

Smart Memories

1

1.

INTRODUCTION

The continued scaling of integrated circuit fabrication technology will
dramatically affect the architecture of future computing systems. Scaling will
make computation cheaper, smaller, and lower power, thus enabling more
sophisticated computation in a growing number of embedded applications. This
spread of low-cost, low power computing can easily be seen in today’s wired
(e.g. gigabit Ethernet or DSL) and wireless communication devices, gaming
consoles, and handheld PDAs. These new applications have different
characteristics from today’s standard workloads, often containing highly data-
parallel streaming behavior. While the applications will demand ever-growing
compute performance, power (ops/W) and computational efficiency (ops/$)
are also paramount; therefore, designers have created narrowly focused
custom silicon solutions to meet these needs.
However, the scaling of process technologies makes the construction of
custom solutions increasingly difficult due to the increasing complexity of the
desired devices. While designer productivity has improved over time, and
technologies like system-on-a-chip help to manage complexity, each generation
of complex machines is more expensive to design than the previous one. High
non-recurring fabrication costs (e.g. mask generation) and long chip
manufacturing delays mean that designs must be all the more carefully
validated, further increasing the design costs. Thus, these large complex chips
are only cost-effective if they can be sold in large volumes. This need for a large
market runs counter to the drive for efficient, narrowly- focused, custom
hardware solutions.
To fill the need for widely applicable computing designs, a number of
more general-purpose processors are targeted at a class of problems, rather
than at specific applications. Tri-media, Equator, Mpact, IRAM, and many other
projects are all attempts to create general purpose computing engine for multi-

Smart Memories

2

media applications. However, these attempts to create more universal
computing elements have some limitations. First, these machines have been
optimized for applications where the parallelism can be expressed at the
instruction level using either VLIW or vector engines. However, they would not
be very efficient for applications that lacked parallelism at this level, but had,
for example, thread level parallelism. Second, their globally shared resource
models (shared multi-ported registers and memory) will be increasingly
difficult to implement in future technologies in which on-chip communication
costs are appreciable. Finally, since these machines are generally compromise
solutions between true signal processing engines and general-purpose
processors, their efficiency at doing either task suffers.
On the other hand, the need for scalable architectures has also led to
proposals for modular, explicitly parallel architectures that typically consist of
a number of processing elements and memories on a die connected together by
a network. The modular nature of these designs ensures that wire lengths
shrink as technologies improve, allowing wire and gate delays to scale at
roughly the same rate. Additionally, the replication consumes the growing
number of transistors. The multiple processing elements take advantage of
both instruction-level and thread-level parallelism. One of the most prominent
architectures in this class is the MIT Raw project, which focuses on the
development of compiler technologies that take advantage of exposed low-level
hardware.
Smart Memories combines the benefits of both approaches to create a
partitioned, explicitly parallel, reconfigurable architecture for use as a future
universal computing element. Since different application spaces naturally have
different communication patterns and memory needs, finding a single topology
that fits well with all applications is very difficult. Rather than trying to find a
general solution for all applications, we tailor the appearance of the on-chip
memory, interconnection network, and processing elements to better match
the application requirements. We leverage the fact that long wires in current

Smart Memories

3

(and future) VLSI chips require active repeater insertion for minimum delay.
The presence of repeaters means that adding some reconfigurable logic to
these wires will only modestly impact their performance. Reconfiguration at
this level leads to coarser-grained configurability than previous reconfigurable
architectures, most of which were at least in part based on FPGA
implementations. Compared to these systems, Smart Memories trades away
some flexibility for lower overheads, more familiar programming models, and
higher efficiency.

2.

SMART MEMORIES OVERVIEW

At the highest level, a Smart Memories chip is a modular computer. It
contains an array of processor tiles and on-die DRAM memories connected by a
packet-based, dynamically-routed network (Figure 1). The network also
connects to high-speed links on the pins of the chip to allow for the
construction of multi-chip systems. Most of the initial hardware design works
in the Smart Memories project has been on the processor tile design and
evaluation, so this paper focuses on these aspects.

Smart Memories

4

The organization of a processor tile is a compromise between VLSI wire
constraints and computational efficiency. Our initial goal was to make each
processor tile small enough so the delay of a repeated wire around the semi-
perimeter of the tile would be less then a clock cycle. This leads to a tile edge of
around 2.5mm in a 0.1m technology. This sized tile can contain a processor
equivalent to a MIPS R5000, a 64-bit, 2-issue, in-order machine with 64KB of
on-die cache. Alternately, this area can contain 2-4MB of embedded DRAM
depending on the assumed cell size. A 400mm2 die would then hold about 64
processor tiles, or a lesser number of processor tiles and some DRAM tiles.
Since large-scale computations may require more computation power
than what is contained in a single processing tile, we cluster four processor tiles
together into a “quad” and provide a low-overhead, intra-quad, interconnection
network. Grouping the tiles into quads also makes the global interconnection
network more efficient by reducing the number of global network interfaces
and thus the number of hops between processors.
Our goal in the tile design is to create a set of components that will span
as wide an application set as possible. In current architectures, computational
elements are somewhat standardized; today, most processors have multiple
segmented functional units to increase efficiency when working on limited
precision numbers. Since much work has already been done on optimizing the
mix of functional units for a wide application class, we instead focused our
efforts on creating the flexibility needed to efficiently support different
computational models. This requires creating a flexible memory system,
flexible interconnection between the processing node and the memory, and
flexible instruction decode.

3. TILE ARCHITECTURE

A Smart Memories tile consists of a reconfigurable memory system; a
crossbar interconnection network; a processor core; and a quad network

Smart Memories

5

interface (Figure 2). To balance computation, communication, and storage, we
allocated equal portions of the tile to the processor, interconnect, and memory.

3.1 Memory System
The memory system is of growing importance in processor design.
Different applications have different memory access patterns and thus require
different memory configurations to optimize performance. Often these different
memory structures require different control logic and status bits. Therefore, a
memory system that can be configured to closely match the application
demands is desirable. A recent study of SRAM design shows that the optimal
block size for building large SRAMs is small, around a few KB. Large SRAMs are
then made up of many of these smaller SRAM blocks. We leverage this naturally
hierarchical design to provide low overhead reconfigurability. The basic
memory mat size of 8KB is chosen based on a study of decoder and I/O
overheads and an architectural study of the smallest memory granularity
needed. Allocating a third of the tile area to memory allows for 16 independent
8KB memory mats, a total of 128KB per tile. Each mat is a 1024x64b logical
memory array that can perform reads, writes, compares, and read-modify-
writes. All operations are byte-maskable.
In addition to the memory array, there is configurable logic in the
address and data paths. In the address path, the mats take in a 10-bit address

Smart Memories

6

and a 4-bit opcode to determine what operation is to be performed. The opcode
is decoded using a reconfigurable logic block that is set up during the hardware
configuration. The memory address decoder can use the address input directly
or can be set in auto-increment/decrement streaming mode. In this mode, the
mat stores the starting index, stream count, and stride. On each streaming
mode request, the mat accesses the next word of the stream until reaching the
end of the stream.

In the data path, each 64-bit word is associated with a valid bit and a 4-
bit configurable control field. These bits can be used for storing data state such
as cache LRU or coherence bits. They are dual ported to allow read-modify-
write operations each cycle and can be flash cleared via special opcodes. Each
mat has a write buffer to support pipelined writes and to enable conditional
write operations (e.g. in the case of a cache write). Mats also contain logic in the
output read path for comparisons, so they can be used as cache tag memory.
For complex memory structures that need multiple accesses to the
same data (e.g. snooping on the cache tags in a multiprocessor), four of the
mats are fully dual-ported. Many applications and architectures also need fully-
associative memories, which are inefficient and difficult to emulate using mats.

Smart Memories

7

Therefore, the tile memory system also contains a 64-entry content-
addressable memory (CAM).
The Smart Memories mats can be configured to implement a wide
variety of caches, from simple, single- ported, direct-mapped structures to set-
associative, multi-banked designs. Figure 4 gives an example of four memory
mats configured as a two-way set associative cache with two of the mats acting
as the tag memories and two other mats acting as the data memories.

The mats can also be configured as local scratchpad memories or as
vector/stream register files. These simpler configurations have higher
efficiency and can support higher total memory bandwidth at a lower energy
cost per access. Associated with the memory, but located in the two load-store
units of the processor, are direct-memory access (DMA) engines that generate
memory requests to the quad and global interconnection networks. When the
memory mats are configured as caches, the DMA engines generate cache
fill/spill requests. When the mats are configured for streaming or vector
memories, the DMA engines generate the needed gather/scatter requests to fill
the memory with the desired data.
3.2 Interconnect
To connect the different memory mats to the desired processor or quad
interface port, the tile contains a dynamically routed crossbar, which supports

Smart Memories

8

up to 8 concurrent references. The processor and quad interface generate
requests for data, and the quad interface and memories service those requests.
The crossbar does not interconnect different units of the same type (e.g.
memory mat to memory mat communication is not supported in the crossbar).
Requests through the crossbar contain a tag indicating the desired
destination port and an index into the memory or unit attached to that port.
The crossbar protocol always returns data back to the requestor, so data replies
can be scheduled at the time of routing the forward-going request. Requests
can be broadcast to multiple mats via wildcards, but only one data reply is
allowed. The requests and replies are all pipelined, allowing a requestor to
issue a new request every cycle. Arbitration is performed among the processor
and quad interface ports since multiple requests for the same mat or quad
interface port may occur. No arbitration is necessary on the return crossbar
routes, since they are simply delayed versions of the forward crossbar routes.
From circuit-level models of the crossbar and the memories, the
estimated latency for a memory request is 2 processor clock cycles. About half
of the time is spent in the crossbar, and the other half is spent in the memory
mat. We project that our processor core will have a clock cycle of 20 fanout-of-
four inverter delays (FO4s), which is comparable to moderately aggressive
current processor designs. In a commodity 0.1m process, a 20 FO4 cycle time
is equivalent to a 1GHz operating frequency.
The quad interconnection network, shown in Figure 5, connects the
four tiles in a quad together. The network consists of 9 64-bit multicast buses
on which any of the 4 tiles or the global network can send or receive data.
These buses may also be configured as halfword buses. In addition to these
buses, a small number of control bits are broadcast to update state, atomically
stall the processors, and arbitrate for the buses. The quad interface on each tile
connects the internal tile crossbar to the quad network, thus mediating all
communication to and from the tile.

Smart Memories

9

3.3 Processor
The processor portion of a Smart Memories tile is a 64-bit processing
engine with reconfigurable instruction format/decode. The computation
resources of the tile consist of two integer clusters and one floating point (FP)
cluster. The arrangement of these units and the FP cluster unit mix are shown
in Figure 6. Each integer cluster consists of an ALU, register file, and load/store
unit. This arithmetic unit mix reflects a trade-off between the resources needed
for a wide range of applications and the area constraints of the Smart Memories
tile. Like current media processors, all 64-bit FP arithmetic units can also
perform the corresponding integer operations and all but the divide/sqrt unit
performs sub word arithmetic.
The high operand bandwidth needed in the FP cluster to sustain
parallel issue of operations to all functional units is provided by local register
files (LRFs) directly feeding the functional units and a shared register file with
two read and one write ports. The LRF structure provides the necessary
bandwidth more efficiently in terms of area, power, and access time compared
to increasing the number of ports to the shared register file. The shared FP
register file provides a central register pool for LRF overflows and shared

Smart Memories

10

constants. A network of result and operand buses transfers data among
functional units and the register files.
Optimal utilization of these resources requires that the instruction
bandwidth be tailored to the application needs. When ILP is abundant, wide
encoding explicitly express parallelism and enhance performance without
significantly degrading code density. When ILP is limited, narrow instructions
yield dense encoding without a loss in performance. The Smart Memories
instruction path, shown at the block level in Figure 7, can be configured to
efficiently sup-port wide or narrow instruction encoding.

A 256-bit micro code instruction format achieves the highest utilization
of resources. In this configuration, the processor issues operations to all
available units in parallel and explicitly orchestrates data transfers in the data
path. This instruction format is primarily intended for media and signal

Smart Memories

11

processing kernels that have high compute requirements and contain loops that
can be unrolled to extract ample parallelism. For applications that contain ILP
but are less regular, a VLIW instruction format that packs three instructions in
a 128-bit packet is supported. This instruction format provides a compromise
that achieves higher code density but less parallelism than the micro code, yet
higher parallelism but less code density than narrow instructions.

Finally, a 32-bit RISC-style instruction set is available for applications
that do not exhibit much ILP. To extract thread-level parallel-ism of such
applications, each tile can sustain two concurrent, independent threads. The
two threads on a tile are asymmetric. The primary thread may perform integer
or FP computations and can issue up to two instructions per cycle, while the
secondary thread is limited to integer operations at single-issue. The secondary
thread is intended for light-duty tasks or for system-level support functions.
For example, lower communication costs on systems with multiple processing
nodes on a chip permit dynamic data and task migration to improve locality
and load balance at a much finer grain than is practical in conventional multi-
processors. The increased communication volume and resource usage tracking
for such operations can easily be delegated to the secondary thread. The two
threads are assumed to be independent and any communication must be
explicitly synchronized.

Smart Memories

12

For managing interaction with the memory mats and quad interface,
the tile processor has two load/store units, each with its own DMA engine. The
load/store units, the functional units, and the instruction decode share the 8
processor ports into tile crossbar for communicating with the memory mats
and quad interface.

4. MAPPING STREAMING & SPECULATIVE ARCHITECTURES

One of the goals of the Smart Memories architecture is to efficiently
execute applications with a wide range of programming models and types of
parallelism. In the early stages of the project, we could not feasibly create,
analyze, and map a large number of applications directly onto our architecture,
yet we needed to evaluate its potential to span disparate applications classes.
Clearly the memory system was general enough to allow changing the sizes and
characteristics of the caches in the system as well as to implement other
memory structures. However, this is really only part of what we need to
support different computation models. To provide some concrete benchmarks,
we configured a Smart Memories machine to mimic two existing machines, the
Hydra multiprocessor and the Imagine streaming processor. These two
machines, on far ends of the architectural spectrum, require very different
memory systems and arrangement of compute resources. We then used
applications for these base machines to provide feedback on the potential
performance of Smart Memories. These results are likely to be pessimistic since
the applications were optimized for the existing architecture machine and not
for the Smart Memories target machine.
Imagine is a highly tuned SIMD/vector machine optimized for media
applications with large amounts of data parallelism. In these machines, local
memory access is very regular, and computation is almost completely
scheduled by the compiler. After looking at Imagine, we will explore the

Smart Memories

13

performance of Hydra, a single chip 4- way multiprocessor. This machine is
very different from Imagine, because the applications that it supports have
irregular accesses and communication patterns. To improve performance of
these applications the machine supports speculative thread execution. This
requires a number of special memory structures and tests the flexibility of the
memory system.
4.1 Mapping Imagine
Imagine is a co-processor optimized for high-performance on
applications that can be effectively encapsulated in a stream-programming
model. This model expresses an application as a sequence of kernels that
operate on long vectors of records, referred to as streams. Streams are typically
accessed in predictable patterns and are tolerant of fetch latency. However,
streaming applications demand high bandwidth to stream data and are
compute-intensive. Imagine provides a bandwidth hierarchy and a large
number of arithmetic units to meet these requirements.
The Imagine bandwidth hierarchy consists of off-chip DRAM, an on-
chip stream register file (SRF), and local register files (LRFs) in the data path.
The SRF and LRFs provide increasing bandwidth and allow temporary storage,
resulting in reduced bandwidth demands on the levels further away in the
hierarchy. The SRF is a 64KB multi-banked SRAM accessed via a single wide
port. Streams are stored in the SRF in the order they will be accessed, yielding
high bandwidth via the single port. The records of a stream are interleaved
among the banks of the SRF. The LRF level consists of many small register files
directly feeding the arithmetic units.
The high stream bandwidth achieved through the storage hierarchy
enables parallel computation on a large number of arithmetic units. In Imagine,
these units are arranged into eight clusters, each associated with a bank of the
SRF. Arithmetic resources of a cluster are made up of three adders, two
multipliers, and one divide/square-root unit. The eight clusters exploit data
parallelism to perform the same set of operations on different records of a

Smart Memories

14

stream in parallel. Within each cluster, ILP is exploited to perform parallel
computations on the different units. All the clusters execute a single micro-code
instruction stream in lock-step, resulting in a single-instruction multiple-data
(SIMD) system.
For this study, we map the SRF and LRF levels of Imagine along with its
compute resources to the Smart Memories substrate. The arrangement of these
resources in Imagine is shown in Figure 8. The LRFs are embedded in the
compute clusters and are not shown explicitly.

The 8-cluster Imagine is mapped to a 4-tile Smart Memories quad.
Exploiting the SIMD execution of Imagine clusters, each of the 64- bit Smart
Memories datapaths emulate two 32-bit Imagine clusters in parallel. Like
Imagine, the mapped implementation is intended to be a co-processor under
the control of an off-quad host. In the following sections, we describe the
mapping of Imagine to the Smart Memories, the differences between the
mapping and Imagine, and the impact on performance.
4.1.1 Mapping the bandwidth hierarchy
In mapping Imagine to Smart Memories, we configure all the memory
mats on the tiles as streaming and scratchpad memories. Most of the mats are

Smart Memories

15

allocated to the SRF and are configured in streaming mode as described in
Section 3.1. Data structures that cannot be streamed, such as lookup tables, are
allocated in mats configured as scratchpad memories. Instructions are stored in
mats with the decoders configured for explicit indexed addressing. The
homogeneity of the Smart Memories memory structure allows the allocation of
resources to the SRF and scratchpad to be determined based on the capacity
and bandwidth equirements of each on a per-application basis. The LRFs of
Imagine map to the almost identical LRF structure of the Smart Memories
datapath.
The SRF is physically distributed over the four tiles of a quad, with a
total SRF capacity of up to 480KB. Records of a stream are inter-leaved among
the tiles, each active stream occupying the same mat on every one of the four
tiles, and different streams occupying different mats. Multiple streams may be
placed on non-overlapping address ranges of the same mat at the cost of
reduced bandwidth to each stream. This placement allows accesses to a mat to
be sequential and accesses to different streams to proceed in parallel. The peak
bandwidth available at each level of the hierarchy in Imagine and the mapping
is summarized in Table 1. The mapping can sustain bandwidth per functional
unit comparable to Imagine at both the SRF and LRF levels.

4.1.2 Mapping the computation
In the Smart Memories datapath, the majority of computations are
performed in the FP cluster where the bandwidth to sustain parallel
computation is provided by the LRFs and result buses. Microcode instructions

Smart Memories

16

are used to issue operations to all FP units in parallel. The integer units of
Smart Memories tiles are used primarily to per-form support functions such as
scratchpad accesses, inter-tile communication, and control flow operations,
which are handled by dedicated units in Imagine.
4.1.3 Mapping off-tile communication
Much of the data bandwidth required in stream computations is to local
tile memory. However, data dependencies across loop iterations require
communication among tiles within the quad. In the mapping, these
communications take place over the quad network. Since we emulate two 32-
bit Imagine clusters on a tile, the quad network is configured as a half-word
network to allow any communication pattern among the eight mapped clusters
without incurring a serialization penalty.
Streams that generate or consume data based on run-time conditions
require dynamic communication to distribute records among all or a subset of
the compute clusters. The communication pattern for these dynamic events,
generated by dedicated hardware in Imagine, is determined by a table lookup
in the Smart Memories mapping. The broadcast control bits in the Smart
Memories quad network distribute status information indicating participation
of each cluster in an upcoming communication. These bits combine with state
information from previous communications to form the index into the lookup-
table.
Gather and scatter of stream data between the SRF and off-quad DRAM,
fetch of microcode into the local store, communication with the host processor,
and communication with other quads are performed over the global network.
The first or final stage of these transfers also utilizes the quad network but
receives a lower priority than intra-quad communications.
4.1.4 Evaluation of the Imagine Mapping
To evaluate the performance of the mapping, we conducted cycle-
accurate simulations of four kernels by adapting the Imagine compilation and
simulation tools. The simulations accounted for all differences between

Smart Memories

17

Imagine and the mapping, including the hardware resource differences, the
overheads incurred in software emulation of certain hardware functions of
Imagine, and serialization penal-ties incurred in emulating two Imagine
clusters on a tile. When an aspect of the mapping could not be modeled exactly
using the Imagine tools, we modeled the worst-case scenario. Latencies of 32-
bit arithmetic operations were assumed to be the same for both architectures
since their cycle times are comparable in gate delays in their respective target
technologies. The kernels simulated – a 1024-point FFT, a 13-tap FIR filter, a
7x7 convolution, and an 8x8 DCT - were optimized for Imagine and were not re-
optimized for the Smart Memories architecture.
Simulations show that none of the observed kernels suffer a slow-down
due to inadequacy of the available SRF bandwidth of four accesses per cycle.
However, constraints other than SRF bandwidth lead to performance losses.
Figure 9 shows the percentage performance degradation for the four kernels on
the mapping relative to Imagine. These performance losses arise due to the
constraints discussed below.
Reduced unit mix
The Smart Memories FP cluster consists of two fewer units (an adder
and a multiplier) than an Imagine cluster, which leads to a significant
slowdown for some compute bound kernels (e.g. convolve). Simulations show
that simply adding a second multiplier with no increase in memory or
communication bandwidth reduces the performance degradation relative to
Imagine for convolve from 82% to 7%. We are currently exploring ways to
increase the compute power of the Smart Memories tile without significantly
increasing the area devoted to arithmetic units.
Bandwidth constraints (within a tile)
In the Smart Memories datapath, communication between the FP and
integer units and memory/network ports takes place over a limited number of
buses. This contrasts with a full crossbar in Imagine for the same purpose,
leading to a relative slowdown for the map-ping.

Smart Memories

18

Longer latencies
The routed, general interconnects, used for data transfers outside of
compute clusters in the Smart Memories architecture, typically have longer
latencies compared to the dedicated communication resources of Imagine.
While most kernels are tolerant of stream access latencies, some that perform
scratchpad accesses or inter-cluster communications are sensitive to the
latency of these operations (e.g. fir). However, heavy communication does not
necessarily lead to significant slowdowns if the latency can be masked through
proper scheduling (e.g. fft). Other causes of latency increases include the
overheads of emulating certain functions in software in the mapping, and
serialization delays due to emulating two clusters on a single tile.

According to simulation results, the bandwidth hierarchy of the
mapping compares well with that of the original Imagine and pro-vides the
necessary bandwidth. However, constraints primarily in the compute engines
and communication resources lead to an over-all performance loss. The
increase in run-time over Imagine is moderate:
47% on average and within a factor of two for all the kernels considered. These
results demonstrate that the configurable substrate of Smart Memories,
particularly the memory system, can sustain performance within a small factor
of what a specialized streaming processor achieves.

Smart Memories

19

4.2 Mapping Hydra
The Hydra speculative multiprocessor enables code from a sequential
machine to be run on a parallel machine without requiring the code to be re-
written. A pre-processing script finds and marks loops in the original code. At
run-time, different loop iterations from the marked loops are then speculatively
distributed across all processors.
The Hydra multiprocessor hardware controls data dependencies across
multiple threads at run-time, thereby relaxing the burden on the compiler and
permitting more aggressive parallelization. As shown in Figure 10, the Hydra
multiprocessor consists of four RISC processors, a shared on-die L2, and
speculative buffers, which are interconnected by a 256-bit, read bus and a 64-
bit write-through bus. The speculative buffers store writes made by a processor
during speculative operation to prevent potentially invalid data from
corrupting the L2. When a processor commits state, this modified data is
written to the L2. The read bus handles L2 accesses and fills from the external
memory interface while the write-through bus is used to implement a simple
cache-coherence scheme. All processors snoop on the write-through bus for
potential RAW violations and other speculative hazards.

Smart Memories

20

When a speculative processor receives a less-speculative write to a
memory address that it has read (RAW hazard), a handler invalidates modified
lines in its cache, restarts its loop iteration, and notifies all more-speculative
processors that they must also restart. When the head (non-speculative)
processor commits, it begins work on thread four loop iterations from its
current position and notifies all speculative processors that they must update
their speculative rank.
During the course of mapping Hydra we found that performance
degradation was introduced through three factors: memory configuration
limitations, algorithmic simplifications, and increases in memory access time.
Similar to the approach taken with Imagine, we conducted cycle-level
simulations by adapting the Hydra simulation environment to reflect the Smart
Memories tile and quad architecture.

4.2.1 Memory configuration

Smart Memories

21

In the Smart Memories implementation of Hydra, each Hydra processor
and its associated L1 caches reside on a tile. The L2 cache and speculative write
buffers are distributed among the four tiles that form a quad. Figure 11 shows
the memory mat allocation of a single tile. The dual-ported mats are used to
support three types of memory structures: efficient set-associative tags, tags
that support snooping, and arbitration-simplifying mats.

One quarter of the L2 resides on each tile. The L2 is split by address, so
a portion of each way is on each tile. Rather than dedicate two mats, one for
each way, for the L2 tags, a single dual-ported mat is used. Placing both ways on
the same tile reduces the communication overhead. Single-ported memories
may be efficiently used as tag mats for large caches, but they inefficiently
implement tags for small caches. For example, the L1 data tags are not
completely utilized because the tags only fill 2KB. The L1 data tags are dual-
ported to facilitate snooping on the write bus under the write-through
coherence protocol.
Finally, dual-ported mats are used to simplify arbitration between two
requestors. The CAM (not shown) stores indices, which point into the
speculation buffer mat, which holds data created by a speculative thread. Data
may be written to this mat by the tile’s processor and then read by a more
speculative processor on an L1 miss at the same time. In this case, the dual-
ported mat avoids complex buffering and arbitration schemes by allowing both
requestors to simultaneously access the mat.

Smart Memories

22

The Smart Memories memory mats architecture causes certain aspects
of the mapping’s memory configuration to differ from those of the Hydra
baseline [36], as detailed in Table 2. Compared to Hydra, the Smart Memories
configuration uses lower set-associativity in the L2 and L1 instruction caches to
maximize the memory mat utilization. The performance degradation due to
lower associativity is at most 6% as shown in Figure 12.

4.2.2 Algorithmic modifications
Algorithmic modifications were necessary, since certain Hydra-specific
hardware structures were not available. This section presents two examples
and their performance impact.
Conditional gang-invalidation
On a restart, Hydra removes speculatively modified cache lines in
parallel through a conditional gang-invalidation if the appropriate control bit of
the line is set. This mechanism keeps unmodified lines in the cache as opposed
to clearing the entire cache, thus improving the L1 hit rate. Although the
conditional gang-invalidation mechanism is found in other speculative
architectures, such as the Speculative Versioning Cache [37], it is not commonly
used in other architectures and introduces additional transistors to the SRAM
memory cell. Therefore, in the Smart Memories mapping, algorithmic
modifications are made so the control bits in the L1 tag are not conditionally
gang-invalidated.

Smart Memories

23

Under Hydra’s conditional gang-invalidation scheme, lines introduced
during speculation are marked as valid lines and are invalidated when a thread
restarts. In the Smart Memories configuration, lines introduced during
speculation are valid for a specified time period and are only permanently
marked valid if they are accessed before the processor’s next assigned thread
commits. Simulations show that this alternative to conditional gang-
invalidation decreases performance by up to 12% and requires two extra bits
in the tag.
L2 Merge
In Hydra, the L2 and speculative buffers are centrally located, and on an
L1 miss, a hardware priority encoder returns a merged line. Data is collected
from the L2 and less speculative buffers on a word-by-word basis where the
more recent data has priority. However, in Smart Memories the L2 and
speculative buffers are distributed. If a full merge of all less-speculative buffers
and the L2 is performed, a large amount of data is unnecessarily broadcast
across the quad network.
Simulations show that most of the data comes from either the L2 or the
nearest less-speculative processor on an L1 miss. Therefore, the L2 merge
bandwidth is reduced by only reading data from the L2 and the nearest less-
speculative processor’s speculative write buffer. Neglecting the different L2
latency under the Smart Memories memory system leads to a performance
degradation of up to 25%. The performance degradation is caused by a small
number of threads, which are restarted when they read the incorrect data on an
L2 access.
4.2.3 Access Times
The memory access times in the Smart Memories mapping are larger
due to two factors: crossbar delay and delay due to distributed resources.
Hydra has a 1-cycle L1 access and a 4-cycle L2 merge, while the Smart
Memories configuration has a 2-cycle L1 access and 7-cycle L2 merge. The
delay through the crossbar affects the L1 access time, and since the L2 is

Smart Memories

24

distributed, the L2 merge time is increased. The 2-cycle load delay slot is
conservatively modeled in our simulations by inserting nops without code
rescheduling; the resulting performance degradation is up to 14%.
The increased L2 access time has a greater impact on performance than
the L1 access time and causes performance degradations greater than 40% on
the m88ksim and wc benchmarks. The performance degradations on the other
benchmarks are less than 25%. The increase in the L2 access time is due to the
additional nearest-neighbor access on the quad interconnects.
4.2.4 Simulation results
Figure 12 shows the performance degradations caused by the choice of
memory configurations, algorithms, and memory access latency. The memory
access latency and algorithmic changes con-tribute the greatest amount of
performance degradation, whereas the configuration changes are relatively
insignificant. Since the Hydra processors pass data through the L2, the
increased L2 latency in Smart Memories damages performance the most for
benchmarks that have large amounts of communication between loop
iterations, such as compress, m88ksim, and wc.

In Figure 13, the Smart Memories and Hydra speedups are calculated
by dividing the execution time of one of the processors in Hydra by the
respective execution times of the Smart Memories and Hydra architectures.

Smart Memories

25

Scalar benchmarks, m88ksim and wc, have the largest performance
degradations and may actually slow down under the Smart Memories
configuration. Since Hydra does not achieve significant speedup on these
benchmarks, they should not be run on this configuration of Smart Memories.
For example, we would achieve higher performance on the wc benchmark if we
devoted more tile memory to a larger L1 cache.

5. CONCLUSION
Continued technology scaling causes a dilemma -- while computation
gets cheaper, the design of computing devices becomes more expensive, so new
computing devices must have large markets to be successful. Smart Memories
addresses this issue by extending the notion of a program. In conventional
computing systems the memories and interconnect between the processors
and memories is fixed, and what the programmer modifies is the code that runs
on the processor. While this model is completely general, for many applications
it is not very efficient. In Smart Memories, the user can program the wires and
the memory, as well as the processors. This allows the user to configure the
computing substrate to better match the structure of the applications, which
greatly increases the efficiency of the resulting solution.
The initial tile architecture shows the potential of this approach. Using
the same resources normally found in a super scalar processor, we were able to

Smart Memories

26

arrange those resources into two very different types of compute engines. One
is optimized for stream-based applications, i.e. very regular applications with
large amounts of data parallelism. In this machine organization, the tile
provides very high bandwidth and high computational throughput. The other
engine was optimized for applications with small amounts of parallelism and
irregular memory access patterns. Here the programmability of the memory
was used to create the specialized memory structures needed to support
speculation.
However, this flexibility comes at a cost. The overheads of the coarse-
grain configuration that Smart Memories uses, although modest, are not
negligible; and as the mapping studies show, building a machine optimized for a
specific application will always be faster than configuring a general machine for
that task. Yet the results are promising, since the overheads and resulting
difference in performance are not large. So if an application or set of
applications needs more than one computing or memory model, our
reconfigurable architecture can exceed the efficiency and performance of
existing separate solutions. Our next step is to create a more complete
simulation environment to look at the overall performance of some complete
applications and to investigate the architecture for inter-tile interactions.
image7.jpeg
s

ok
[rA—— ctbadivos ipigsons
ey Tecae Do

Tepesdoney

Doy

13

o nctonsunis

&7
3
W S oeton e

image8.jpeg
Memvies e

Y
7
{/

e

image9.jpeg
Loctof | lmagine | SMEP | lmagine | SMEP
Hierarehy | Chuster | PP | aith it
Sk B, 0 4 o7 0
sussinble

sk Bw, s 4+ =) }
b

e w B 3 s

TABLE 1. Comparison of peak RW in words per cycle

image10.jpeg
daion Fastors
ongerlatencis I

S0k it constrins 2z

“

Figure 9. Feriormance degradation

image11.jpeg
e

Figure 10, Hlydra architec

image12.jpeg
[a—

Figare 11 Hydra's e ot sllcation

image13.jpeg
T Cacne | U1 Carme | 12 Cacne | 12.Conme
i | S| P | P
[) e el
Capaey [ownrss | ow |2 %
e e
Aoty | 2way | 2w | vwm | 2wy
Bn | e
Tines Fvortd | dwads | Svordd | o
Word dan1 daie 2 - -
TARLE 2. Memory sonfigration somparison

image14.jpeg

image15.jpeg

image1.jpeg

image2.jpeg
Figare 2. Tile floorplan

image3.jpeg
egisters and adder

o SRAM
cell array

Strean,

Cotimn
decoder

Ceno

Matconml

Write buffers and
compare logic

@ 3. Momory mat detail

image4.jpeg
Inde Data Data Inder

[[W}

ratci? ot 8 T Curf aeh

Tag wats

image5.jpeg
Glabal

Quad

o

o o

e

o |

o

Figure 5. Quad interconnection network

Ouad Interfuce

image6.jpeg
L

st
el

Citer

Inmer
Citer

-

-

mpier

Figure 6. Smart Memories compute resources

