 An Introduction To Real Time Linux
1. What is a Real Time System?
2. Basic Real Time terminology and OS concepts.
3. Linux for Real Time.
4. Kernel Modules
5. Implementation Examples
What is a "real time system"?
· A real time system can be defined as a "system capable of guaranteeing timing requirements of the processes under its control".

· It must be fast and predictable.

· Fast means it responds to external, asynchronous events in a short time. The lower the latency, the better the system will respond to events which require immediate attention.

· Predictable means that it is able to determine task's completion time with certainty.

· Emphasis is on Maximum Determinism rather than Maximum Throughput.
Real-time Terminology

We are familiar with most of the operating system terminology like,

Soft Real-time & Hard Real-time

One often makes the distinction between soft real-time and hard real-time "Soft" means that not meeting the specified timing constraint is not a disaster, while it is a disaster for hard real-time.

Rentrant functions

Race conditions
Dead lock

Real-time Quantification

 In order to quantify the term real-time the following terms are defined.

Response time or Latency

The latency of a task is the difference between the instant of time on which the task should have started (or finished) and the instant of time on which it actually did.

Deadline

 A time constraint for a process is called deadline, i.e. this is the time when a result has to be delivered.

Jitter

 The term jitter is used for describing the uncertainty of an event in term of time.

Latencies are due to several factors

· The timing properties of processor, bus, memory and peripheral devices.

· The scheduling properties of the OS.

· The pre-emptiveness of its kernel.

· The load on the system.

· The context switch time.

· Accessing the hard disk: Because the alignment of sectors, and the distance between the track needed by a given task are variable, that task cannot be sure about how long it will take to access the data that it needs. In addition, hard disks are mechanical devices, whose time scales are much longer than purely electronic devices (such as RAM memory), and accesses to the hard disk are 'buffered' in order to reduce the average disk access time.

· Accessing a network: Especially with the TCP/IP protocol, the packets are resent in case of transmission error.

· Unpredictable delays of timer chip.

· Non real-time device drivers.

· Memory allocation and management: After a task has asked for more memory (eg: through malloc() function call), the time that the memory allocation task needs to fulfill the request is unpredictable.

Linux For Real-time

Major issues

· Coarse Grained Synchronisation :

· Kernel Preemption :

· Scheduler :

a. EDF Scheduler

b. RM Scheduler

· Task Queuing :.

· Interrupt Disable
· Thread Support
· Priority Inversion
Priority Inversion Phenomena

RTOS's solve the problem of priority inversion by implementation of two protocols

· Priority Inheritance: A low priority task that holds the lock requested by a high priority task temporarily "inherits" the priority of that high priority task, from the moment the high priority task does the request. When the lock is released the priority drops to its original level.

· Priority Ceiling: Every lock gets a priority level corresponding to the priority of the highest priority task that can use the lock. The lock gives this priority to every task that tries the lock

	

	
	
	

Linux Based Real-time Operating System

GNU/Linux is an operating system for a general purpose computer optimised for maximum throughput and average performance of each process.

There are several approaches for building an RTOS.

Kernel Replacement

The first approach is to replace an existing non real-time kernel by a small real-time kernel providing the same API. The design guidelines for an RTOS include the following

· It needs to be compact, portable and efficient.

· It should not need to manage an excessive number of resources.

· It should not be dependent on any dynamically allocated resources.

The pros and cons are listed.

· + complete new design of kernel adapted for the real-time problem at hard.

· + Allows to grow and evolve with market by still keeping the same API, in particular in the embedded field.

· - The OS becomes very complex making it difficult to ensure determinism.

· - Drivers for hardware become very complex.

· - Since the core is an RTOS, the vast amount of free software that is available cannot be used unmodified.

· - Maintenance costs for such systems are considerable.

Kernel Modification
The most seemingly alternate strategy would be to add RT capabilities to a general purpose OS by modifying the kernel. One common technique is to insert premption points into the kernel whenever it is safe to perform a context switch.

The pros and cons of such an approach is listed.

· + Performance improvements with little changes may be sufficient.

· + All general tools for debugging and development can be used.

· + Slight modification keeps the kernel near to the development thread.

· + Kernel changes are in the scheduler far away from the interrupt hardware.

The cons are

· - General purpose OS are event driven, not time triggered.

· - General purpose OS are not fully preemptive systems. Making them fully preemptive requires modifications to all hardware drivers and to all resource handling codes.

· - Optimization strategies used in general purpose OS can contradict RT requirements.

· - Modifying applications to be preemptive is very costly and error prone.

Kernel co-existence
The kernel is split into two parts one part that runs as a general purpose OS and a second part that is designed around the real-time capabilities.

This is often used to add real-time capabilities to Microsoft Windows OS. The major pros and cons are listed below.

· + Reduces all general features to a bare minimum.

· + Allows the non real-time side of hte OS to provide all the goodies that desktop users are used to.

· + Real-time side can be kept small, compact and deterministic.

· - RT threads are executed in supervisor mode.

· - Debugging in kernel is difficult.

· - Application must be divided in a real-time and non real-time part which makes porting difficult.
Kernel Modules
#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/version.h>

int var = 20;

int init_module(void)

{

printk("\nVariable value: %d \n\n", var);

return 0;

}

void cleanup_module(void)

{

printk("\n Bye \n\n");

}

This can be compiled with:

gcc -c -D__KERNEL__ -DMODULE -o simple1 simple1.c

Note that the kernel offers a different version of printf() called printk(); this works almost identically to the first except that it sends the output to a kernel ring buffer.
Real-time Application Interface (RTAI): Features

The RTAI consists of 5 complimentary features:

· The HAL (Hardware Abstraction Layer): It provides an interface to the hardware, on top of which both linux and hard realtime can run.

· The Linux Compatibility Layer: It provides an interface to the Linux operating system, with which RTAI can be integrated into the Linux task management, without Linux noticing anything.

· RTOS Core: This part offers the hard real time functionality for task scheduling, IPC’s and locking.

· LX/RT(Linux RealTime): The LX/RT makes soft and hard realtime features available to user space tasks in Linux. LX/RT puts a strong emphasis on offering a symmetric real-time API . The same RealTime functionality should be usable with the same function calls from the user space as well as kernel space.
· Extended Functionality Package: The core is extended with useful extras such as several forms of IPC’s, network and serial line drivers; POSIX interfaces etc.

RTAI Modules
To use RTAI, you have to load the modules that implement whatever RTAI capabilities you need. According to 1.3 release, available are the following core modules:

rtai

rtai_sched

rtai_fifos

rtai_shm

lxrt

rtai_pqueue
[image: image1.png]applicaion and system's software
System calls Using e same erly

KERNEL KERNEL

interrupt re
s ke haradisk, DAQ boards,

The Operating System Kernel
[image: image2.png]Shared memory, FIFO, semaphores, muox.

Thread 70 thread #1 (read #n
i kernal

inux process #0 - -

1RQ handing time time
inux procass #N | scheduling

el time schaculer

el
time

1SR

el
time

1SR

hard realtine layer:singleprocess per CPU with ts hard IRQ handing

computer hardvare, CPUs, memory, IRGS

Principle structure of RTLinux realtime implementation
