
 Seminar Report
 On
CLUSTER COMPUTING
Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Computer Application

[image:]

 SUBMITTED BY
 Irfan Ali
 Roll No. 09MC06
 Under Guidance of:
 Mr A.Gupta
“COMPUTER SCIENCE AND INFORMATION TECHNOLOGY”
INSTITUTE OF ENGINEERING AND TECHNOLOG
M.J.P.ROHILKHAND UNIVERSITY
BAREILLY

Declaration

I, Irfan Ali,herby declare that this seminar report has been prepared by me and submitted in the Department Of CS & IT for partial fulfillment of Master Of Computer Application(M.C.A) .I also declare that this report has not been submitted in any other form for any other degree or diploma ever before.

 Date: Name: Irfan Ali
 Roll.No: 09MC06

 Certification From Guide

This is to certify that the above statements made by the candiadate are true to the best of my knowledge and belief.

 Date: Seminar Guide::Mr.A.Gupta
 (Lecturer)
 Department Of CS & IT

Acknowledgment

 I would like to express my sincere gratitude to our Seminar
Incharge,Mr.A.Gupta For his excellent guidance and support,and also to my seminar Guide,Mr.A.Gupta for helping me in my presentation.

 I would like to thank to my teachers,parents and colleagues who have helped me in the preparation of this seminar.

 I have prepared this seminar as an integral part of my curriculum for a Master’s Degree in Computer Science and Information Technology branch.

 Irfan Ali
 (09MC06)
 M.C.A Third Year (V Sem)
 Department Of CS & IT
 M.J.P.Rohilkhand University,
 Bareilly

Abstract
The seminar report commences with an introduction to the evolution of cluster computing and hence clusters schedulers. In the beginning classification of clusters is provided. This is followed by issues involved in designing a cluster scheduler. Various time-sharing and space-sharing scheduling strategies are discussed with emphasis on Hybrid Co-scheduling, Advance Reservation, Backfilling and Pre-emptive policies. The report covers details of an open source advance cluster scheduler “Maui” as a Case Study and explains the various aspects of space-sharing policies in terms of Maui scheduler. Finally, the report concludes with a brief survey of cluster schedulers that are currently used by academia & industry and seem promising in the near future as well.

Table of Contents

I. Introduction

II. Overview of Clusters and Cluster Architecture

i. Classification of Clusters

III. Guidelines for Designing a Cluster Job Scheduler

IV. Resource Management System (RMS)

V. Cluster Scheduling Algorithms

i. Time Sharing Algorithms

ii. Space Sharing Algorithms

VI. Case Study: Maui Cluster Scheduler

i. Overview

ii. Detailed Job Flow

iii. Scheduling Policies

VII. Survey of Cluster Schedulers

i. Maui Scheduler Molokini Edition

ii. Moab Workload Manager

iii. OpenPBS and PBSPro 8.0

iv. Platform LSF

v. OAR Batch Scheduler

VIII. Conclusion

IX. Bibliography

INTRODUCTION

The computing power required by applications is increasing at a tremendous rate. Hence, the search has therefore been towards devising ever faster, ever more powerful computer systems, to help tackle more and more complex problems. In addition, parallel applications have become more and more complex with increasing processing power needs induced essentially by the progress registered in many fields (telecommunication, data-mining, etc). In short we can say trend is towards high performance computing systems. Our need for computational resources in all fields of science, engineering and commerce far outstrip our ability to fulfill these needs. The usage of clusters of computers is, perhaps, one of the most promising means by which we can bridge the gap between our needs and the available resources. The usage of a COTS-based cluster system has a number of advantages including:

Price/performance when compared to a dedicated parallel supercomputer.

Incremental growth that often matches yearly funding patterns.

The provision of a multi-purpose system: one that could, for example, be used for secretarial purposes during the day and as a commodity parallel supercomputer at night.

Why Clusters?
Since, Processor is at the heart of the computing system so this becomes the obvious choice for improvement in hardware. However, limitations due to the speed of light and due to problems of heat dissipation impose an upper bound on the capabilities of single processors. Hence, a single processor has a limit on performance and so the only way to increase performance is to do more than one computation concurrently or in parallel. Thus, today multicore CPUs are becoming more popular. However, in order to use multiple, independent processors to solve a problem in the desired time frame, a problem is to be broken up into parallel components. So called parallel programs are to be written.

Overview of Cluster

Cluster is a collection of inter-connected and loosely coupled stand-alone computers working together as a single, integrated computing resource. Clusters are commonly, but not always, connected through fast local area networks. Clusters are usually deployed to improve speed and/or reliability over that provided by a single computer, while typically being much more cost-effective than single computers of comparable speed or reliability.

 Figure 1: Cluster Architecture
Cluster Technology permits organizations to boost their processing power using standard technology (commodity hardware and software components) that can be acquired/purchased at a relatively low cost. This provides expandability- an affordable upgrade path that lets organizations increase their computing power- while preserving their existing investment and without incurring a lot of extra expenses. The performance of applications also improves with the support of scalable software . environment. In addition, failover capability allows a backup computer to take over the tasks of a failed computer located in its cluster.
Classification of Cluster 																									High-availability (HA) clusters High-availability clusters are implemented primarily for the purpose of improving the availability of services which the cluster provides. They operate by having redundant nodes, which are then used to provide service when system components fail. HA cluster implementations attempt to manage the redundancy inherent in a cluster to eliminate single points of failure.													
Load-balancing clusters Load-balancing clusters operate by having all workload come through one or more load-balancing front ends, which then distribute it to a collection of back end servers. Although they are implemented primarily for improved performance, they commonly include high-availability features as well. Such a cluster of computers is sometimes referred to as a server farm		

					 High-performance (HPC) clusters High-performance clusters are implemented primarily to provide increased performance by splitting a computational task across many different nodes in the cluster, and are most commonly used in scientific computing. One of the more popular HPC implementations is a cluster with nodes running Linux as the OS and free software to implement the parallelism. This configuration is often referred to as a Beowulf cluster. Such clusters commonly run custom programs which have been designed to exploit the parallelism available on HPC clusters. Many such programs use libraries such as MPI which are specially designed for writing scientific applications for HPC computers. HPC clusters are optimized for workloads which require jobs or processes happening on the separate cluster computer nodes to communicate actively during the computation
Grid Clusters Grid clusters are a technology closely related to cluster computing. The key differences between grids and traditional clusters are that grids connect collections of computers which do not fully trust each other, and hence operate more like a computing utility than like a single computer. In addition, grids typically support more heterogeneous collections that are commonly supported in clusters. Grid computing is optimized for workloads which consist of many independent jobs or packets of work, which do not have to share data between the jobs during the computation process. independently of the rest of the grid cluster. Resources such as storage may be shared
Classification on the Basis of Node Ownership

Dedicated Cluster
In a dedicated Cluster, a particular individual does not own a workstation and resources are shared so that parallel computing can be performed across the entire cluster .		 Non-Dedicated Cluster :
Individuals own workstations and applications are executed by stealing idle CPU cycles. The motivation for this scenario is based on the fact that most workstation CPU cycles are unused, even during peak hours. In Non-Dedicated clusters workstation owners expects fast interactive response from the workstations while the remote user is only concerned with fast application turnaround by utilizing any spare CPU cycles. To ensure the latter process migration and load balancing strategies are used.
III. Guidelines for Designing a Cluster Job Scheduler[3]

1. Broad Scope
The Scheduler should be able to support a diverse variety of jobs with similar efficiency e.g. Batch, parallel, sequential, distributed, interactive and non-interactive jobs

2. Support for Algorithms
The Scheduler should support a variety of job processing algorithms e.g. FCFS, SJF, advance reservation and pre-emption based backfilling based Batch Scheduling, Gang Scheduling, Communication driven Co-Scheduling It should be able to switch between algorithms and apply different algorithms at different times or apply different algorithms to different queues or both.

3. Capability to integrate with standard resource managers
The Scheduler should be able to interface with the resource manager in use including common resource managers such as TORQUE, OpenPBS etc.

4. Sensitivity to compute node and interconnect architecture
The Scheduler should match compute nodes and interconnect architecture with the job profile. For e.g. for nodes with more than one processor the scheduler should ensure that jobs are able to exploit multi-CPU nodes.

5. Scalability
The Scheduler should be capable of scaling to thousands of nodes and processing thousands of jobs simultaneously

6. Fairs-share capability
The Scheduler should distribute resources fairly under heavy conditions and at different times .For e.g. if two users simultaneously submit similar jobs the scheduling algorithm should ensure the similar response times to both of them.

7. Efficiency
The overhead associated with the scheduling should be minimal and within acceptable limits. Advance scheduling algorithms can take time to run. To be efficient the scheduling algorithm must spend less time running than the expected saving in application execution time for improved scheduling.
Heuristic methods requiring less computational effort while providing near optimal results are therefore normally preferred to exhaustive(optimal) solution methods

8. Dynamic Capability :
The scheduler should be able to add or remove compute resources to a job on the fly – assuming that the job can adjust and utilize the extra compute capacity.
Decision should be based on current load of the system and not on some fixed static policy.

9. Support for pre-emption
Pre-emption may occur at various levels; for example jobs may be suspended while running; Check pointing- that is the capability to stop a running job, save the intermediate results and restart the job later –can help ensure that results are not for very long jobs.

10. Fault Tolerance
The algorithm should not be disabled by the crash of one or more nodes of the system and should continue functioning for nodes that are at up that time.

11. Stability
Processor thrashing is fruitless migration of processes without accomplishing any useful work in an attempt to properly schedule the processes for better performance.
It can occur if each node of the system has the power of scheduling its own processes and scheduling decisions are made either independently of decisions made by other processors or are based on relatively old data due to transmission delay between nodes.
It can also occur if processes in transit to lightly loaded nodes are not taken into account.

IV. Resource Management and Scheduling (RMS)

Resource Management System [1] A resource management system manages the processing load by preventing jobs from competing with each other for limited compute resources and enables effective and efficient utilization of resources available. This software consists of Resource Manager and a job scheduler. The scheduler communicates with the resource manager to obtain information about queues, loads on compute nodes, and resource availability to make scheduling decisions. The main reason of their existence is their ability to provide an increased and reliable throughput of user applications on the systems they manage.

Resource Manager Resource Managers do basic node state monitoring, receive job submission requests and execute the requests on the compute node. Some resource managers have basic scheduling or policy controls. On complex cluster environments, a resource manager can increase the utilization of a system from 20% to 70%.

Job Scheduler Job scheduler tells the resource manager what to do, when to run jobs, and where. It integrates reservations for prioritized workload, resource scheduling, policy and event engines in line with set priorities and organizational objectives. Thus, the scheduler allows users to process jobs on the right resources at the right time and helps in faster processing of the workload. Typically, it increases system utilization by up to 10-30% above resource manager. As shown in Figure 2 below, the scheduler receives periodic input from the resource manager regarding job queues and available resources, and makes a schedule that determines the order in which jobs will be executed. The basic RMS architecture is a client-server system. In its simplest form, each computer sharing computational resources runs a server daemon. These daemons maintain up-to-date tables, which store information about the RMS environment in which it resides. A user interacts with the RMS environment via a client program, which could be a Web browser or a customized X-windows interface. Application can be either in interactive or in batch mode, the latter being the more commonly used. In a batch mode, an application run becomes a job that is submitted to the RMS system to be processed. To submit a batch job, a user will need to provide job details to the system via the RMS client. These details may include information such as location of the executable and input data sets, where standard output is to be placed, system type, expected run time of the job, whether the job needs sequential or parallel resources and so on. Once the job has been submitted to the RMS environment, it uses job details to place, scheduler and run the job in the appropriate way.
Figure2: Architecture of Resource Management System

Schedulers are broadly divided into
Time Sharing
Space Sharing

Time-sharing 									 algorithms divide time on a processor into several discrete intervals, or slots. These slots are then assigned to unique jobs. Threads can be preempted by others during execution and restarted later. Space-sharing algorithms give the requested resources to a single job until the job completes execution. Most cluster schedulers operate in space-sharing mode. This divide in approach reflects the duality of job requirement sets. Interactive jobs that require low latency are usually executed using time-sharing, while batch jobs that require unperturbed performance are executed on dedicated processors using space-sharing. Under time-sharing, applications exhibit short wait times but execute more slowly than under the dedicated set of processors provided by space-sharing. Interactivity is a critical requirement if parallel processing is to move beyond scientific supercomputing and into widespread deployment. Parallel processing on the desktop for example, is inextricably interactive. The advantages of space-sharing are a dedicated system image (a cluster behaves like a small dedicated system), low overheads (preemption is expensive) and high parallel efficiencies (since jobs tend to run on fewer processors). One disadvantage is that RTC (Run To Completion) scheduling sometimes allows short jobs to sit in queue waiting for long jobs, resulting in poor average turnaround times. V.i. Time Sharing Algorithms[5]

1. Local Scheduling

In Local Scheduling, the scheduler runs run a uniprocessor system on each node and share a global run queue. Threads that are ready to execute are placed in the queue. When a processor becomes available, it simply removes the next thread from the queue, executes it for some time, and returns it to the back of the queue. Each thread receives an equal share of the machine and priority mechanisms are straightforward to enable. Hence, fairness is easily ensured. This algorithm is beset by numerous shortcomings. Some of them are as follows.

a) Contention for the global queue due to uncoordinated execution of an application’s threads

b) Frequent context switching disturbs cache locality

c) Thread migration can be costly across processors, particularly when large chunks of data need be ported from one memory bank to another. Though affinity scheduling can counteract this effect to some extent
Page 12 of 27
Codes with fine-grained communication between threads are unlikely to perform well under local scheduling.

2. Gang Scheduling

The gang scheduling (Explicit co-scheduling) is an efficient Co-scheduling algorithm for fine-grained parallel processes. It has two features: (i) all the processes of a parallel job, called a gang, are scheduled together for simultaneous execution using one-to-one mapping, (ii) context switching is coordinated across the nodes such that all the processes are scheduled and de-scheduled at the same time. The advantage of a gang scheduler is faster completion time because the processes of a job are scheduled together, while its disadvantage is the global synchronization overhead needed to coordinate a set of processes. In addition to inheriting the drawbacks of memory management and context switching overheads from its time-sharing heritage, it also inherits many of the fragmentation issues of space-sharing.

3. Communication-Driven Co-scheduling

With a communication-driven co-scheduling, each node in a cluster has an independent Scheduler, which coordinates the communicating, processes of a parallel job. All these co-scheduling algorithms rely primarily on one of the two local events (arrival of a message and waiting for a message) to determine when and which process to schedule.

a) Spin Block(SB)

A process waiting for a message spins for a fixed amount of time before blocking itself, hoping that the corresponding process is co-scheduled at the remote node.

b) Dynamic Co-Scheduling (DCS)

It uses an incoming message to schedule the process for which the messages are destined. The underlying idea is that there is a high probability that the corresponding sender is scheduled at the remote node and thus, both processes can be scheduled simultaneously.

c) Periodic Boost (PB)

It uses a periodic mechanism that checks the endpoints of the parallel processes in a round-robin fashion and boosts the priority of one of the processes with un consumed messages based on some selection criteria.

d) Coordinated Scheduling (CC)

The recently proposed CC scheme is different in that it optimizes the spinning time to improve performance at both the sender and receiver. With this scheme, the sender spins for a pre-determined amount of time before blocking, waiting for an acknowledgement from the Network Interface Controller (NIC). On the receiver side, a process waits for a message arrival within the spin time. If a message does not arrive within this time, the process is blocked and registered for an interrupt from the NIC. In a regular interval, a process that has the largest number of un-consumed incoming message is scheduled to run next.

RMS environments provide middleware services to users that should enable heterogonous environments of workstations, SMPs and dedicated parallel platforms to be easily and efficiently utilized. Notes on Cluster Scheduling:

1. When a job is submitted to a resource manager, the job waits in a queue until it is scheduled and executed. The time spent in the queue, or wait time, depends on several factors including job priority, load on the system, and nature of job and availability of requested resources.

2. For efficient scheduling, the scheduler need information regarding job size, priority, expected execution time (indicated by the user), resource access permission (established by the administrator), parallel or distributed execution and/or other specific I/O requirements and resource availability (automatically obtained by the scheduler).

3. In high-performance computing clusters, the scheduling of parallel jobs requires special attention because parallel jobs comprise several subtasks. In addition, they need to constantly communicate among themselves during execution. If there are nodes with multiple CPUs present in the cluster then the scheduler should assign these subtasks of the parallel job to preferably these CPUs. The manner in which subtasks are assigned to processors is called mapping. The scheduler can also ensure a Hybrid co-scheduling strategy only for such parallel jobs to further improve system utilization by forcing some level of synchronization to help nodes. For parallel jobs, the job efficiency also affects resource utilization. To achieve high resource utilization for parallel jobs, both job efficiency and advanced scheduling are required. Hence, we can say that in High Performance computing clusters, an additional consideration arises: the need to minimize communication overhead by mapping applications appropriately to the available compute nodes.

4. Under heavy load conditions, capability of the scheduler to provide fair allocation of cluster’s resources also becomes important. One way to ensure the fairness is by collecting historical data from previously executed jobs and using this data to dynamically adjust the priority of the jobs in the queue. This helps to ensure the fair distribution of resources among users and jobs.

V. Cluster Scheduling Algorithms

For well over a decade, the field of job scheduling has been the subject of great scrutiny, producing a sizeable body of work and increasing returns on HPC investments by millions of dollars. Despite this progress, one may argue that the problem of scheduling on parallel systems may not be closer to being solved today than it was a decade ago. Scheduling is an inherently reactive discipline, mirroring trends in HPC architectures, parallel programming language models, user demographics, and administrator priorities. No scheduling strategy is optimal for all of today’s scenarios, let alone all of tomorrow’s. There are many different ways to schedule parallel jobs, and the threads which make them up . But only a few mechanisms are used in practice and studied in detail. Two approaches that have dominated the last decade are backfilling and gang scheduling. In this survey of scheduling algorithms I will be mainly concentrating on various improvements in Advance Reservation and Backfilling techniques and some enhancement in Gang Scheduling by Co-Scheduling techniques Page 11 of 27

e) Hybrid Co-scheduling

Figure 3: HYBRID Co-scheduling Mechanism
Execution of a parallel process consists of two phases; computation and communication. In Hybrid Co-scheduling, different scheduling policies are applied to the computation and communication phases of a program. Priority of all the communicating processes is boosted at the beginning of a communication phase hoping that they are all co-scheduled, and it is lowered at the end of communication. This is done at the MPI level by detecting the communication activities

Figure 4: Actions taken by the Communication-driven Co-scheduling Algorithms

Note on Merits of Hybrid Co-scheduling over other Communication-Driven Co-scheduling

1. The main reason the HYBRID scheme performs better than all prior co-scheduling schemes is that it avoids the unnecessary spinning time of other schemes.

2. The second reason is that there are frequent interrupts from a NIC to the CPU to boost the process’s priority in CC, DCS and PB. In HYBRID, since the process is only boosted at the beginning of an MPI collective communication, it can save these interrupt overheads.
Page 14 of 27

3. The HYBRID scheme avoids the global synchronization overhead of gang scheduling. A gang scheduler spends some time to achieve the global synchronization across all the nodes per every scheduling quantum. However, since HYBRID follows the implicit co-scheduling policy, there is no need for global synchronization.

4. A typical communication-driven co-scheduling scheme monitors the communication activities and a co-scheduling module decides on which process to be boosted based on the communication activity. Thus, it incurs some processing overhead, while the HYBRID co-scheduling can eliminate this overhead.

5. The HYBRID mechanism eliminates the possible delay between a message arrival at a node and the actual boosting of the process, because the priority is already boosted whenever a process enters the communication phase.

However, to the best of my knowledge, none of these co-scheduling techniques have yet made their way into real deployment. V.ii. Space Sharing Algorithms Batch Scheduling: Batch scheduling policies are usually applied to a networked set of computers that belong to a single administrative domain. Users specify the resource requirements of each task using a suitable interface or language. Batch scheduling is the most popular policy to manage dedicated clusters for running non-interactive jobs. Typically, a batch scheduler is used for large scientific applications to avoid memory swapping.

1. First Come First Serve (FCFS)

In FCFS, jobs are considered in order of arrival. If there are enough processors available to run a job, the processors are allocated and the job is started. But if enough processors are not available, the first job must wait for some currently running job to terminate and free additional processors. All subsequent jobs also wait so as not to violate the FCFS order. This may lead to a waste of processing power as processors sit idle waiting for enough of them to accumulate. Since each application utilizes only a subset of the system’s processors, those processors not in the subset are left idle during execution. This effect is known as fragmentation and its reduction is the primary focus of much scheduling research.

2. Shortest Job First (SJF)

It periodically sorts the incoming jobs and executes the shortest job first, allowing short jobs to get a good turnaround time. However, this strategy may cause delays for the execution of long (large) jobs.

3.

 Longest Job First (LJF)

It commits resources to longest jobs first. The LJF approach tends to maximize system utilization at the cost of turnaround time. Page 15 of 27

4. Advance reservation

Some applications have very large resource requirements and need simultaneous access to resources from more than one parallel computer. One solution to this co-allocation problem is “advanced reservation of resources”. It uses execution time predictions provided by the users to reserve resources (such as CPUs and memory) and to generate a schedule. Hence, it serves as the mechanism by which the scheduler guarantees the availability of a set of resources at a particular time.

5. Backfilling:

Given a schedule with advance-reserved, high-priority jobs and a list of low-priority jobs, a backfill algorithm tries to fit the small jobs into scheduling gaps. This allocation does not alter the sequence of jobs previously scheduled, but improves system utilization by running low priority jobs in between high-priority jobs. To use backfill, the scheduler requires a runtime estimate of the small jobs, which is supplied by the user when jobs are submitted.

6. Preemptive Backfilling

High-priority jobs can preempt lower-priority or backfill jobs if resources to run the high-priority jobs are not available. In some cases, resources reserved for high-priority jobs can be used to run low-priority jobs when no high-priority jobs are in the queue. However, when high-priority jobs are submitted, these low-priority jobs can be preempted to reclaim resources for high-priority jobs. Note on Space Sharing Algorithms

1. In some schedulers, Jobs are prioritized in some way and then reservations are be made in order of priority. Then in another pass Backfilling is done on the basis of priority. The job priorities are set on the basis of the following criteria

a) to favor certain users or projects,

b) a user priority to differentiate among the jobs f the same user

c) Scheduler priority to take into account fair-share, system utilization and other parameters set on the basis of jobs.

2. Effect of User Runtime Estimates

When user submits a job he makes an estimate of how long the job will run. He then pads his estimates to make sure that job will have adequate time to complete the job. Since, runtime is overestimated. The backfilled job will run as soon as the original job gets finished even though sufficient resources might be available to run a high priority job which in effect is “delayed” as it should have executed ahead of the backfilled job. Hence, while the start time of a job with a reservation will never slide back in time, backfill can prevent it from sliding forward in time as much as it could have otherwise, resulting in a pseudo-delay. This can be solved by checking whether sufficient resources are available for a high priority reserved job just before scheduling the backfilled job. Although, we incur a slight overhead but it helps in increasing or at least maintaining the same level of system utilization while preserving the execution order as decided by scheduler on priority basis.

3. Improving Resource Matching Through Estimation of Actual Job Requirements
Page 16 of 27
Mostly, jobs are allocated more resources than what they actually need due to users overestimating the job requirements. With over-provisioning, we specifically refer to resources in a given computing machine that can affect the completion of the job execution. That is, if the capacity of these resources falls below a certain level, the job cannot execute successfully. The required resource capacities are estimated by the learning algorithms based on previously submitted jobs and the resources allocated to them. In principle, we envision a resource estimation phase prior to resource allocation (see Figure 5). When a job is submitted to the scheduler, its actual job requirements are estimated based on past experience with previously submitted jobs. Then, the resource allocator matches these estimated job requirements with available resources instead of matching with the original job requirements. Once a job completes (either successfully or unsuccessfully) the estimator gathers feedback information to improve its resource approximation for future job submissions e.g., actual resources used.

Figure 5: Schematic diagram of the scheduling process with estimation of job requirements

VI. Case Study: Maui Cluster Scheduler
Maui Cluster Scheduler is an open source advanced job scheduler that is specifically designed to optimize system utilization in policy-driven, hetero generous HPC environments. Its focus is on fast turnaround of large parallel jobs making the Maui scheduler highly suitable for HPC. Maui is often considered as the best open source scheduler. It generally sees performance levels of 60-75 percent and is regarded by many as ‘the most advanced open source scheduler of the world’. Maui is an advanced cluster scheduler capable of optimizing scheduling and node allocation decisions. Maui supports advance reservations, QOS levels, backfill, dynamic priorities, allocation management and fairness policies. Hence, it allows site administrators extensive control over which jobs are considered eligible for scheduling, how the jobs are prioritized, and where these jobs are run. Maui has a two-phase scheduling algorithm. During the first phase, the high-priority jobs are scheduled using advance reservation. In the second phase, a backfill algorithm is used to schedule low-priority jobs between previously scheduled jobs. Maui uses the fair-share technique when making scheduling decisions based on job history. Note: Maui’s internal behavior is based on a single, unified queue. This maximizes the opportunity to utilize resources. Maui is scalable to thousands of jobs, despite its non distributed scheduler daemon, which is centralized and runs on a single node.
The Maui Scheduler has received wide acceptance in the HPC community as a highly configurable and effective batch scheduler. Page 17 of 27
VI.i. Overview

1. Scheduling Iterations

It starts a new iteration when the following event(s) occur:

a) Job or resource change event occurs (i.e. job termination, node failure)

b) Reservation boundary event occurs

c) A configurable timer expires

d) Via an external command

2. Job Class and Job Credentials

Each class may have an associated set of constraints determining what types of jobs can be submitted to it. Job credentials are used to describe job ownership including user, ID, group ID and project ID.

3. QoS (Quality of Service)

In Maui Qos may be configured to allow many types of special privileges including adjusted job priorities, improved queue time and expansion factor targets, access to additional resources or exemption from certain policies. Each Qos is assigned an ACL (Access Control List) to determine which users, groups, accounts or job classes may access the associated privileges.

4. Throttling Policies

These are the policies which limit the total quantity of resources available to a given credential at any given moment. The resources constrained include things such as the processors, jobs, nodes and memory.

5. Node Sets

Node sets allow jobs to request sets of common resources without specifying exactly what resources are required. In addition to their use in forcing jobs onto homogeneous nodes, these policies may also be used to guide jobs to one or more types of nodes on which a particular job performs best, similar to job preferences available in other systems. Maui implements a ‘Best Effort’ Node set scheduling.

6. Expansion

XFactor = (Queue Time + Job Time Limit) / Job Time Limit A job with low time limit will increase its priority more quickly than a long job, pushing it to the front of the queue.

7. Simulation Mode

Maui has a simulation mode that can be used to evaluate the effect of queuing parameters on the scheduler performance. Because each HPC environment has a unique job profile, the parameters of the queues and scheduler can be tuned based on historical logs to maximize scheduler performance. VI. ii. Detailed Job Flow
On every scheduling iteration, Maui obtains fresh resource manager information and updates its own state information and schedules the selected jobs. The following is the sequence of work flow of Maui. Page 18 of 27

1. Obtain Updated Resource Manager Information regarding node, job state, configuration etc.

2. Update Statistics

Historical statistics and usage information for running jobs are updated. Statistics records for completed jobs are also generated.

3. Refresh Reservations

It adjusts existing reservation incorporating updated node availability. Changes in Node availability may also cause reservations to slide forward or backward in time. Reservations may be created or removed. Idle jobs that possess reservations providing immediate access to resources are started in this phase.

4. A list is generated that contains all jobs which can be feasibly scheduled. Availability of configured resources, job credentials, throttling policies etc are taken into account in generating this list.

5. Prioritize feasible jobs according to various job attributes, scheduling performance targets, required resources and historical usage information.

6. Schedule jobs in priority order, starting the jobs it can and creating reservations for those it can’t until it has made reservations for the top N jobs where N is a site configurable parameter.

7. Soft policy Backfill. Maui determines current available backfill windows and attempts to fill these holes with the remaining jobs which pass all soft throttling policy constraints.

8. Hard policy Backfill. If still resources are left, Maui selects the jobs which meet the less constraining hard throttling policies.

VI.iii. Scheduling Policies ADVANCE RESERVATION It is the mechanism by which Maui guarantees the availability of a set of resources at a particular time. Every reservation consists of list of resources, a timeframe and an access control list (ACL). Resources may include processors, memory, swap, local disk, initiator classes, and any number of arbitrary resources. Arbitrary resources may include peripherals such as tape drives, software licenses, or any other site specific resources, with task being the atomic collection of resources. Maui will examine all feasible resources and locate the needed resources in groups specified by the task description. A reservation's access control list specifies which jobs can use a reservation. Currently, the reservation access criteria include the following: users, groups, accounts, classes, QOS, and job duration. Timeframe specifies when the resources will be reserved or dedicated to jobs which meet the reservation's ACL. The timeframe simply consists of a start time and an end time. With each job, Maui attempts to locate the best possible combination of available resources whether these are reserved or unreserved. Advance reservation technology enables many features including backfill, deadline based scheduling, QOS support, and meta scheduling. Page 19 of 27
BACKFILL Since, all jobs possess a start time and a wallclock limit. Maui can determine completion time of all jobs in the queue. Hence, it can also determine the earliest the needed resource will be available for the highest priority job to start. This implies, it can also determine which jobs can be started without delaying this job. Hence, Maui can Backfill jobs to allow itself to make better use of available resources. Both Anecdotal evidence and simulation results show that in a typical large system, enabling backfill will increase the system utilization by around 20% and improve the average turnaround time by even greater amount. Backfill takes advantage of inefficiencies in batch scheduling, so it actually improves system utilization and improve the job turnaround time and even improve some form of fairness. Backfill Algorithm Maui makes two backfill scheduling passes. On the first pass, jobs satisfying soft throttling policy constraints are considered and scheduled. On the second pass, those jobs which meet the less constraining hard fairness throttling policies are considered. Maui identifies backfill windows by analyzing the idle nodes essentially looking for node-time rectangles in a Nodes Vs Time graph. After identifying backfill windows, Maui begins traversing them. They can be traversed widest window first or longest window first. Maui gives the option of applying BESTFIT, FIRSTFIT etc. The degree of fit is determined based on scheduling criteria parameter (i.e. processors, seconds, processor-seconds etc.)

Figure 6: Comparison of various backfilling algorithms
Backfill Drawbacks
While the start time of a job with reservation will never slide back in time, backfill can prevent it from sliding forward in time as much as it could have otherwise, resulting in a pseudo-delay. This Page 20 of 27
behavior arises due to the influence of inaccuracies in job run time estimates and resulting wallclock limits.

Figure 7:Wallclock accuracy induced Backfill delay.
Maui performs reservation adjustments in a priority order allowing the highest priority jobs access to the newly available resources first, thus providing a mechanism to favour priority jobs with every early job completion encountered. Given the pros and cons, we can intuitively see that for most sites backfill is worth it. Its drawbacks are rare and minor while its benefits are widespread and significant. PREEMPTION HPC workload is highly heterogenous. This results in problems such as maintaining maximum system utilisation while maintaing a quick turnaround time especially for short running development jobs. It also arises the ned to provide improved service in terms of average queue time or expansion factor (used for aging a job) for certain high priority or special quality service jobs. Current solutions to such proeblems are simply settting aside a subset of available resources for use by certain jobs. This kind of logical partitioning results in fragmentation and loss in system utilisation. Preemption provides an alternative to reserving blocks of resources. Premption comes in many flavours, including suspend-resume, checkpoint-restart and kill-restart. These flavours allow the scheduler to terminate active job immediately and transfer the resources to another job. Maui allows preemption to be used in 3 primary areas:

1. QOS based preemption

The first feature allows some QOS objects to be marked as a preemptor, others to be marked as a preemptee, and still others not marked at all. Simply put, this allows jobs with a preemptor QOS to preempt jobs with a preemptee QOS.

2. Quick turnaround based preemption

'Quick turnaround' based preemption allows a site to create a reservation that sets aside a set of resources for quick turnaround jobs. If the appropriate jobs are queued, Maui will run them on these reserved resources. However, if they are not, Maui will start other jobs on these resources. If a quick turnaround job shows up, Maui will preempt jobs using resources in the 'quick turnaround' reservation to allow these resources to be allocated by the appropriate job. Thus, Maui will optimistically attempt to use all idle resources and transfer these resources via preemption as needed, eliminating the wasting Page 21 of 27
of cycles required to handle the 'just in case' scenario.

3. Preemption based Backfill

In classic backfill, high priority jobs that cannot run are given reservations to guarantee start time and prevent starvation. However, wallclock limit accuracies often cause the reservations to be made for times much later than is actually possible resulting in system losses. These inaccuracies also result in the potential for backfill jobs to actually delay priority jobs. With preemption based backfill, no priority based reservations are made. Rather, backfill jobs are marked as preemptible and priority jobs are marked as preemptors. Thus, when resources do become available for a priority job to finally run, Maui allocates idle resources as available and preempts backfill resources as needed. Research to date has proven this approach to be very competitive with classic backfill and it is hoped that ongoing work will be able to improve the effectiveness of this class of algorithms even further.

Figure 8: The effects of Wall Clock Accuracy on backfill performance

JOB PRIORITIZATION For Job prioritization the approach used by Maui in representing a multi-faceted set of site goals is to assign weights to the various objectives so an overall value or priority can be associated with each potential scheduling decision. Maui's prioritization mechanism allows component and subcomponent weights to be associated with many aspects of a job so as to enable fine-grained control over this aspect of scheduling. To allow this level of control, Maui uses a simple priority-weighting hierarchy where the contribution of each priority subcomponent is calculated as <COMPONENT WEIGHT> * <SUBCOMPONENT WEIGHT> * <PRIORITY SUBCOMPONENT VALUE> The Maui prioritization mechanism takes into account 6 main categoroies of information

1. Current service levels
Page 22 of 27
Allows favoring of jobs with lowest current scheduling performance (promotes balance of delivery of job queue time and expansion factor levels). It also allows favoring of jobs bypassed to prevent backfill job starvation Evaluation Metric:

a) Time job has been queued

b) Minimum Job expansion factor

c) Number of times job has been bypassed by backfill

2. Requested Job Resources

Allows favoring of jobs which meet various requested resource constraints (i.e. favoring large processor jobs counters backfill proclivity for smaller jobs and improves overall system utilization) Evaluation Metric: Number of nodes, processor requested, total real memory, virtual memory, local disk, processor seconds, processor equivalent, walltime requested.

3. Fairshare

Allows favoring of jobs based on historical usage associated with their credentials Evaluation Metric: User, group, account, QOS and class/queue based historical usage

4. Job credentials

Allows political priorities to be assigned to various groups Evaluation Metric: User, group, account, QOS and class/queue specific priority

5. Target

Allows ability to specify service targets and enable non-linear priority growth to enable a job to reach this service target Evaluation Metric:

a) Time until queue time target is reached (exponential)

b) Distance to target expansion factor (exponential)

6. Consumed resources

For active jobs only Evaluation Metric:

a) Processor seconds dedicated to date

b) Processor seconds outstanding

c) Percent of required walltime consumed

d) Time since job started

VII. Survey of Cluster Schedulers

VII.i. Maui Scheduler Molokini Edition (written in Java)
It is a batch scheduling software written in Java with modular software components. It seems that the Maui Scheduler matches or exceeds the technical features of other parallel batch schedulers and resource managers. And by using Java or Python, we can also write our own component plug-ins. I think it implements all the features of the Maui cluster scheduler maintained by Cluster Resource Inc. Page 23 of 27
What is good about this is that it is extremely modular and the log based and accounting information are stored in Mysql Database using JDBC. The features such as reservation, Backfill, QoS etc are implemented In this scheduler. We are allowed to “Extend the scheduler and Node Daemon”. Security is handled by using Java Cryptix Library. Features (In addition to usual Maui scheduler features):

1. Database connectivity for job accounting.

2. XML client / server “wired” protocol.

3. End to end encryption and authentication for all socket communications.

4. It maintains a backup solution for the whole state of the system in its Mysql database.

Useful Link: http://mauischeduler.sourceforge.net/ VII.ii. Moab Workload Manager Moab Workload Manager is a policy-based job scheduler. It simplifies management across one or multiple hardware, operating system, storage, network, license and resource manager environments. Moab is a superset of Maui. Moab generally sees performance levels of 90-99 percent. Moab Workload Manager combines intelligent scheduling of resources with advanced reservations to process jobs on the right resources at the right time. It also provides flexible policy and event engines that process workloads faster and in line with set business requirements and priorities. It is not open source. It is a commercial derivative of Maui. In addition to features that are already there in Maui, Moab also have the following features.

1. Malleable Job Support

A job can specify whether or not it is able to use more processors or less processors and what effect, if any, that has on its wall clock time. For example, a job may run for 10 minutes on 1 processor, 5 minutes on 2 processors and 3 minutes on three processors. When a job is submitted with a task request list attached, Moab will determine which task request fits best and mold the job based on its specifications.

2. Object Triggers

Moab can automate arbitrary actions to be associated with cluster events. For example, an administrator may want to send an email to the owner of a particular reservation when the usage drops below a specific threshold. Or a user may want to launch an evaluation script 5 minutes before his job is scheduled for completion. Triggers can be associated with jobs, nodes, reservations, or the core scheduler and enable actions to be taken when the specified event, offset, and threshold criteria are satisfied.
3. Local Area Grid Integration
This allows the scheduler to establish relationships between multiple clusters and provide access to additional resources, improve load-balancing, provide single system images, and offer other benefits. Page 24 of 27

4. Dynamic Execution Framework: It allows adaptation, improved uptime and responsiveness.

5. Multi resource Management(Storage/Hardware, Resource, Network and License Manager)

In addition to the above features, various Scheduling Optimizations e.g. Task Distribution (Maximizing Intra-Job Efficiency) are present in Moab but not in Maui. Of late, people have started implementing some of these features in Maui. VII.iii. a) Open PBS:

No Advanced Reservation, Pre-emption and Backfill scheduling.

But fortunately by integrating Maui scheduler with OpenPBS we can overcome this hurdle. b) PBSPro 8 .0

Parallel Job Support: Applications can be scheduled to run within single multiprocessor systems or across multiple systems.

Automatic and efficient job placement on any hardware platform, including clusters, SMP, NUMA and new massively parallel architectures.

Comprehensive API: Should the provided schedulers not meet your site's needs, it is possible to implement a replacement scheduler using the APIs to accomplish your site's desires.

Cross-System Scheduling: Jobs can be submitted from any client node.

Desktop Cycle Harvesting: Take advantage of otherwise idle nodes and use it for computation when the user is away (for Non-Dedicated Clusters).

OpenPBS Vs PBSPro

	Features
	OpenPBS
	PBSPro

	Advanced Reservations
	NO
	YES

	Backfilling
	NO
	YES

	Preemption
	NO
	YES

	Enterprise quality fault tolerance and reliability
	NO
	YES

	Parallel Job Support:
	YES
	YES

	Comprehensive API
	YES
	YES

	Cross-System Scheduling:
	YES
	YES

	Desktop Cycle Harvesting
	NO
	YES

	Security and Access Control Lists
	NO
	YES

	Job-Interdependency and Job-Priority
	NO
	YES

VII.iv. Platform LSF HPC Platform LSF a popular resource manager for clusters. It is optimized for HPC parallel applications by providing additional facilities for intelligent scheduling and has a dynamic scheduling decision mechanism. Some of the Main features:

jobs can be migrated among compute nodes or rescheduled

It dynamically migrate jobs among compute nodes.

It can also have multiple scheduling algorithms applied to different queues simultaneously.

Can make intelligent scheduling decisions based on the features of advanced interconnect networks.

• Fairshare, Preemption, Advanced Reservation.

Can interface with external schedulers such as Maui.

For example, using Platform LSF HPC, the hierarchical fair-share algorithm can dynamically adjust priorities and feed these priorities to Maui for use in scheduling decisions.

VII.v. OAR Batch Scheduler (with high level components) This batch system is based on a database (Mysql), a script language (Perl) and an optional scalable administrative tool (component of Taktuk framework). It is composed of modules which interact only with database and are executed as independent programs. So formally, there is no API, the system is completely defined by the database schema. This approach eases the development of specific modules. Indeed, each module (such as schedulers) may be developed in any language having a database access library. Default configuration is claimed to be as good as MAUI. Some of the Main features

Opened architecture and data structures

Relational database engine (Mysql)

--to store Nodes information --Jobs information --Relations between jobs and nodes --Internal state

Best-effort queues (for exploiting idle resources)

Dynamic insertion/deletion of compute node

First-Fit Scheduler with matching resource

Grid integration with Cigri system

Simple Desktop Computing Mode

Backfilling

Advance Reservation
Page 26 of 27

VIII. Conclusion

As cluster sizes scale to satisfy growing computing needs in various industries as well as in academia, advanced schedulers can help maximize resource utilization and QoS. The profile of jobs, the nature of computation performed by the jobs, and the number of jobs submitted can help determine the benefits of using advanced schedulers. An important problem with traditional parallel job-scheduling algorithms is their specialization for specific types of workloads, which results in poor performance when the workload characteristics do not fit the model for which they were designed. For example, batch and gang scheduling perform poorly under dynamic or load-imbalanced workloads, whereas implicit co-scheduling suffers from performance penalties for fine-grained synchronous jobs. Most job schedulers offer little adaptation to externally and internally fragmented workloads. The result is reduced machine utilization and response times. We still don’t have a cluster scheduler that works equally well for all kinds of workloads. Hence, there is still a lot of scope of improvement to achieve high level of resource utilization while maintaining low job turnaround time. A major area of ongoing and future research is locality based scheduling. That is, scheduling based upon the topology of the interconnect, which might include interconnects with a tree structure and will certainly include SMP building blocks. This type of scheduling will become even more important in the near future since it becomes increasingly difficult and expensive to build a flat interconnect as the cluster size grows. In addition, new interconnect technologies are appearing which use loop, mesh and torus topologies. Improving Resource Matching through Estimation of Actual Job Requirements is another area which will command a lot of attention in the near future. Effective runtime estimation directly effects effectiveness of backfill algorithm and may even lead to improved system utilization by about 10-15% while maintaining the same average turnaround time.

IX. Bibliography

Papers and Publications [1] Mark Baker. Cluster Computing Whitepaper CoRR cs.DC/0004014 (2000) [2] Prof. Gautam Barua. High Performance Computing: Hardware and Software Trends [3] Saeed Iqbal, Rinku Gupta, Yung-Chin Fang. Planning Considerations for Job Scheduling in HPC Clusters. Dell Power Solutions Magazine, Feb. 2005. [4] Dror G. Feitelson, Larry Rudolph, Uwe Schweigelshohn. Parallel Job Scheduling – A Status Report. Job Scheduling Strategies for Parallel Processing, 10th International Workshop, JSSPP 2004, New York, NY, USA, June 2004 Page 27 of 27
[5] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, Andy B. Yoo, Chita R. Das. Co-scheduling in Clusters: Is It a Viable Alternative? Proceedings of the 2004 ACM/IEEE conference on Supercomputing ,2004 [6] Jonathan Weinberg. Job Scheduling on Parallel Systems University of California, San Diego ,2006 [7] Mark Baker and Rajkumar Buyya. Cluster Computing at a Glance. High Performance Cluster Computing, vol. 1, Architectures and Systems, 1999 [8] Brett Bode, David M. Halstead, Ricky Kendall, and Zhou Lei. The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters. 4th Annual Linux Showcase & Conference, Atlanta. Georgia. October 2004 [9] Yanyong Zhang, Anand Sivasubramaniam, Jose Moreira and Hubertus Franke. A Simulation-based Study of Scheduling Mechanisms for a Dynamic Cluster Environment. Proceedings of the 14th international conference on Supercomputing, 2000. [10] David B. Jackson, Heather L. Jackson, and Quinn O. Snell. Simulation Based HPC Workload Analysis. Proceedings of the 15th International Parallel and Distributed Processing Symposium (IPDPS'01) - Volume 1, 2001 [11] David B. Jackson, Quinn O. Snell and Mark Clement. Core Algorithms of the Maui Scheduler. Revised Papers from the 7th International Workshop on Job Scheduling Strategies for Parallel Processing, 2001 [12] David B. Jackson .New Issues and New Capabilities in HPC Scheduling with the Maui Scheduler. Center for High Performance Computing, University of Utah. [13] Quinn O Snell, Mark J Clement and David B. Jackson. Preemption Based Backfill. Job Scheduling Strategies for Parallel Processing, 8th International Workshop, JSSPP 2002, Edinburgh, Scotland, UK, 2002. Websites

1. http://en.wikipedia.org/wiki/Computer_cluster

2. http://en.wikipedia.org/wiki/High_performance_computing

3. http://www.buyya.com/cluster/

4. http://supercluster.org/documentation/

5. http://www.supercluster.org/research/papers/

6. http://www.pdl.cmu.edu/batchactive/

7. http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php

8. http://formosa.nchc.org.tw/FormosaDoc/Maui/

9. http://dcwww.camp.dtu.dk//pbs.html

10. http://www.sao.nrc.ca/~gabriel/pbs/pbs_user.html

11. http://www-unix.mcs.anl.gov/openpbs/

12. http://www.clusterresources.com/pages/products/torque-resource-manager.php

image5.png
Jobs.

e

Feedback

Resource,

Resource

estimation

maiching

Scheduling

Execution

image6.png
% Utilization

%5

o

s

ES
10

2

0

W = s T w0
Simulation Days

0

image7.png
Nodes Job A's actual inish time

Job A's projected finsh time.

Time

image8.png
System Utilization (%)

0%

% W% 0% 0% G0N 0% D% G0% 0%

Wall Clock Accuracy

image1.png

image2.png
Parallel Programming Environment

PC/Workstation PC/Workstation PC/Workstation PC/Workstation
Operating System Operating System Operating System Operating System
Communication Communication Communication Communication
Software Software Software Software
Network Interface Network Interface Network Interface Network Interface
Hardware Hardware Hardware Hardware

Cluster Interconnection Network/Switch

image3.png
Node 1 Ceee e Node N
Parallel Process Parallel Process

Ce itation Ph:
e Computation Phase

communication | |-, c1oquied 5
Phase Parallel ‘Communication
(MPI Functions) || Processes Brase

(MPI Functions)

\ -
Gt T) [t

Priority | Computation Phase

image4.png
Coscheduling Scheme Receiver Sender Collective Communication Phase
Beginning Eud
DCs Spin-only, Boost a priority Spin-only Nothing Nothing
5B Spin-Block Spin-on] Nothing Nothing
T8 Spin-only, Boosting Spin-on Nothing Nothing
CC Spin-Block, Boost a Priority | Spin-Block, Boost a Priority Nothing Nothing
HYBRID Tmmediate Block Tmmediate Block Boost a priority | Restore a priority

