DB SERVER MANAGEMENT SYSTEM

ABSTRACT

 In the Current Scenario SQL Server 2005 can be administered with the help of SQL Server Management Studio Installed on the Server. Microsoft® SQL Server™ 2005 administration provides different applications, services to assist the system administrator with all administrative tasks related to maintaining and monitoring server performance and activities. But, all this is possible provided the administrator uses SQL Server Management Studio. Consider a case wherein administrator is not in a position to get to the server and an immediate task has to be carried out. Is there a way where in the administrator can take over the control of the system from a remote location and do not feel any different than using a same SQL Server Management Studio.
 To fulfill any such need of an administrator wherein he can administer the SQL Server from a remote location NSQL Server Management Studio is designed. The Interface is so designed that an administrator can feel as if he is working on the server and using an SQL Server Management Studio. All this is possible if the administrator provides a proper authentication.
 This volume presents the manner in which the software was developed and how the various problems are tackled at the different levels for the convince of user.
 We hope that this package would prove to be an excellent tool for exporting and importing of Data within a local network.

CONTENTS

1. Introduction

a. Introduction to the project

b. Organization Profile

2. System Study

a. Study of the System

b. Problems in existing system

c. Solutions of these problems

3. Requirement Analysis and specifications

a. Requirement Analysis Document

b. Feasibility Study

c. Hardware and Software specifications

4. System Design

a. Data Flow Diagrams

b. UML Diagrams

5. Implementation
a. Selected Software

b. Coding
6. Testing

a. Compiling Test

b. Executing Test

c. Output Test
7. Output Screens

8. Conclusion

a. Summary

b. Future Enhancements

c. Bibliography
INTRODUCTION

Introduction to .nsql Server Management Studio
Each new version of Microsoft® SQL Server seeks to automate or eliminate some of the repetitive work performed by database administrators. Because database administrators are typically among the people most highly trained in database issues at a site, these improvements allow a valuable resource to spend more time working on database design and application data access issues. The Scope of administration of such complex task is still limited to the desktop over a LAN network where the Server is installed on a Single system, which acts as server, and the other systems in the client work under the client environment to interact with the SQL Server. The Project DB Server Management System aims to increase the scope of administration by building the remote administration tool to interact with SQL server located over the web.

 PURPOSE OF THE PROJECT:

· Need of an application to administer the SQL Server from a remote location.

· Increase the scope of the administrator where in the administrator need not be stay at serve all the time to carry out simpler tasks

· An interface not different from the SQL Server Management Studio with even simpler methods of performing administration tasks.
· Maintain Security for SQL Server similar to SQL Server Management Studio.
Organization profile
About CMC:

CMC Limited is India’s Information Technology company, offers both users in India and abroad a range services and solutions in areas like systems design and development , system engineering, multivendor networking, consultancy, installation, training, maintenance and total facilities management.

CMC has extensive and continually updated expertise in real time, on line systems, process control, image processing, data communications, networking, parallel architectures, etc. Integrated with horizontal expertise in information technology, is CMC’s vertical expertise in a whole range of industries both in infrastructural industries like power, coal, oil, and transportation, as well as service industries such as banking, law and order and education.

It is this totality of expertise that has enabled CMC to develop a variety of superior IT products and to execute a number of complex and challenging projects, not only in India, but also in Europe, America, Africa, the middle-east and South-East Asia.

First Challenge:

CMC limited commenced operation as “Computer Maintenance Corporation” in October 1976. The first challenge came just one year later in November 1977. IBM announced that it would cease its maintenance and support operations in India from June, 1978. The entire Indian Computer community, the majority of whom had IBM equipment, was thrown into confusion. It was at this juncture that CMC took a bold decision: It offered to provide maintenance services to all users to all users of IBM equipment in India, Regardless of the type, age, size or the location of their machines. The task was a truly a staggering one but CMC faced it with confidence. Exactly six months later, CMC stepped into IBM shoes and took over the maintenance of over the maintenance of over 800 IBM installations with any dislocation.

Further Afield:

Even as maintenance operations for IBM equipment were established, the Corporation began looking further Afield. While maintenance activities progressed apace, CMC turned its attention to other areas of computer support. Computer centers were set up in different cities and a whole range of consultancy services were offered. Computer education and training programmers were started. The R&D Centre at Hyderabad undertook pioneering projects in areas of contemporary technology. Software development in data communications and database management became one of the corporation’s fastest growing activities. And INDONET, India’s first national computer network began taking shape.

Re-Defining Priorities:

It soon became evident that calling Maintenance Corporation did not reflect the wide scope of its activities and services. It was in recognition of this fact that in August, 1984, ‘Computer Maintenance Corporation’ became ‘CMC Limited’.

CMC Today:

While hardware maintenance continues to play a major role, CMC’s activities have advanced in many new directions CMC is one of the leading systems Integrators in the country with multi-faceted expertise in Information Technology. As a part of the globalization activity, CMC has acquired a subsidiary Company in the USA, thereby expanding its international activities. In the light of the growth of the communication sector and its importance to be liberalized economy, CMC revamped its communications network – INDONET, in terms of new protocols, communication equipment as well as host systems. The need for highly specialized software engineering skills in the coming years has triggered increased Education & Training activities.

In order to give focus to the above mentioned business areas, five Strategic Business Units (SBU’s) have been formed, namely, customer services, Systems Integration, International Operations, INDONET and Education & Training. Each of the vertical units in the CMC’s line of business will operate as a profit centre with increased overall productivity and accountability. This will also help to gauge the performance of various business activities in terms of contribution and other measure of excellence to achieve industry standards and ultimately result in greater customer satisfaction.

 With 18 offices in INDIA, a subsidiary company in USA, 760 Software engineers, 800 hardware engineers, CMC caters to IT requirements of the customers from varied fields, spread over a vast global area.

[image: image1.png]
SYSTEM STUDY

Study of the system
Creating Database:

Microsoft® SQL Server™ management comprises a wide variety of administration tasks, including:

· Registering servers and assigning passwords.

· Reconfiguring network connectivity.

· Configuring standby servers.

· Setting server configuration options.

· Managing SQL Server messages. Etc

In most cases, you do not need to reconfigure the server. The default settings for the server components, configured during SQL Server Setup, allow you to run SQL Server immediately after it is installed. However, server management is necessary in those situations where you want to add new servers, set up special server configurations, change the network connections, or set server configuration options to improve SQL Server performance.

Creating a Database:

To create a database determines the name of the database, its owner (the user who creates the database), its size, and the files and file groups used to store it.

Before creating a database, consider that:

· Permission to create a database defaults to members of the sysadmin and dbcreator fixed server roles, although permissions can be granted to other users.

· The user who creates the database becomes the owner of the database.

· A maximum of 32,767 databases can be created on a server.

· The name of the database must follow the rules for identifiers.

Three types of files are used to store a database:

· Primary files:

These files contain the startup information for the database. The primary files are also used to store data. Every database has one primary file.

· Secondary files:

These files hold all the data that does not fit in the primary data file. Databases do not need secondary data files if the primary file is large enough to hold all the data in the database. Some databases may be large enough to need multiple secondary data files, or they may use secondary files on separate disk drives to spread the data across multiple disks.

· Transaction log :
These files hold the log information used to recover the database. There must be at least one transaction log file for each database, although there may be more than one. The minimum size for a log file is 512 kilobytes (KB).

When a database is created, all the files that comprise the database are filled with zeros to overwrite any existing data left on the disk by previously deleted files. Although this means that the files take longer to create, this action prevents the operating system from having to fill the files with zeros when data is written to the files for the first time during usual database operations. This improves the performance of day-to-day operations.

 CONTROL Internet.HHCtrl.1
Create a database using the Create Database Wizard (SQL Server Management Studio):
To create a database using the Create Database Wizard

1. Expand a server group, and then expand the server in which to create a database.
2. On the Tools menu, click Wizards.

3. Expand Database.

4. Double-click Create Database Wizard.

5. Complete the steps in the wizard.

Creating and Modifying a Table:
After you have designed the database, the tables that will store the data in the database can be created. The data is usually stored in permanent tables. Tables are stored in the database files until they are deleted and are available to any user who has the appropriate permissions.

Temporary Tables:

You can also create temporary tables. Temporary tables are similar to permanent tables, except temporary tables are stored in tempdb and are deleted automatically when no longer in use.

The two types of temporary tables, local and global, differ from each other in their names, their visibility, and their availability. Local temporary tables have a single number sign (#) as the first character of their names; they are visible only to the current connection for the user; and they are deleted when the user disconnects from instances of Microsoft® SQL Server™ 2000. Global temporary tables have two number signs (##) as the first characters of their names; they are visible to any user after they are created; and they are deleted when all users referencing the table disconnect from SQL Server.

For example, if you create a table named employees, the table can be used by any person who has the security permissions in the database to use it, until the table is deleted. If you create a local temporary table named #employees, you are the only person who can work with the table, and it is deleted when you disconnect. If you create a global temporary table named ##employees, any user in the database can work with this table. If no other user works with this table after you create it, the table is deleted when you disconnect. If another user works with the table after you create it, SQL Server deletes it when both of you disconnect.

Table Properties:

You can define up to 1,024 columns per table. Table and column names must follow the rules for identifiers; they must be unique within a given table, but you can use the same column name in different tables in the same database. You must also define a data type for each column.

Although table names must be unique for each owner within a database, you can create multiple tables with the same name if you specify different owners for each. You can create two tables named employees and designate Jonah as the owner of one and Sally as the owner of the other. When you need to work with one of the employee’s tables, you can distinguish between the two tables by specifying the owner with the name of the table.

The above task can be achieved by using the component ASPEnterprisemanager which is part of the application. The component provides various methods in which a user can interact with the sql server resources located on a remote computer.

 Before using the component the component has to attach to the application which can be done by double clicking on the solution name on the solution explorer. Browse the component and attach to the solution. Once the component is attached. The component can be used by importing it into the application as

Imports system.aspenterprisemanager

By importing the component all the methods of the component can be used to interact with the SQL server.
Number of modules:

The System after carefully analysis has been identified with the following modules:

1. Database Security.

2. Creating and Managing Database.

3. Maintaining Database.

4. Creating and Managing Tables.

Database Security:

Most SQL Server databases have a number of users viewing and accessing data, which makes security a major concern for the administrator. The administrator will take full advantage of SQL Server security roles, which grant and deny permissions to groups of users, greatly reducing the security workload.
The following are the roles to provide security to the administrator:

· The administrator must log in to the server by entering username and password.
· If the administrator gives wrong username and password, then the database generates an error.
· After work had done, the administrator has to logout.
Creating and maintaining Database:
Any work that maintains or improves the security, quality, accessibility, or utility of data. Includes creation of relational databases, creation of computer applications to manage data, creation of standardized data formats, and management of the data within the database.
· Once connected to the server, accessing to the stored databases or creating new databases or creating properties of the database is to be determined by the administrator.
· We can also edit database role, accessing properties of the user in the stored database.
· If the stored database is no longer required, we can delete the unused database.

· Queries can be used to execute the currently selected databases.
Maintaining database:

To maintain database effectively, we use stored procedures. A stored procedure is a set of one or more sql statements that are stored together in database. To use the stored procedure you send request for it to be executed. When server receives the request, it executes the stored procedure.

The following are the ways to maintain databases:

· Once connected to the server we can create a new stored procedure or access or edit the stored procedure.
· We can delete the unused stored procedure.

· If required, We can also import and export the databases.

Creating and managing tables:

Tables are the basic unit of data storage in an Oracle Database. Data is stored in rows and columns. The ways to create and managing tables:
· Once connected to the server, we can create a new table or access the existing table.
· It is possible to edit the properties of the column or rename the table.

· We can also delete the unused tables that are stored in the database.

PROBLEMS IN THE EXISTING SYSTEM:

· The current system i.e. SQL Server Management Studio is installed only on the server and can be used from the server location

· Administrator need to use the resources provides by the SQL Server Management Studio even for simpler tasks such as creating views.

· New Database can only be created at server.

· Simpler administration features such as monitoring users connected to database, granting roles, creating rules is only possible from SQL Server Management Studio.

· Administrator is bound to server for administrative tasks.

SOLUTION OF THESE PROBLEMS:
· The application should be designed in a manger that its interface should be similar to SQL Server Management Studio.

· The application should run in a browser from where the administrator can connect to any server installed on some other machine by providing the name of the server, its username and password.

· Should connect to any server within the network.
REQUIREMENT ANALYSIS AND SPECIFICATION

Analysis
The first step in finding an appropriate solution to a given problem is to understand the problem and its domain. The main objective of analysis is to capture a complete, unambiguous, and consistent picture of the requirements and needs. This is accomplished by constructing several models of the system that concentrate on describing what the system does rather than how it does it. Separating the behavior of the system from the way that behavior is implemented requires viewing the system from the perspective of the user rather than that of the machine. Analysis is the process of transforming a problem definition from a fuzzy set of facts and myths in to coherent statements of systems requirements.
Analysis can also be defined as a process of transformation of the user’s needs in to a set of problem statements and requirements (also known as requirement determination). Here we must analyze how the users will use the system and what is needed to accomplish the systems operational requirements. Analysis involves a great deal of interaction with the people who will be affected by the system, including the actual users and anyone else on which its creation will have an impact. The analyst has four major tools at his or her disposal for extracting information about a system:

· Examination of existing system documentation

· Research through Internet (Reviewing similar sites)

· Questionnaires

· Observation

 In addition there are minor methods, such as literature review. The inputs to this phase are user requirements, both written and oral, which will be reduced to the model of the required operational capability of the system.

The analyst is concerned with the users of the system, identifying the objects and inheritance, and thinks about the events that change the state of objects. Analysis is a creative activity that involves understanding the problem, and its associated constraints, and methods of overcoming those constraints. This is an iterative process that goes on until the problem I well understood. Analysis is a process by which we can identify classes that play a role in achieving system goals and requirements.

 The next step in analysis is to verify the feasibility of the proposed system. All projects are feasible given unlimited resources and infinite time’. But in reality both resources and time are scarce. Projects should confirm to time bounds and should be optimal in their consumption of resources. This places a constant on approval of any project.

Feasibility study
Feasibility as applied to our system pertains to the following areas:

· Economic Feasibility

· Technical Feasibility

· Operational Feasibility

· Expansion Feasibility

ECONOMIC FEASIBILITY:
 To decide whether a project is economically feasible, we have to take into consideration various factors as:
· Cost benefit analysis

· Long-term returns

· Maintenance costs

 The proposed system is computer based. It requires average computing capabilities and access to Internet, which are very basic requirements and can be afforded by any organization hence it doesn’t incur additional economic overheads, which renders the system economically feasible.

TECHNICAL FEASIBILITY:
 To determine whether the proposed system is technically feasible, we should take into consideration the technical issues involved behind the system. The proposed system uses the web technologies, which is rampantly employed these days worldwide. The world without the web is incomprehensible today. That goes to prove that the system is founded on existing and widely popular technologies. Hence the proposed system is technically feasible

OPERATIONAL FEASIBILITY:
 To determine the operational feasibility of the system, we should take into consideration the awareness level of the users. This system is operational feasible since the users are familiar with the technologies and hence there is no need to gear up the personnel to use the system. Also the system is very friendly and easy to use.

EXPANSION FEASIBILITY:

 The system has been designed in such a way that the future expansion is ensured.
 Hardware and software requirements:

Hardware requirements:
· Pentium IV.

· 256 MB Ram

· 512 KB Cache Memory

· Hard disk 20 GB

· Microsoft Compatible 101 or more Key Board

· STD Color Monitor

Software requirements:
· Operating System
:
Windows 2000/XP

· Back End
:
SQL SERVER-2000

· Front End :

ASP.Net.

· Database Connectivity :
Microsoft ODBC Driver

· Server : IIS

SYSTEM DESIGN

Data flow diagram

A data flow diagram is graphical tool used to describe and analyze movement of data through a system. These are the central tool and the basis from which the other components are developed. The transformation of data from input to output, through processed, may be described logically and independently of physical components associated with the system. These are known as the logical data flow diagrams. The physical data flow diagrams show the actual implements and movement of data between people, departments and workstations. A full description of a system actually consists of a set of data flow diagrams. Using two familiar notations Yourdon, Gane and Sarson notation develops the data flow diagrams. Each component in a DFD is labeled with a descriptive name. Process is further identified with a number that will be used for identification purpose. The development of DFD’s is done in several levels. Each process in lower level diagrams can be broken down into a more detailed DFD in the next level. The lop-level diagram is often called context diagram. It consists a single process bit, which plays vital role in studying the current system. The process in the context level diagram is exploded into other process at the first level DFD.

The idea behind the explosion of a process into more process is that understanding at one level of detail is exploded into greater detail at the next level. This is done until further explosion is necessary and an adequate amount of detail is described for analyst to understand the process.

Larry Constantine first developed the DFD as a way of expressing system requirements in a graphical from, this lead to the modular design.

A DFD is also known as a “bubble Chart” has the purpose of clarifying system requirements and identifying major transformations that will become programs in system design. So it is the starting point of the design to the lowest level of detail. A DFD consists of a series of bubbles joined by data flows in the system.

DFD SYMBOLS:

In the DFD, there are four symbols

1. A square defines a source(originator) or destination of system data

2. An arrow identifies data flow. It is the pipeline through which the information flows

3. A circle or a bubble represents a process that transforms incoming data flow into outgoing data flows.

4. An open rectangle is a data store, data at rest or a temporary repository of data

[image: image2]Process that transforms data flow.

Source or Destination of data

 Data flow

 Data Store

CONSTRUCTING A DFD:

Several rules of thumb are used in drawing DFD’s:

1. Process should be named and numbered for an easy reference. Each name should be representative of the process.

2. The direction of flow is from top to bottom and from left to right. Data traditionally flow from source to the destination although they may flow back to the source. One way to indicate this is to draw long flow line back to a source. An alternative way is to repeat the source symbol as a destination. Since it is used more than once in the DFD it is marked with a short diagonal.

3. When a process is exploded into lower level details, they are numbered.

4. The names of data stores and destinations are written in capital letters. Process and dataflow names have the first letter of each work capitalized

A DFD typically shows the minimum contents of data store. Each data store should contain all the data elements that flow in and out.

Questionnaires should contain all the data elements that flow in and out. Missing interfaces redundancies and like is then accounted for often through interviews.

SAILENT FEATURES OF DFD’s:

1. The DFD shows flow of data, not of control loops and decision are controlled considerations do not appear on a DFD.

2. The DFD does not indicate the time factor involved in any process whether the dataflow take place daily, weekly, monthly or yearly.

3. The sequence of events is not brought out on the DFD.

TYPES OF DATA FLOW DIAGRAMS:
1. Current Physical

2. Current Logical

3. New Logical

4. New Physical
CURRENT PHYSICAL:

In Current Physical DFD process label include the name of people or their positions or the names of computer systems that might provide some of the overall system-processing label includes an identification of the technology used to process the data. Similarly data flows and data stores are often labels with the names of the actual physical media on which data are stored such as file folders, computer files, business forms or computer tapes.

CURRENT LOGICAL:

The physical aspects at the system are removed as much as possible so that the current system is reduced to its essence to the data and the processors that transform them regardless of actual physical form.

NEW LOGICAL:

This is exactly like a current logical model if the user were completely happy with the user were completely happy with the functionality of the current system but had problems with how it was implemented typically through the new logical model will differ from current logical model while having additional functions, absolute function removal and inefficient flows recognized.

NEW PHYSICAL:

The new physical represents only the physical implementation of the new system.
RULES GOVERNING THE DFD’S:

PROCESS:
1) No process can have only outputs.

2) No process can have only inputs. If an object has only inputs than it must be a sink.

3) A process has a verb phrase label.

 DATA STORE:

1) Data cannot move directly from one data store to another data store, a process must move data.

2) Data cannot move directly from an outside source to a data store, a process, which receives, must move data from the source and place the data into data store

3) A data store has a noun phrase label.

SOURCE OR SINK:

The origin and /or destination of data.

1) Data cannot move direly from a source to sink it must be moved by a process

2) A source and /or sink has a noun phrase land

DATA FLOW:
1) A Data Flow has only one direction of flow between symbols. It may flow in both directions between a process and a data store to show a read before an update. The later is usually indicated however by two separate arrows since these happen at different type.

2) A join in DFD means that exactly the same data comes from any of two or more different processes data store or sink to a common location.

3) A data flow cannot go directly back to the same process it leads. There must be at least one other process that handles the data flow produce some other data flow returns the original data into the beginning process.

4) A Data flow to a data store means update (delete or change).

5) A data Flow from a data store means retrieve or use.

6) A data flow has a noun phrase label more than one data flow noun phrase can appear on a single arrow as long as all of the flows on the same arrow move together as one package.

[image: image3.png]
[image: image4.png]
[image: image5.png]
[image: image6.png]
Uml diagrams
 The Unified Modeling language is a standard language for specifying, visualizing, constructing and documenting the software system and its components. It is a graphical language, which provides a vocabulary and set of semantics and rules. The UML focuses on the conceptual and physical representation of the system. It captures the decisions and understandings about systems that must be constructed. It is used to understand, design, configure, maintain and control information about the systems.

Visualizing:

Through UML we see or visualize an existing system and ultimately we visualize, how the system is going to be after implementation. Unless we think, we cannot implement. UML helps to visualize, how the components of the system communicate and interact with each other.

Specifying:

Specifying means building models that are precise, unambiguous and complete UML addresses the specification of all the important analysis design, implementation decisions that must be made in developing and deploying a software system.

Constructing:

UML models can be directly connected to a variety of programming language through mapping a model from UML to a programming language like JAVA or C++ or VB.Forward Engineering and Reverse Engineering is possible through UML.

Documenting:

The Deliverables of a project apart from coding are some Artifacts, which are critical in controlling, measuring and communicating about a system during its development viz. requirements, architecture, desire, source code, project plans, tests, prototypes, releasers etc.

Diagrams :
 Uml Diagrams are graphical representation of set of elements. Diagrams project a system, or visualize a system from different angles and perspectives. The UML has 9 diagrams. These diagrams can be classified into the following groups.

Static:

1. Class Diagrams.

2. Object Diagrams.

3. Component Diagrams.

4. Deployment Diagrams.

Dynamic:

1. Use-Case Diagram.

2. Sequence Diagram

3. Collaboration Diagram.

4. State Chart Diagram

5. Activity Diagram.

Use case Diagram:

 It shows a set of use cases and actors and their relationships. These diagrams illustrate the static use case view of a system and are important in organizing and modeling the behaviors of a system.

 The Use case diagram is used to identify the primary elements and processes that form the system. The primary elements are termed as "actors" and the processes are called "use cases." The Use case diagram shows which actors interact with each use case.

 A use case diagram captures the functional aspects of a system. More specifically, it captures the business processes carried out in the system. Due to the simplicity of use case diagrams, and more importantly, because they are shorn of all technical jargon, use case diagrams are a great storyboard tool.

Class Diagram:

Class diagrams are used to describe the structure of the system. Classes are abstractions that specify the common structure and behavior of a set of objects. Objects are instances of classes that are created, modified and destroyed during the execution of the system. Objects have states that include the values of its attributes and its relationships with other objects. Class diagram describe the system in terms of objects, classes, attributes, operations and their associations.

Sequence Diagram:

Sequence diagrams are used to formalize the behavior of the system and to visualize the communication among objects. They are useful for identifying additional objects that participate in the use cases. The objects involved in the use case are called participating objects. A sequence diagram represents the interactions that take place among these objects.

[image: image7.emf]DBA

LogIn

View Database

Create Table

Create Views

Store Procedures

LogOut

USECASE DIAGRAM

[image: image8.emf]DataBase

UserId

PassWord

Server

LogIn()

LogOut()

Views

TableName

Query

Create()

View()

Procedure

TableName

Parameter

Create()

View()

Tables

Column

DataType

Size

Create()

View()

*

*

*

*

*

*

CLASS DIAGRAM

[image: image9.emf]: DataBase: Tables; Views: Procedures: RunQuery: LogOut

 : DBA

: LogIn

LogIn

View DataBase

View Tables

Create Tables

Create Views

View Views

Create Procedure

Send Query

Send Query

Send Query

Send Query

View Query Result

LogOut

Create DataBase

SEQUENCE DIAGRAM
IMPLEMENTATION
Selected software

Microsoft.net framework:

 The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET Framework is designed to fulfill the following objectives:

· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, executed locally but Internet-distributed, or executed remotely.

· To provide a code-execution environment that minimizes software deployment and versioning conflicts.

· To provide a code-execution environment that guarantees safe execution of code, including code created by an unknown or semi-trusted third party.

· To provide a code-execution environment that eliminates the performance problems of scripted or interpreted environments.

· To make the developer experience consistent across widely varying types of applications, such as Windows-based applications and Web-based applications.

· To build all communication on industry standards to ensure that code based on the .NET Framework can integrate with any other code.

The .NET Framework has two main components:
· The common language runtime

· The .NET Framework class library.

 The common language runtime is the foundation of the .NET Framework. You can think of the runtime as an agent that manages code at execution time, providing core services such as memory management, thread management, and remoting, while also enforcing strict type safety and other forms of code accuracy that ensure security and robustness. In fact, the concept of code management is a fundamental principle of the runtime. Code that targets the runtime is known as managed code, while code that does not target the runtime is known as unmanaged code. The class library, the other main component of the .NET Framework, is a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging from traditional command-line or graphical user interface (GUI) applications to applications based on the latest innovations provided by ASP.NET, such as Web Forms and XML Web services.

 The .NET Framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET Framework not only provides several runtime hosts, but also supports the development of third-party runtime hosts.

 For example, ASP.NET hosts the runtime to provide a scalable, server-side environment for managed code. ASP.NET works directly with the runtime to enable Web Forms applications and XML Web services, both of which are discussed later in this topic.

 Internet Explorer is an example of an unmanaged application that hosts the runtime (in the form of a MIME type extension). Using Internet Explorer to host the runtime enables you to embed managed components or Windows Forms controls in HTML documents. Hosting the runtime in this way makes managed mobile code (similar to Microsoft® ActiveX® controls) possible, but with significant improvements that only managed code can offer, such as semi-trusted execution and secure isolated file storage.

 The following illustration shows the relationship of the common language runtime and the class library to your applications and to the overall system. The illustration also shows how managed code operates within a larger architecture.

Features of the Common Language Runtime:
 The common language runtime manages memory, thread execution, code execution, code safety verification, compilation, and other system services. These features are intrinsic to the managed code that runs on the common language runtime.

 With regards to security, managed components are awarded varying degrees of trust, depending on a number of factors that include their origin (such as the Internet, enterprise network, or local computer). This means that a managed component might or might not be able to perform file-access operations, registry-access operations, or other sensitive functions, even if it is being used in the same active application.

 The runtime enforces code access security. For example, users can trust that an executable embedded in a Web page can play an animation on screen or sing a song, but cannot access their personal data, file system, or network. The security features of the runtime thus enable legitimate Internet-deployed software to be exceptionally feature rich.

 The runtime also enforces code robustness by implementing a strict type- and code-verification infrastructure called the common type system (CTS). The CTS ensures that all managed code is self-describing. The various Microsoft and third-party language compilers

 Generate managed code that conforms to the CTS. This means that managed code can consume other managed types and instances, while strictly enforcing type fidelity and type safety.

 In addition, the managed environment of the runtime eliminates many common software issues. For example, the runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. This automatic memory management resolves the two most common application errors, memory leaks and invalid memory references.

 The runtime also accelerates developer productivity. For example, programmers can write applications in their development language of choice, yet take full advantage of the runtime, the class library, and components written in other languages by other developers. Any compiler vendor who chooses to target the runtime can do so. Language compilers that target the .NET Framework make the features of the .NET Framework available to existing code written in that language, greatly easing the migration process for existing applications.

 While the runtime is designed for the software of the future, it also supports software of today and yesterday. Interoperability between managed and unmanaged code enables developers to continue to use necessary COM components and DLLs.

 The runtime is designed to enhance performance. Although the common language runtime provides many standard runtime services, managed code is never interpreted. A feature called just-in-time (JIT) compiling enables all managed code to run in the native machine language of the system on which it is executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and increases memory locality-of-reference to further increase performance.

 Finally, the runtime can be hosted by high-performance, server-side applications, such as Microsoft® SQL Server™ and Internet Information Services (IIS). This infrastructure enables you to use managed code to write your business logic, while still enjoying the superior performance of the industry's best enterprise servers that support runtime hosting.

.NET Framework Class Library:
 The .NET Framework class library is a collection of reusable types that tightly integrate with the common language runtime. The class library is object oriented, providing types from which your own managed code can derive functionality. This not only makes the .NET Framework types easy to use, but also reduces the time associated with learning new features of the .NET Framework. In addition, third-party components can integrate seamlessly with classes in the .NET Framework.

 For example, the .NET Framework collection classes implement a set of interfaces that you can use to develop your own collection classes. Your collection classes will blend seamlessly with the classes in the .NET Framework.

 As you would expect from an object-oriented class library, the .NET Framework types enable you to accomplish a range of common programming tasks, including tasks such as string management, data collection, database connectivity, and file access. In addition to these common tasks, the class library includes types that support a variety of specialized development scenarios. For example, you can use the .NET Framework to develop the following types of applications and services:

· Console applications.

· Scripted or hosted applications.

· Windows GUI applications (Windows Forms).

· ASP.NET applications.

· XML Web services.

· Windows services.

 For example, the Windows Forms classes are a comprehensive set of reusable types that vastly simplify Windows GUI development. If you write an ASP.NET Web Form application, you can use the Web Forms classes.

Client Application Development:

 Client applications are the closest to a traditional style of application in Windows-based programming. These are the types of applications that display windows or forms on the desktop, enabling a user to perform a task. Client applications include applications such as word processors and spreadsheets, as well as custom business applications such as data-entry tools, reporting tools, and so on. Client applications usually employ windows, menus, buttons, and other GUI elements, and they likely access local resources such as the file system and peripherals such as printers.

 Another kind of client application is the traditional ActiveX control (now replaced by the managed Windows Forms control) deployed over the Internet as a Web page. This application is much like other client applications: it is executed natively, has access to local resources, and includes graphical elements

 In the past, developers created such applications using C/C++ in conjunction with the Microsoft Foundation Classes (MFC) or with a rapid application development (RAD) environment such as Microsoft® Visual Basic®. The .NET Framework incorporates aspects of these existing products into a single, consistent development environment that drastically simplifies the development of client applications.

 The Windows Forms classes contained in the .NET Framework are designed to be used for GUI development. You can easily create command windows, buttons, menus, toolbars, and other screen elements with the flexibility necessary to accommodate shifting business needs.

 For example, the .NET Framework provides simple properties to adjust visual attributes associated with forms. In some cases the underlying operating system does not support changing these attributes directly, and in these cases the .NET Framework automatically recreates the forms. This is one of many ways in which the .NET Framework integrates the developer interface, making coding simpler and more consistent.

 Unlike ActiveX controls, Windows Forms controls have semi-trusted access to a user's computer. This means that binary or natively executing code can access some of the resources on the user's system (such as GUI elements and limited file access) without being able to access or compromise other resources. Because of code access security, many applications that once needed to be installed on a user's system can now be safely deployed through the Web. Your applications can implement the features of a local application while being deployed like a Web page.

C#.net
ACTIVE X DATA OBJECTS.NET:

ADO.NET Overview:

 ADO.NET is an evolution of the ADO data access model that directly addresses user requirements for developing scalable applications. It was designed specifically for the web with scalability, statelessness, and XML in mind.

 ADO.NET uses some ADO objects, such as the Connection and Command objects, and also introduces new objects. Key new ADO.NET objects include the DataSet, DataReader, and DataAdapter.

 The important distinction between this evolved stage of ADO.NET and previous data architectures is that there exists an object -- the DataSet -- that is separate and distinct from any data stores. Because of that, the DataSet functions as a standalone entity. You can think of the DataSet as an always disconnected record set that knows nothing about the source or destination of the data it contains. Inside a DataSet, much like in a database, there are tables, columns, relationships, constraints, views, and so forth.

 A DataAdapter is the object that connects to the database to fill the DataSet. Then, it connects back to the database to update the data there, based on operations performed while the DataSet held the data. In the past, data processing has been primarily connection-based. Now, in an effort to make multi-tiered apps more efficient, data processing is turning to a message-based approach that revolves around chunks of information. At the center of this approach is the DataAdapter, which provides a bridge to retrieve and save data between a DataSet and its source data store. It accomplishes this by means of requests to the appropriate SQL commands made against the data store.

 The XML-based DataSet object provides a consistent programming model that works with all models of data storage: flat, relational, and hierarchical. It does this by having no 'knowledge' of the source of its data, and by representing the data that it holds as collections and data types. No matter what the source of the data within the DataSet is, it is manipulated through the same set of standard APIs exposed through the DataSet and its subordinate objects.

 While the DataSet has no knowledge of the source of its data, the managed provider has detailed and specific information. The role of the managed provider is to connect, fill, and persist the DataSet to and from data stores. The OLE DB and SQL Server .NET Data Providers (System.Data.OleDb and System.Data.SqlClient) that are part of the .Net Framework provide four basic objects: the Command, Connection, DataReader and DataAdapter. In the remaining sections of this document, we'll walk through each part of the DataSet and the OLE DB/SQL Server .NET Data Providers explaining what they are, and how to program against them.
 The following sections will introduce you to some objects that have evolved, and some that are new. These objects are:

· Connections: For connection to and managing transactions against a database.

· Command: For issuing SQL commands against a database.

· Data Readers: For reading a forward-only stream of data records from a SQL Server data source.

· Datasets: For storing, remoting and programming against flat data, XML data and relational data.

· DataAdapters: For pushing data into a DataSet, and reconciling data against a database.

 When dealing with connections to a database, there are two different options: SQL Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data Provider (System.Data.OleDb). In these samples we will use the SQL Server .NET Data Provider. These are written to talk directly to Microsoft SQL Server. The OLE DB .NET Data Provider is used to talk to any OLE DB provider (as it uses OLE DB underneath).

Connections:

 Connections are used to 'talk to' databases, and are represented by provider-specific classes such as SQLConnection. Commands travel over connections and result sets are returned in the form of streams which can be read by a DataReader object, or pushed into a DataSet object.

Commands:

 Commands contain the information that is submitted to a database, and are represented by provider-specific classes such as SQLCommand. A command can be a stored procedure call, an UPDATE statement, or a statement that returns results. You can also use input and output parameters, and return values as part of your command syntax. The example below shows how to issue an INSERT statement against the North wind database.

DataReaders:

 The DataReader object is somewhat synonymous with a read-only/forward-only cursor over data. The DataReader API supports flat as well as hierarchical data. A DataReader object is returned after executing a command against a database. The format of the returned DataReader object is different from a record set. For example, you might use the DataReader to show the results of a search list in a web page.

DataSets:
 The DataSet object is similar to the ADO Record set object, but more powerful, and with one other important distinction: the DataSet is always disconnected. The DataSet object represents a cache of data, with database-like structures such as tables, columns, relationships, and constraints. However, though a DataSet can and does behave much like a database, it is important to remember that DataSet objects do not interact directly with databases, or other source data. This allows the developer to work with a programming model that is always consistent, regardless of where the source data resides. Data coming from a database, an XML file, from code, or user input can all be placed into DataSet objects. Then, as changes are made to the DataSet they can be tracked and verified before updating the source data. The GetChanges method of the DataSet object actually creates a second DataSet that contains only the changes to the data. This DataSet is then used by a DataAdapter (or other objects) to update the original data source.

 The DataSet has many XML characteristics, including the ability to produce and consume XML data and XML schemas. XML schemas can be used to describe schemas interchanged via Web Services. In fact, a DataSet with a schema can actually be compiled for type safety and statement completion.

DataAdapters (OLEDB/SQL):

 The DataAdapter object works as a bridge between the DataSet and the source data. Using the provider-specific SqlDataAdapter (along with its associated SQLCommand and SQLConnection) can increase overall performance when working with a Microsoft SQL Server databases. For other OLE DB-supported databases, you would use the OleDbDataAdapter object and its associated OleDbCommand and OleDbConnection objects.

 The DataAdapter object uses commands to update the data source after changes have been made to the DataSet. Using the Fill method of the DataAdapter calls the SELECT command; using the Update method calls the INSERT, UPDATE or DELETE command for each changed row. You can explicitly set these commands in order to control the statements used at runtime to resolve changes, including the use of stored procedures. For ad-hoc scenarios, a Command Builder object can generate these at run-time based upon a select statement. However, this run-time generation requires an extra round-trip to the server in order to gather required metadata, so explicitly providing the INSERT, UPDATE, and DELETE commands at design time will result in better run-time performance.

1. ADO.NET is the next evolution of ADO for the .Net Framework.

2. ADO.NET was created with n-Tier, statelessness and XML in the forefront. Two new objects, the DataSet and DataAdapter, are provided for these scenarios.

3. ADO.NET can be used to get data from a stream, or to store data in a cache for updates.

4. There is a lot more information about ADO.NET in the documentation.

5. Remember, you can execute a command directly against the database in order to do inserts, updates, and deletes. You don't need to first put data into a DataSet in order to insert, update, or delete it.

6. Also, you can use a DataSet to bind to the data, move through the data, and navigate data relationships

Asp.net
Server Application Development:

 Server-side applications in the managed world are implemented through runtime hosts. Unmanaged applications host the common language runtime, which allows your custom managed code to control the behavior of the server. This model provides you with all the features of the common language runtime and class library while gaining the performance and scalability of the host server.

 The following illustration shows a basic network schema with managed code running in different server environments. Servers such as IIS and SQL Server can perform standard operations while your application logic executes through the managed code.

Server-side managed code:
 ASP.NET is the hosting environment that enables developers to use the .NET Framework to target Web-based applications. However, ASP.NET is more than just a runtime host; it is a complete architecture for developing Web sites and Internet-distributed objects using managed code. Both Web Forms and XML Web services use IIS and ASP.NET as the publishing mechanism for applications, and both have a collection of supporting classes in the .NET Framework.

 XML Web services, an important evolution in Web-based technology, are distributed, server-side application components similar to common Web sites. However, unlike Web-based applications, XML Web services components have no UI and are not targeted for browsers such as Internet Explorer and Netscape Navigator. Instead, XML Web services consist of reusable software components designed to be consumed by other applications, such as traditional client applications, Web-based applications, or even other XML Web services. As a result, XML Web services technology is rapidly moving application development and deployment into the highly distributed environment of the Internet.

 If you have used earlier versions of ASP technology, you will immediately notice the improvements that ASP.NET and Web Forms offers. For example, you can develop Web Forms pages in any language that supports the .NET Framework. In addition, your code no longer needs to share the same file with your HTTP text (although it can continue to do so if you prefer). Web Forms pages execute in native machine language because, like any other managed application, they take full advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and interpreted. ASP.NET pages are as because they interact with the runtime like any managed application.

 The .NET Framework also provides a collection of classes and tools to aid in development and consumption of XML Web services applications. XML Web services are built on standards such as SOAP (a remote procedure-call protocol), XML (an extensible data format), and WSDL (the Web Services Description Language). The .NET Framework is built on these standards to promote interoperability with non-Microsoft solutions.

 For example, the Web Services Description Language tool included with the .NET Framework SDK can query an XML Web service published on the Web, parse its WSDL description, and produce C# or Visual Basic source code that your application can use to become a client of the XML Web service. The source code can create classes derived from classes in the class library that handle all the underlying communication using SOAP and XML parsing. Although you can use the class library to consume XML Web services directly, the Web Services Description Language tool and the other tools contained in the SDK facilitate your development efforts with the .NET Framework.

 If you develop and publish your own XML Web service, the .NET Framework provides a set of classes that conform to all the underlying communication standards, such as SOAP, WSDL, and XML. Using those classes enables you to focus on the logic of your service, without concerning yourself with the communications infrastructure required by distributed software development.

 Finally, like Web Forms pages in the managed environment, your XML Web service will run with the speed of native machine language using the scalable communication of IIS.

Active Server Pages.NET:

ASP.NET is a programming framework built on the common language runtime that can be used on a server to build powerful Web applications. ASP.NET offers several important advantages over previous Web development models:

· Enhanced Performance: ASP.NET is compiled common language runtime code running on the server. Unlike its interpreted predecessors, ASP.NET can take advantage of early binding, just-in-time compilation, native optimization, and caching services right out of the box. This amounts to dramatically better performance before you ever write a line of code.

· World-Class Tool Support: The ASP.NET framework is complemented by a rich toolbox and designer in the Visual Studio integrated development environment. WYSIWYG editing, drag-and-drop server controls, and automatic deployment are just a few of the features this powerful tool provides.

· Power and Flexibility. Because ASP.NET is based on the common language runtime, the power and flexibility of that entire platform is available to Web application developers. The .NET Framework class library, Messaging, and Data Access solutions are all seamlessly accessible from the Web. ASP.NET is also language-independent, so you can choose the language that best applies to your application or partition your application across many languages. Further, common language runtime interoperability guarantees that your existing investment in COM-based development is preserved when migrating to ASP.NET.

· Simplicity: ASP.NET makes it easy to perform common tasks, from simple form submission and client authentication to deployment and site configuration. For example, the ASP.NET page framework allows you to build user interfaces that cleanly separate application logic from presentation code and to handle events in a simple, Visual Basic - like forms processing model. Additionally, the common language runtime simplifies development, with managed code services such as automatic reference counting and garbage collection.

· Manageability: ASP.NET employs a text-based, hierarchical configuration system, which simplifies applying settings to your server environment and Web applications. Because configuration information is stored as plain text, new settings may be applied without the aid of local administration tools. This "zero local administration" philosophy extends to deploying ASP.NET Framework applications as well. An ASP.NET Framework application is deployed to a server simply by copying the necessary files to the server. No server restart is required, even to deploy or replace running compiled code.

· Scalability and Availability: ASP.NET has been designed with scalability in mind, with features specifically tailored to improve performance in clustered and multiprocessor environments. Further, processes are closely monitored and managed by the ASP.NET runtime, so that if one misbehaves (leaks, deadlocks), a new process can be created in its place, which helps keep your application constantly available to handle requests.

· Customizability and Extensibility: ASP.NET delivers a well-factored architecture that allows developers to "plug-in" their code at the appropriate level. In fact, it is possible to extend or replace any subcomponent of the ASP.NET runtime with your own custom-written component. Implementing custom authentication or state services has never been easier.

· Security: With built in Windows authentication and per-application configuration, you can be assured that your applications are secure.

Language Support:

The Microsoft .NET Platform currently offers built-in support for three languages: C#, Visual Basic, and JScript.

.
What is ASP.NET Web Forms?

The ASP.NET Web Forms page framework is a scalable common language runtime programming model that can be used on the server to dynamically generate Web pages.

Intended as a logical evolution of ASP (ASP.NET provides syntax compatibility with existing pages), the ASP.NET Web Forms framework has been specifically designed to address a number of key deficiencies in the previous model. In particular, it provides:

· The ability to create and use reusable UI controls that can encapsulate common functionality and thus reduce the amount of code that a page developer has to write.

· The ability for developers to cleanly structure their page logic in an orderly fashion (not "spaghetti code").

· The ability for development tools to provide strong WYSIWYG design support for pages (existing ASP code is opaque to tools).

ASP.NET Web Forms pages are text files with an .aspx file name extension. They can be deployed throughout an IIS virtual root directory tree. When a browser client requests .aspx resources, the ASP.NET runtime parses and compiles the target file into a .NET Framework class. This class can then be used to dynamically process incoming requests. (Note that the .aspx file is compiled only the first time it is accessed; the compiled type instance is then reused across multiple requests).

An ASP.NET page can be created simply by taking an existing HTML file and changing its file name extension to .aspx (no modification of code is required). For example, the following sample demonstrates a simple HTML page that collects a user's name and category preference and then performs a form post back to the originating page when a button is clicked.

ASP.NET provides syntax compatibility with existing ASP pages. This includes support for <% %> code render blocks that can be intermixed with HTML content within an .aspx file. These code blocks execute in a top-down manner at page render time.

Code-Behind Web Forms:

ASP.NET supports two methods of authoring dynamic pages. The first is the method shown in the preceding samples, where the page code is physically declared within the originating .aspx file. An alternative approach--known as the code-behind method--enables the page code to be more cleanly separated from the HTML content into an entirely separate file.

Introduction to ASP.NET Server Controls:

In addition to (or instead of) using <% %> code blocks to program dynamic content, ASP.NET page developers can use ASP.NET server controls to program Web pages. Server controls are declared within an .aspx file using custom tags or intrinsic HTML tags that contain a runat="server" attribute value. Intrinsic HTML tags are handled by one of the controls in the System.Web.UI.HtmlControls namespace. Any tag that doesn't explicitly map to one of the controls is assigned the type of System.Web.UI.HtmlControls.HtmlGenericControl.

Server controls automatically maintain any client-entered values between round trips to the server. This control state is not stored on the server (it is instead stored within an <input type="hidden"> form field that is round-tripped between requests). Note also that no client-side script is required.

In addition to supporting standard HTML input controls, ASP.NET enables developers to utilize richer custom controls on their pages. For example, the following sample demonstrates how the <asp: adrotator> control can be used to dynamically display rotating ads on a page.

1. ASP.NET Web Forms provide an easy and powerful way to build dynamic Web UI.

2. ASP.NET Web Forms pages can target any browser client (there are no script library or cookie requirements).

3. ASP.NET Web Forms pages provide syntax compatibility with existing ASP pages.

4. ASP.NET server controls provide an easy way to encapsulate common functionality.

5. ASP.NET ships with 45 built-in server controls. Developers can also use controls built by third parties.

6. ASP.NET server controls can automatically project both up level and downlevel HTML.

7. ASP.NET templates provide an easy way to customize the look and feel of list server controls.

8. ASP.NET validation controls provide an easy way to do declarative client or server data validation.

About sql server

The MsSqlServer2000 interface includes several features that make it easy to accomplish tasks in access quickly.

What is SQL Server 2000?

SQL Server 2000 is a database that follows the relational model of data management system. The emphasizes of relational model is that the data is fundamentally organized in a table which can also be termed as a collection of rows and columns. The

Table : Tables are the fundamental structures of the database. Tables store the data as records (rows) and fields (column). The relational concept maintains the relationships amongst data by adhering to the rule defined by the database administrator. In situations of power failure, which is normally termed as crash situations, the data present should be consistent which means that data should be

free of corruption (invalid) Let’s discuss the two roles in which SQL Server 2000 can be implemented.

 The First role is called the Online Transaction Processing Model(OLTP) in which the result of a query on the database returns the latest data, as the database is up to date with the latest transaction. Let us take an example of a bank. When you go over to the bank to perform a query on the balance in your account, you expect to draw some money needed at that point of time.

The Second type of transaction processing is called the On-Line Analytical Processing Model (OLAP), which is an accumulated data over a period of time. This Concept is also termed as data mining. In this model, the query results at all times will not result in the latest data being shown, as the transactions (whatever they may be) are updated on the database on a periodical basis, and not as they occur Let’s take an example of general store that has three retail outlets throughout the city, There are daily sales at every outlet for different products and the sales data updated daily into the databases of every outlet, but not the corporate office, where the management is located .At the end of the month ,let us say the corporate office needs to know the total sales of every product so that they can come to the conclusion as to which of their products is selling the most and which is the least popular in this case the database at the main office would be updated on a monthly basis thus at any given moment it would not be up-to-date. This is a typical case of OLAP.

SQL Server 2000 is a relational Database Management System That Provides
· Maintaining Relationship among data stored in the Database

· Ensuring Data is Stored correctly and rules deferring relationship are not violated

· Recovering all data to a point of consistency in the event of failure.

The Database Storage Models that SQL Server 2000 manages are categorized as

1. On Line Transaction Processing (OLTP) Database: This type of database is organized as a Table (A Table is an organized storage area of data in the form of rows and columns). One or More users are actively using the data for reading, Modifying, Deleting or Adding new Information. An Example could be an airline ticketing data, or railway reservation data that is constantly updated and made available to the end user immediately.
2. On Line Analytical Processing (OLAP) Database: This type of database manages a collection of data which will be used for project by an analyst to view as decision support data by looking for patterns in the available data. An Example could be weather forecast based on statistical analysis of data collected over a period of ten years. Most business environments rely on the statistical analysis of data collected over a period of ten years.

SQL Server Application Environments:
The SQL Server 2000 is best suited to work in Client-Server Environments which means the methodology of working is split in terms of a requestor for data who can be given the term Client and Provider of data who can be called as Server as shown by the following example. The communication which is passed as a request is through a comprehensive language called Transact-Structured Query Language or T-SQL.

Software engineering paradigm applied- (rad-model):

 The two design objectives continuously sought by developers are reliability and maintenance.

Reliable System:
 There are two levels of reliability. The first is meeting the right requirements. A careful and through systems study is needed to satisfy this aspect of reliability. The second level of systems reliability involves the actual working delivered to the user. At this level, the systems reliability is interwoven with software engineering and development. There are three approaches to reliability.

1. Error avoidance: Prevents errors from occurring in software.

2. Error detection and correction: In this approach errors are recognized whenever they are encountered and correcting the error by effect of error, of the system does not fail.

3. Error tolerance: In this approach errors are recognized whenever they occur, but this approach enables the system to keep running through degraded perform or by applying values that instruct the system to continue process.

Maintenance:
The key to reduce need for maintenance, while working is to do essential tasks.

1. More accurately defining user requirement during system development.

2. Assembling better systems documentation.

3. Using more effective methods for designing, processing, login and communicating information with project team members.

4. Making better use of existing tools and techniques.

5. Managing system engineering process effectively.

Output Design:
One of the most important factors of an information system for the user is the output the system produces. Without the quality of the output, the entire system may appear unnecessary that will make us avoid using it possibly causing it to fail. Designing the output should process it in an organized well throughout the manner. The right output must be developed while ensuring that each output element is designed so that people will find the system easy to use effectively.

The term output applying to information produced by an information system whether printed or displayed while designing the output we should identify the specific output that is needed to information requirements select a method to present the formation and create a document report or other formats that contains produced by the system.

Types of output:

Whether the output is formatted report or a simple listing of the contents of a file, a computer process will produce the output.

· A Document

· A Message

· Retrieval from a data store

· Transmission from a process or system activity

· Directly from an output sources

Layout Design:

It is an arrangement of items on the output medium. The layouts are building a mock up of the actual reports or document, as it will appear after the system is in operation. The output layout has been designated to cover information. The outputs are presented in the appendix.

Input design and control:

Input specifications describe the manner in which data enter the system for processing. Input design features will ensure the reliability of the systems and produce results from accurate data, or thus can be result in the production of erroneous information. The input design also determines whenever the user can interact efficiently with this system.

Objectives of input design:

Input design consists of developing specifications and procedures for data preparation, the steps necessary to put transaction data into a usable from for processing and data entry, the activity of data into the computer processing.
The five objectives of input design are:
· Controlling the amount of input

· Avoiding delay

· Avoiding error in data

· Avoiding extra steps

· Keeping the process simple

Controlling the amount of input:
Data preparation and data entry operation depend on people, because labor costs are high, the cost of preparing and entering data is also high, reducing data requirement expense. By reducing input requirement the speed of entire process from data capturing to processing to provide results to users.

Avoiding delay:
The processing delay resulting from data preparation or data entry operations is called bottlenecks. Avoiding bottlenecks should be one objective of input.

Avoiding errors:
 Through input validation we control the errors in the input data.

Avoiding extra steps:
The designer should avoid the input design that cause extra steps in processing saving or adding a single step in large number of transactions saves a lot of processing time or takes more time to process.

Keeping process simple:
If controls are more people may feel difficult in using the systems. The best-designed system fits the people who use it in a way that is comfortable for them.

Normalization

It is a process of converting a relation to a standard form. The process is used to handle the problems that can arise due to data redundancy i.e. repetition of data in the database, maintain data integrity as well as handling problems that can arise due to insertion, updating, deletion anomalies.

Decomposing is the process of splitting relations into multiple relations to eliminate anomalies and maintain anomalies and maintain data integrity. To do this we use normal forms or rules for structuring relation.

Insertion anomaly: Inability to add data to the database due to absence of other data.

Deletion anomaly: Unintended loss of data due to deletion of other data.

Update anomaly: Data inconsistency resulting from data redundancy and partial update
Normal Forms: These are the rules for structuring relations that eliminate anomalies.
First Normal Form:

 A relation is said to be in first normal form if the values in the relation are atomic for every attribute in the relation. By this we mean simply that no attribute value can be a set of values or, as it is sometimes expressed, a repeating group.
Second Normal Form:

 A relation is said to be in second Normal form is it is in first normal form and it should satisfy any one of the following rules.

1) Primary key is a not a composite primary key

2) No non key attributes are present

3) Every non key attribute is fully functionally dependent on full set of primary key.

Third Normal Form:

A relation is said to be in third normal form if their exits no transitive dependencies.
Transitive Dependency:
 If two non key attributes depend on each other as well as on the primary key then they are said to be transitively dependent.

The above normalization principles were applied to decompose the data in multiple tables thereby making the data to be maintained in a consistent state.

CODING

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class CreateLogin : System.Web.UI.Page

 {

 protected void AuthType_Changed(object sender, EventArgs e)

 {

 if (AuthType.SelectedValue == "Standard")

 {

 Password.Enabled = true;

 PasswordLabel.Enabled = true;

 }

 else

 {

 Password.Enabled = false;

 PasswordLabel.Enabled = false;

 }

 }

 private void InitializeComponent() { }

 protected void AddLogin_Click(object sender, EventArgs e)

 {

 if (Page.IsValid)

 {

 SqlLoginCollection logins;

 SqlServer server = SqlServer.CurrentServer;

 try

 {

 server.Connect();

 }

 catch (System.Exception ex)

 {

 Response.Redirect(String.Format("error.aspx?errormsg={0}&stacktrace={1}", Server.UrlEncode(ex.Message), Server.UrlEncode(ex.StackTrace)));

 }

 if (server.IsUserValid())

 {

 logins = server.Logins;

 try

 {

 SqlLogin newLogin = logins.Add(

 LoginName.Text.Trim(),

 (SqlLoginType)Enum.Parse(typeof(SqlLoginType), AuthType.SelectedValue),Password.Text.Trim());

Response.Redirect("EditServerLogin.aspx?Login=" + Server.UrlEncode(newLogin.Name));

 }

 catch (Exception ex)

 {

 ErrorMessage.Text = ex.Message;

 }

 }

 server.Disconnect();

 }

 }

 }

}
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class Logout : System.Web.UI.Page

 {

 protected void Page_Load(object sender, System.EventArgs e)

 {

 AdminUser.CurrentUser = null;

 Response.Redirect("default.aspx?action=logout");

 }

 #region Web Form Designer generated code

 override protected void OnInit(EventArgs e)

 {

 InitializeComponent();

 base.OnInit(e);

 }

 private void InitializeComponent()

 {

 }

 #endregion

 }

}
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace SqlWebAdmin

{

 public partial class Security : System.Web.UI.Page

 {

 protected void Page_Load(object sender, System.EventArgs e)

 {

 }

 #region Web Form Designer generated code

 override protected void OnInit(EventArgs e)

 {

 InitializeComponent();

 base.OnInit(e);

 }

 private void InitializeComponent()

 {

 }

 #endregion

 }

}
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class CreateDatabase : System.Web.UI.Page

 {

 public CreateDatabase()

 {

 Page.Init += new System.EventHandler(Page_Init);

 }

 protected void Page_Load(object sender, System.EventArgs e)

 {

 }

 protected void CreateNewDatabaseButton_Click(object sender, System.EventArgs e)

 {

 if (!IsValid)

 return;

 SqlServer server = SqlServer.CurrentServer;

 ErrorCreatingLabel.Visible = false;

 bool success = true;

 try

 {

 server.Connect();

 }

 catch (System.Exception ex)

 {

 Response.Redirect(String.Format("error.aspx?errormsg={0}&stacktrace={1}", Server.UrlEncode(ex.Message), Server.UrlEncode(ex.StackTrace)));

 }

 if (server.Databases[DatabaseNameTextBox.Text] != null)

 {

 ErrorCreatingLabel.Visible = true;

 ErrorCreatingLabel.Text = "A database with this name already exists.";

 server.Disconnect();

 return;

 }

 try

 {

 SqlDatabase newDatabase = server.Databases.Add(DatabaseNameTextBox.Text);

 }

 catch (Exception ex)

 {

 ErrorCreatingLabel.Visible = true;

 ErrorCreatingLabel.Text = "There was an error creating the database.
" + Server.HtmlEncode(ex.Message).Replace("\n", "
");

 success = false;

 }

 server.Disconnect();

 if (success)

 Response.Redirect("Tables.aspx?database=" + Server.UrlEncode(DatabaseNameTextBox.Text));

 }

 protected void Page_Init(object sender, EventArgs e)

 {

 if (Page.User.Identity.IsAuthenticated)

 {

 Page.ViewStateUserKey = Page.Session.SessionID;

 }

 InitializeComponent();

 }

 #region Web Form Designer generated code

 private void InitializeComponent()

 {

 }

 #endregion

 protected void ServerToolbar_Load(object sender, EventArgs e)

 {

 }

}

}
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Text;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class query : System.Web.UI.Page

 {

 public query()

 {

 Page.Init += new System.EventHandler(Page_Init);

 }

 protected void Page_Load(object sender, System.EventArgs e)

 {

 ResultsPanel.Visible = false;

 ErrorLabel.Visible = false;

 }

 protected void Page_Init(object sender, EventArgs e)

 {

 if (Page.User.Identity.IsAuthenticated)

 {

 Page.ViewStateUserKey = Page.Session.SessionID;

 }

 InitializeComponent();

 }

 #region Web Form Designer generated code

 private void InitializeComponent()

 {

 }

 #endregion

 protected void SaveButton_Click(object sender, System.EventArgs e)

 {

 Response.Clear();

 Response.ClearHeaders();

 Response.ClearContent();

 Response.AddHeader("Content-Disposition", "attachment; filename=query.sql");

 Response.Write(QueryTextbox.Text);

 Response.End();

 }

 protected void LoadButton_Click(object sender, System.EventArgs e)

 {

 HttpPostedFile file = FileUploadInput.PostedFile;

 int length = file.ContentLength;

 byte[] buff = new byte[length];

 file.InputStream.Read(buff, 0, length);

 StringBuilder qsb = new StringBuilder();

 for (int i = 0; i < length; i++)

 qsb.Append(Convert.ToChar(buff[i]));

 QueryTextbox.Text = qsb.ToString();

 }

 protected void ExecuteButton_Click(object sender, System.EventArgs e)

 {

 if (QueryTextbox.Text.Trim().Length == 0)

 {

 ResultsPanel.Visible = false;

 ErrorLabel.Visible = true;

 ErrorLabel.Text = "You must enter a non-empty query";

 return;

 }

 SqlServer server = SqlServer.CurrentServer;

 try

 {

 server.Connect();

 }

 catch (System.Exception ex)

 {

 //Response.Redirect("Error.aspx?errorPassCode=" + 2002);

 Response.Redirect(String.Format("error.aspx?errormsg={0}&stacktrace={1}", Server.UrlEncode(ex.Message), Server.UrlEncode(ex.StackTrace)));

 }

 SqlDatabase database = SqlDatabase.CurrentDatabase(server);

 DataTable[] tables = null;

 try

 {

 tables = database.Query(QueryTextbox.Text);

 }

 catch (SqlException ex)

 {

 ResultsPanel.Visible = false;

 ErrorLabel.Visible = true;

 ErrorLabel.Text =

 "The following error occured while executing the query:
\n" +

 String.Format("Server: Msg {0}, Level {1}, State {2}, Line {3}
\n", new object[] { ex.Number, ex.Class, ex.State, ex.LineNumber }) +

 Server.HtmlEncode(ex.Message).Replace("\n", "
") + "
\n";

 }

 server.Disconnect();

 if (tables != null)

 {

 Label label = new Label();

 label.Text = "

";

 ResultsPanel.Controls.Add(label);

 for (int i = 0; i < tables.Length; i++)

 {

 if (i > 0)

 {

 label = new Label();

 label.Text = "

<hr>

";

 ResultsPanel.Controls.Add(label);

 }

 DataGrid dataGrid = new DataGrid();

 dataGrid.HeaderStyle.CssClass = "tableHeader";

 dataGrid.ItemStyle.CssClass = "tableItems";

 dataGrid.ItemStyle.Wrap = false;

 dataGrid.Width = Unit.Percentage(100);

 dataGrid.EnableViewState = false;

 dataGrid.PreRender += new EventHandler(DataGrid_PreRender);

 dataGrid.DataSource = tables[i];

 dataGrid.DataBind();

 ResultsPanel.Controls.Add(dataGrid);

 }

 ResultsPanel.Visible = true;

 ErrorLabel.Visible = false;

 }

 }

 private void DataGrid_PreRender(object sender, EventArgs e)

 {

 DataGrid d = (DataGrid)sender;

 foreach (DataGridItem item in d.Items)

 {

 foreach (TableCell t in item.Cells)

 {

 t.Wrap = WrapCheckBox.Checked;

 t.Text = Server.HtmlEncode(t.Text);

 }

 }

 }

 }

}

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class CreateStoredProcedure : System.Web.UI.Page

 {

 public CreateStoredProcedure()

 {

 Page.Init += new System.EventHandler(Page_Init);

 }

 protected void Page_Load(object sender, System.EventArgs e)

 {

 ErrorCreatingLabel.Visible = false;

 }

 protected void CreateNewSProcButton_Click(object sender, System.EventArgs e)

 {

 if (SProcNameTextBox.Text.Length == 0)

 {

 ErrorCreatingLabel.Visible = true;

 ErrorCreatingLabel.Text = "The new stored procedure name cannot be blank";

 return;

 }

 SqlServer server = SqlServer.CurrentServer;

 try

 {

 server.Connect();

 }

 catch (System.Exception ex)

 {

 Response.Redirect(String.Format("error.aspx?errormsg={0}&stacktrace={1}", Server.UrlEncode(ex.Message), Server.UrlEncode(ex.StackTrace)));

 }

 SqlDatabase database = SqlDatabase.CurrentDatabase(server);

 ErrorCreatingLabel.Visible = false;

 SqlStoredProcedure sproc = database.StoredProcedures[SProcNameTextBox.Text];

 if (sproc == null)

 {

 SqlStoredProcedure dummySproc = null;

 try

 {

 dummySproc = database.StoredProcedures.Add(SProcNameTextBox.Text, "CREATE PROCEDURE [" + SProcNameTextBox.Text + "] AS\r\nGO");

 }

 catch (Exception ex)

 {

 if (dummySproc != null)

 dummySproc.Remove();

 server.Disconnect();

 ErrorCreatingLabel.Visible = true;

 ErrorCreatingLabel.Text = "There was an error creating the stored procedure:
" + Server.HtmlEncode(ex.Message).Replace("\n", "
");

 return;

 }

 dummySproc.Remove();

 server.Disconnect();

 Response.Redirect(String.Format("EditStoredProcedure.aspx?database={0}&sproc={1}", Server.UrlEncode(database.Name), Server.UrlEncode(SProcNameTextBox.Text)));

 }

 else

 {

 server.Disconnect();

 ErrorCreatingLabel.Visible = true;

 ErrorCreatingLabel.Text = "A stored procedure with this name already exists.";

 }

 }

 protected void Page_Init(object sender, EventArgs e)

 {

 if (Page.User.Identity.IsAuthenticated)

 {

 Page.ViewStateUserKey = Page.Session.SessionID;

 }

 InitializeComponent();

 }

 #region Web Form Designer generated code

 private void InitializeComponent()

 {

 }

 #endregion

 }

}
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.IO;

using System.Text;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class Import : System.Web.UI.Page

 {

 protected void Page_Load(object sender, System.EventArgs e)

 {

 ImportErrorLabel.Visible = false;

 ImportSuccessLabel.Visible = false;

 }

 #region Web Form Designer generated code

 override protected void OnInit(EventArgs e)

 {

 InitializeComponent();

 base.OnInit(e);

 }

 private void InitializeComponent()

 {

 }

 #endregion

 protected void ImportButton_Click(object sender, System.EventArgs e)

 {

 SqlServer server = SqlServer.CurrentServer;

 HttpPostedFile file = FileUploadInput.PostedFile;

 int length = file.ContentLength;

 byte[] buff = new byte[length];

 file.InputStream.Read(buff, 0, length);

 StringBuilder qsb = new StringBuilder();

 for (int i = 0; i < length; i++)

 qsb.Append(Convert.ToChar(buff[i]));

 string q = qsb.ToString();

 if (q.Trim().Length == 0)

 {

 ImportErrorLabel.Visible = true;

 ImportErrorLabel.Text = "Imported file contains no data.";

 return;

 }

 try

 {

 server.Query(q);

 ImportSuccessLabel.Visible = true;

 }

 catch (SqlException ex)

 {

 ImportErrorLabel.Visible = true;

 ImportErrorLabel.Text = "There was an error importing the database. The status of the import is unknown.

" +

 Server.HtmlEncode(ex.Message).Replace("\n", "
");

 }

 }

 }

}

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class Tables : System.Web.UI.Page

 {

 public Tables()

 {

 Page.Init += new System.EventHandler(Page_Init);

 }

 protected void Page_Load(object sender, System.EventArgs e)

 {

 FilterTablesButton_Click(null, null);

 }

 protected void Page_Init(object sender, EventArgs e)

 {

 if (Page.User.Identity.IsAuthenticated)

 {

 Page.ViewStateUserKey = Page.Session.SessionID;

 }

 InitializeComponent();

 }

 #region Web Form Designer generated code

 private void InitializeComponent()

 {

 }

 #endregion

 private void FilterTablesButton_Click(object sender, System.EventArgs e)

 {

 SqlServer server = SqlServer.CurrentServer;

 try

 {

 server.Connect();

 }

 catch (System.Exception ex)

 {

Response.Redirect(String.Format("error.aspx?errormsg={0}&stacktrace={1}", Server.UrlEncode(ex.Message), Server.UrlEncode(ex.StackTrace)));

 }

 SqlDatabase database = SqlDatabase.CurrentDatabase(server);

 SqlObjectType objectTypeFilter;

 switch (TableTypeDropDownList.SelectedIndex)

 {

 case 0:

 objectTypeFilter = SqlObjectType.User;

 break;

 case 1:

 objectTypeFilter = SqlObjectType.User | SqlObjectType.System;

 break;

 default:

 throw new Exception("Invalid TableType selected");

 }

 AddNewTableHyperLink.NavigateUrl = String.Format("createtable.aspx?database={0}", Server.UrlEncode(Request["database"]));

 SqlTableCollection tables = database.Tables;

 DataSet ds = new DataSet();

 ds.Tables.Add();

 ds.Tables[0].Columns.Add("name");

 ds.Tables[0].Columns.Add("encodedname");

 ds.Tables[0].Columns.Add("owner");

 ds.Tables[0].Columns.Add("type");

 ds.Tables[0].Columns.Add("createdate");

 ds.Tables[0].Columns.Add("rows");

 for (int i = 0; i < tables.Count; i++)

 {

 SqlTable table = tables[i];

 if ((table.TableType & objectTypeFilter) > 0)

 ds.Tables[0].Rows.Add(new object[] { Server.HtmlEncode(table.Name), Server.UrlEncode(table.Name), Server.HtmlEncode(table.Owner), Server.HtmlEncode(table.TableType.ToString()), Server.HtmlEncode(table.CreateDate.ToString()), table.Rows });

 }

 if (ds.Tables[0].Rows.Count == 0)

 {

 TablesDataGrid.Visible = false;

 TableTypeErrorLabel.Visible = true;

 }

 else

 {

 TableTypeErrorLabel.Visible = false;

 TablesDataGrid.Visible = true;

 TablesDataGrid.DataSource = ds;

 TablesDataGrid.DataBind();

 }

 server.Disconnect();

 }
 }
}
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using SqlAdmin;

namespace SqlWebAdmin

{

 public partial class DeleteTable : System.Web.UI.Page

 {

 public DeleteTable()

 {

 Page.Init += new System.EventHandler(Page_Init);

 }

 protected void Page_Load(object sender, System.EventArgs e)

 {

 SqlServer server = SqlServer.CurrentServer;

 try

 {

 server.Connect();

 }

 catch (System.Exception ex)

 {

Response.Redirect(String.Format("error.aspx?errormsg={0}&stacktrace={1}", Server.UrlEncode(ex.Message), Server.UrlEncode(ex.StackTrace)));

 }

 SqlDatabase database = SqlDatabase.CurrentDatabase(server);

 DatabaseNameLabel.Text = database.Name;

 TableNameLabel.Text = Server.HtmlEncode(Request["table"]);

 server.Disconnect();

 }

 protected void Page_Init(object sender, EventArgs e)

 {

 if (Page.User.Identity.IsAuthenticated)

 {

 Page.ViewStateUserKey = Page.Session.SessionID;

 }

 InitializeComponent();

 }

 #region Web Form Designer generated code

 private void InitializeComponent()

 {

 }

 #endregion

 protected void YesButton_Click(object sender, System.EventArgs e)

 {

 SqlServer server = SqlServer.CurrentServer;

 try

 {

 server.Connect();

 }

 catch (System.Exception ex)

 {

 Response.Redirect(String.Format("error.aspx?errormsg={0}&stacktrace={1}", Server.UrlEncode(ex.Message), Server.UrlEncode(ex.StackTrace)));

 }

 SqlDatabase database = SqlDatabase.CurrentDatabase(server);

 SqlTable table = database.Tables[Request["table"]];

 if (table == null)

 {

 server.Disconnect();

 Response.Redirect(String.Format("error.aspx?error={0}", 1002));

 return;

 }

 table.Remove();server.Disconnect();

 Response.Redirect("tables.aspx?database=" + Server.UrlEncode(Request["database"]));

 }

 protected void NoButton_Click(object sender, System.EventArgs e)

 {

 Response.Redirect("tables.aspx?database=" + Server.UrlEncode(Request["database"]));

 }
 }
}

TESTING

PROJECT TESTING
1) COMPILATION TEST:

 It was a good idea to do our stress testing early on, because it gave us time to fix some of the unexpected deadlocks and stability problems that only occurred when components were exposed to very high transaction volumes.

2) EXECUTION TEST:

 This program was successfully loaded and executed. Because of good programming there were no execution errors.
3) OUTPUT TEST:

 The successful output screens are placed in the output screens section.
OUTPUT SCREENS
[image: image10.png]
[image: image11.png]
[image: image12.png]
[image: image13.png]
[image: image14.png]
[image: image15.png]
[image: image16.png]
[image: image17.png]
[image: image18.png]
[image: image19.png]
[image: image20.png]
[image: image21.png]
[image: image22.png]
[image: image23.png]
[image: image24.png]
CONCLUSION

SUMMARY

· The project has been appreciated by all the users in the organization.

· It is easy to use, since it uses the GUI provided in the user dialog.

· User friendly screens are provided.

· The usage of software increases the efficiency, decreases the effort.

· It has been efficiently employed as a tool for SQL Server Management Studio.

· It also provides the user with variable options in administering.

· It has been thoroughly tested and implemented.

FUTURE ENHANCEMENT
It is not possible to develop a system that makes all the requirements of the user. User requirements keep on changing the system is being used. Some of the future enhancements that can be done to this system are:
· As the technology emerges, it is possible to upgrade the system and can be adaptable to desired environment.
· We can also applicable this to Oracle and MySQL instead of SQL Server.
· Based on the future security issues, security can be improved using encryption and decryption techniques.

· We can also provide administrative tools like Backup, Replication and Linked Server.

BIBLIOGRAPHY

References for the Project Development were taken from the following Books and Web Sites.

· ASP.NET Complete Reference

· ASP.NET 2.0 Black Book

· HTML Black Book by Steven Holzner

· Software Engineering by Roger Pressman

