benchmarking purposes. We reviewed a few activity-recognition data sets and proposed a new benchmark data set in.
· Building and updating the state of a world model according to the user’s actions. For instance, when a user displaces a cup, this changes the meaning of a “grasp” gesture performed at the prior location of the cup. Most current approaches assume stateless world models.

Other challenges relate to the use of activity-recognition systems in robotics. The annotation of large-scale data sets or the recognition of human activities for HRI must take into account that the machine recognition of activities is not perfectly accurate. Thus, probability distributions on
the recognized activity classes need to be taken into account for further processing, for instance, in a Bayesian framework. Using activity recognition in a robotic self-learning paradigm builds on the assumption that it is preferable to translate an activity-recognition system between robots
rather than a motor program. Translation between robots of identical make is relatively straightforward and may allow the robots to learn new motor strategies when the actuators are damaged. Translation across heterogeneous platforms assumes a greater invariance in the activity recognition system than in the motor program. The coming years will see whether self-learning in heterogeneous platforms driven by a common activity-recognition system can be reliably achieved. Nevertheless, there are some important differences between human and robot activity recognition. One can design the robot hardware to place sensors at good positions. Moreover, one can adapt the robot behavior to optimize the quality of the sensor data. For instance, the speed of the robot can be reduced if the sensors are slow. The mission of the robot may be temporarily put on hold while it refines its world models or tests a hypothesis. This is a clear advantage for robotics. It is exploited in autonomous mental development and allows for a joint convolution of the capability to use sensors and actuators and to discover knowledge about the world.
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