PARALLEL MODEL (BASIC CONCEPTS)

In computer science, a parallel algorithm or concurrent algorithm, as opposed to a traditional sequential (or serial) algorithm, is an algorithm which can be executed a piece at a time on many different processing devices, and then put back together again at the end to get the correct result.

Some algorithms are easy to divide up into pieces like this. For example, splitting up the job of checking all of the numbers from one to a hundred thousand to see which are primes could be done by assigning a subset of the numbers to each available processor, and then putting the list of positive results back together.

Most of the available algorithms to compute pi (π), on the other hand, cannot be easily split up into parallel portions. They require the results from a preceding step to effectively carry on with the next step. Such problems are called inherently serial problems. Iterative numerical methods, such as Newton's method or the three-body problem, are also algorithms which are inherently serial. Some problems are very difficult to parallelize, although they are recursive. One such example is the depth-first search of graphs.
Parallel algorithms are valuable because of substantial improvements in multiprocessing systems and the rise of multi-core processors. In general, it is easier to construct a computer with a single fast processor than one with many slow processors with the same throughput. But processor speed is increased primarily by shrinking the circuitry, and modern processors are pushing physical size and heat limits. These twin barriers have flipped the equation, making multiprocessing practical even for small systems.

The cost or complexity of serial algorithms is estimated in terms of the space (memory) and time (processor cycles) that they take. Parallel algorithms need to optimize one more resource, the communication between different processors. There are two ways parallel processors communicate, shared memory or message passing.

Shared memory processing needs additional locking for the data, imposes the overhead of additional processor and bus cycles, and also serializes some portion of the algorithm.

Message passing processing uses channels and message boxes but this communication adds transfer overhead on the bus, additional memory need for queues and message boxes and latency in the messages. Designs of parallel processors use special buses like crossbar so that the communication overhead will be small but it is the parallel algorithm that decides the volume of the traffic.

Another problem with parallel algorithms is ensuring that they are suitably load balanced. For example, checking all numbers from one to a hundred thousand for primality is easy to split amongst processors; however, some processors will get more work to do than the others, which will sit idle until the loaded processors complete.

A subtype of parallel algorithms, distributed algorithms are algorithms designed to work in cluster computing and distributed computing environments, where additional concerns beyond the scope of "classical" parallel algorithms need to be addressed.
Introduction

What is Parallelism in Computers? 

Parallelism is a digital computer performing more than one task at the same time 

Examples 

IO chips 

Most computers contain special circuits for IO devices which allow some task to be performed in parallel

Pipelining of Instructions 

Some cpu's pipeline the execution of instructions


Multiple Arithmetic units (AU) 

Some CPUs contain multiple AU so it can perform more than one arithmetic operation at the same time

We are interested in parallelism involving more than multiple CPUs 



Common Terms for Parallelism 

Concurrent Processing 

A program is divided into multiple processes which are run on a single processor 

The processes are time sliced on the single processor

Distributed Processing 

A program is divided into multiple processes which are run on multiple distinct machines 

The multiple machines are usual connected by a LAN 

Machines used typically are workstations running multiple programs 

Parallel Processing 

A program is divided into multiple processes which are run on multiple processors 

The processors normally: 

· are in one machine 

· execute one program at a time 

· have high speed communications between them 

Parallel Programming 

Issues in parallel programming not found in sequential programming 

· Task decomposition, allocation and sequencing

Breaking down the problem into smaller tasks (processes) than can be run in parallel 

Allocating the parallel tasks to different processors 

Sequencing the tasks in the proper order 

Efficiently use the processors 

· Communication of interim results between processors

The goal is to reduce the cost of communication between processors. Task decomposition and allocation affect communication costs 

· Synchronization of processes

Some processes must wait at predetermined points for results from other processes. 

· Different machine architectures

Performance Issues 

· Scalability

Using more nodes should

allow a job to run faster 

allow a larger job to run in the same time

· Load Balancing

All nodes should have the same amount of work 

Avoid having nodes idle while others are computing

· Bottlenecks

Communication bottlenecks

Nodes spend too much time passing messages 

Too many messages are traveling on the same path

Serial bottlenecks

· Communication

Message passing is slower than computation 

Maximize computation per message 

Avoid making nodes wait for messages 

L = latency time to start a message 

Tr = transmission time per byte of information 

N = number of bytes in message 

Time = time to send message

Time = L + N*Tr

Parallel Machines 

Parameters used to describe or classify parallel computers: 

· Type and number of processors

· Processor interconnections

· Global control

· Synchronous vs. asynchronous operation



Type and number of processors 

The Extremes 

Massively parallel 

Computer systems with thousands of processors 

Parallel Supercomputers 

CM-5, Intel Paragon

Coarse-grained parallelism 

Few (~10) processor, usually high powered in system 

Starting to be common in Unix workstations



Processor interconnections 

Parallel computers may be loosely divided into two groups: 

Shared Memory (or Multiprocessor) 

Message Passing (or Multicomputers)

Shared Memory or Multiprocessor 

Individual processors have access to a common shared memory module(s) 

Examples 

Alliant, Cray series, some Sun workstations

Features 

Easy to build and program 

Limited to a small number of processors 

20 - 30 for Bus based multiprocessor

Bus Based Multiprocessor [image: image1.png]Shared
Memory

Bus

Processor
1

Processor
2

Processor
N







Processor-Memory Interconnection Network 

Multiprocessor 

[image: image2.png]Processors

Memory Modules

MO

M1

M2

M3

PO

P1

P2

P3

Crossbar
O Switch




[image: image3.png]Butterfly Interconnection Nework

— Moma
PO MO
P1 M1
P2 M2
P3 M3
P4 M4
P5 M5
P6 M6
P7 M7







Message Passing or Multicomputers 

Individual processors local memory. 

Processors communicate via a communication network 

Examples 

Connection Machine series (CM-2, CM-5), Intel Paragon, nCube, Transputers, Cosmic Cube

Features 

Can scale to thousands of processors

[image: image4.png]Multicomputer Processor Module

Processor

Memory

Communication
Interface







Mesh Communication Network 

[image: image5.png]M M M
PO PL 123
Interface Interface Interface
M M M
P3 P4 P5
Interface Interface Interface
M M M
P6 P7 P8
Interface Interface Interface





Intel Paragon is a mesh machine

