Distributed Software systems with CORBA

Abstract: One can define a distributed system as a system in which components located in networked computers communicate and coordinate their actions only by passing messages. So, the main challenge in making a distributed system is the heterogeneity of the components, their security, concurrency of components and transparency. To meet up with this challenge the Object Management Group (OMG) came up with an architecture called CORBA (Common Object Request Broker Architecture) in 1991. As the name suggests CORBA is not a distributed system but is a specification for a distributed system. This seminar first of all deals with what a distributed system is, what are the main types of distributed system architecture and then what is CORBA? . This seminar also describes the features of CORBA that renders it useful for a distributed system and its comparison with other architectures.

Distributed System definition?

“A distributed system is a collection of independent computers that appears to its user as a single coherent system”

-Andrew S. Tanenbaum

Maartin Van Steen

“A Distributed system is one in which components located at networked computers communicate and coordinate their actions only by passing messages”

-George Coulouris

Jean Dollimore

Tim Kindberg

These definitions points out to the fact that although the machines are autonomous, a user gets a feel that he is dealing with a single system. The communication between the autonomous machines is established through message passing. The processes or the threads running on the machines may have a shared memory.

Characteristics of a Distributed System: -

· Concurrency of components – A distributed system can have multiple concurrent processes being executed on a network and sharing multiple resources.

· Lack of Global clock – When program needs to coordinate they do so by exchanging messages. There is no Single Global clock which can be used to synchronize between the processes

· Independent failures of components – All computer system can fail and it is the responsibility of the system designer to plan the possible consequences of possible failures. There can be network failure resulting in the isolation of a computer or there may be communication failure or even worse an unexpected termination of a process.

Problems in designing a Distributed system: -
· Absence of global shared memory – There is no global shared memory on which data can be stored and operated on. All the information has to pass through messages.

· Absence of Global Clock – There is no Global clock so the main issue is the synchronization between processes. As there are multiple processes running concurrently over a system in which the components are remotely located, it becomes difficult to synchronize between them.

· Heterogeneity of the components – As the distributed system deals with networked components these components can be of different make or following different protocols and standards. The main challenge is to provide Transparency to the users irrespective of heterogeneity in the system. Other than this our distributed system has to be scalability i.e. other systems could connected to the present system in order to provide more efficiency. Openness of the system (a characteristic that defines a whether the system can be extended and re-implemented in various ways) is also hard to achieve.

· Concurrency of the processes – As there is no Global clock and there are multiple concurrent processes that communicate through passing messages, this may lead to unpredictable communication delays, Fault tolerance, security.

Main types of Distributed system Architecture: -

1) Client-server Architecture – In this architecture the client process interacts with server processes in separate host computers in order to access the shared resources that they mange. Servers may in turn be clients of another servers. Multiple servers may provide the services or a proxy servers may be put up for the client.

[image: image1.png]
2) Distributed Object Architecture or peer processors – In this case, there is no distinction between servers and clients, and the system may be thought as a set of interacting objects whose location is irrelevant. There is no distinction between service provider and a user of the service.

[image: image8.wmf]

Need of a Distributed system: -

· Resource Sharing

· Higher Performance

· Fault Tolerance

· Scalability
“Ideally, heterogeneity and open systems enable us to use the best combination of hardware and software components for each portion of an enterprise. When the right standards for interoperability and portability between these components are in place, the integration of the components yields a system that is coherent and operational”

- Steve Vinoski, IONA Technologies, Inc.

So, we need some architecture that can provide a backbone structure for a distributed system. One of the most common Architecture for this purpose is CORBA, which was proposed by OMG (Object Management Group) in 1991.

Introduction to CORBA: -

“CORBA (Common Object Request Broker Architecture) is a middleware design that allows application programs to communicate with one another irrespective of their programming language, their hardware their software platforms, the network they communicate over and their implementation.”

-George Coulouris

Jean Dollimore

Tim Kindberg

Thus, CORBA is an architecture for heterogenic system which allows application programs (running on same processor or on different processor) to communicate with each other.

In 1989 OMG (Object Management Group) was formed to adopt the Distributed Object System so that the Object Oriented approach of a programming language can be used to develop software for a Distributed System. OMG has more than 700 members who are developers, vendors, and end users. These members contribute technology and ideas in response to requests for proposals (RFPs) issued by the OMG. Through the responses to these RFPs, OMG adopts some specifications based on commercially available object technology.

CORBA is basically a component of OMA (Object Modeling Architecture)

A Brief Overview of Object Modeling Architecture: -

The OMA is composed of an Object Model and a Reference Model. The Object Model defines how the objects distributed across a heterogeneous environment can be described, while the Reference Model characterizes interactions between those objects. The OMG’s RFP method helps in finding the hardware and software specifications that fit into the Object Model and Reference Model keeping in mind the previous specifications.

[image: image9.wmf]

OMA Reference Model interface usage.

OMA reference model Interface Categories

In the OMA Object Model, an object is an encapsulated entity with a distinct identity. Its services can be accessed only through well-defined interfaces. Clients issue requests to objects to perform services on their behalf. The implementation and location of each object are hidden from the requesting client.
The object request broker (ORB) component is the backbone of communication between the clients and the objects. The application utilizes the components of ORB.

Object Interface: are the Domain Independent Interface used by many Distributed Object
Programs. For example: - Naming Services - which allows client to find object according to their names; Trading Services – which allows client to find objects according to their properties.

Common Facilities: They serve end user applications. For example: - Distributed Document Component Facility (DDCF), which is a compound document Common Facility based on OpenDoc. DDCF allows for the presentation and interchange of objects based on a document model, for example, facilitating the linking of a spreadsheet object into a report document.

Domain Interface: Is oriented towards specific application. For example: -One of the Domain Interface called Product Data Management (PDM) Enablers was designed for manufacturers. Other Domain Interfaces may deal with Communication, Telemedicine, or Finance.

Application Interface: These are interfaces developed specifically for a given application. As they are application specific, and as the OMG does not develop applications, these interfaces are not standardized. But, if there are some services that are used universally, they can be standardized by the OMG.

Common Object Request Broker Architecture (CORBA): -

CORBA details the interfaces and characteristics of the ORB component of the OMA. The main features of CORBA 2.0 are as follows:

• ORB Core

• OMG Interface Definition Language (OMG IDL)

• Interface Repository

• Language Mappings

• Stubs and Skeletons

• Dynamic Invocation and Dispatch

• Object Adapters

• Inter-ORB Protocols

We will see these features in details.

ORB Core: -

The ORB delivers requests to objects and returns any responses to the clients making the requests. The object to which a client wishes the ORB to direct a request is called the target object. The key feature of the ORB is its transparency in facilitating client–object communication. Ordinarily, the ORB hides the following:
Object Location - The client does not know where the target object resides. It could reside in a different process on another machine across the network, on the same machine but in a different process, or within the same process.
Object Implementation - The client does not know how the target object is implemented, in which programming or scripting language it was written, nor the operating system and hardware on which it executes.
Object Execution State - When it makes a request on a target object, the client does not need to know whether that object is currently activated and ready to accept requests. The ORB transparently starts the object if necessary before delivering the request to it.
Object Communication Mechanisms - The client does not know what communication mechanisms (e.g., TCP/IP, shared memory, local method call) the ORB uses to deliver the request to the object and return the response to the client.
Object Creation - A client can create a new object in order to get an object reference. CORBA has no special client operations for object creation. Creation of objects is obtained by invoking creation requests, which are just ordinary operation invocations, on other objects called factory objects. A creation request returns an object reference for the newly created object to the client.
Directory Service - A client can invoke a lookup service of some kind in order to obtain object references. The Naming Service and the Trader Service allows clients to obtain object references by name or by properties of the object, respectively.
Convert to String and Back - An application can ask the ORB to turn an object reference into a string, and this string can be stored into a file or a database. Later, the string can be retrieved from persistent storage and turned back into an object reference by the ORB.
[image: image2.png]
OMG Interface Definition Language: -

Before a client can make requests on an object, it must know the types of operations supported by the object. An object’s interface specifies the operations and types that the object supports and thus defines the requests that can be made on the object. Interfaces for objects are defined in the OMG Interface Definition Language (OMG IDL). Interfaces are similar to classes in C++ and interfaces in Java. An example OMG IDL interface definition is:

// OMG IDL

interface Factory

{

Object create();

};

This definition specifies an interface named Factory that supports one operation, create. The create operation takes no parameters and returns an object reference of type Object. Given an object reference for an object of type Factory, a client could invoke it to create a new CORBA object.

Since OMG IDL is a declarative language, not a programming language, it forces interfaces to be defined separately from object implementations. This allows objects to be constructed using different programming languages and yet still communicate with one another

Interface Repository: -

A CORBA-based application requires access to the OMG IDL type system when it is executing. This is necessary because the application must know the types of values to be passed as request arguments. In addition, the application must know the types of interfaces supported by the objects being used.
IDL specifications are translated or compiled into the programming language of the application program, using its translation rules. Then only the application program can use these specifications. If the Distributed system specification changes then it has to be re-build to get the interface ID. But in some systems, this approach fails, for example, if our application program is using some foreign object (say a COM application) through a gateway, then every time a new IDL Interface is introduced we need to re-build the gateway. To provide a solution Interface Repository is used. The IDL interfaces of a system can be accessed and written programmatically at run time. The Interface Repository provides the information about registered IDL interfaces to client and servers that requires it.

Language Mapping: -
As mentioned above, OMG IDL is just a declarative language, not a full-fledged programming language. As such, it does not provide features like control constructs, nor is it directly used to implement distributed applications. Instead, language mappings determine how OMG IDL features are mapped to the facilities of a given programming language.
OMG has standardized language mappings for various languages like C/C++, SmallTalk, ADA, UNIX, COBOL, Java, etc..

Lets consider the mapping for the C++ language. OMG IDL interfaces map to C++ classes, with operations mapping to member functions of those classes. Modules map to C++ namespaces (or to nested classes for C++ compilers that do not yet support namespaces). In object-oriented languages such as Java, Smalltalk, and C++, CORBA objects are implemented as programming language objects. In C, objects are written as abstract data types. how to map the ORB interface and other pseudo objects that are found in the CORBA? Pseudo-objects are not real CORBA objects, but specifying such interfaces just as normal object interfaces are specified allows applications to manipulate the ORB much like they manipulate normal objects.
Stubs and Skeleton: -

A stub is a mechanism that effectively creates and issues requests on behalf of a client, while a skeleton is a mechanism that delivers requests to the CORBA object implementation. Since they are translated directly from OMG IDL specifications, stubs and skeletons are normally interface-specific. Dispatching through stubs and skeletons is often called static invocation.

Dynamic Invocation and Dispatch: -

In addition to static invocation via stubs and skeletons, CORBA supports two interfaces for dynamic invocation:

• Dynamic Invocation Interface (DII) — supports dynamic client request invocation

• Dynamic Skeleton Interface (DSI) — provides dynamic dispatch to objects

The DII and DSI can be viewed as a generic stub and generic skeleton, respectively.
Object Adapters: -

The Object Adapter (OA) serves as the glue between CORBA object implementations and the ORB itself an object adapter is an object that adapts the interface of another object to the interface expected by a caller.
Object adapters represent another aspect of the effort to keep the ORB as simple as possible.

Responsibilities of object adapters include:

• Object registration — OAs supply operations that allow programming language entities to be registered as implementations for CORBA objects. Details of exactly what is registered and how the registration is accomplished depend on the programming language.

• Object reference generation — OAs generate object references for CORBA objects.

• Server process activation — If necessary, OAs start up server processes in which objects can be activated.

• Object activation — OAs activate objects if they are not already active when requests arrive for them.

• Request demultiplexing — OAs must cooperate with the ORB to ensure that requests can be received over multiple connections without blocking indefinitely on any single connection.

• Object upcalls — OAs dispatch requests to registered objects.

Without object adapters, the ability of CORBA to support diverse object implementation styles would be severely compromised.
Inter- ORB Protocol: -

CORBA 2.0 introduced a general ORB interoperability architecture that provides for direct ORB-to-ORB interoperability and bridge-based interoperability. Direct interoperability is possible when two ORBs reside in the same domain i.e. they understand the same object references and

IDL type system, and perhaps share the same security information. Bridge-based interoperability is necessary when ORBs from separate domains must communicate. The role of the bridge is to map ORB-specific information from one ORB domain to the other.

The general ORB interoperability architecture is based on the General Inter-ORB Protocol (GIOP), which specifies transfer syntax and a standard set of message formats for ORB interoperation over any connection-oriented transport. GIOP is designed to be simple and easy to implement while still allowing for reasonable scalability and performance.

IIOP determines how GIOP can be implemented using TCP/IP, just as an object implementation determines how an object’s interface protocol is realized.

Although, above features provide excellent facilities for a distributed system, still the behavior of a distributed system remains unpredictable in case of failures and asynchronous messaging. To overcome this problem, some models like message queue, transaction process, virtual synchrony etc. were proposed.
Message Queues (MQ): -

[image: image3.png]
When a process Sender (S) wants to reliably submit message M to process Receiver (R), it submits the message to its local MQ handler. The handler writes the content of the message on a non-volatile storage to avoid message loss if a crash occurs. After having submitted the message, process S is free. The MQ handler consists of an independent process that is responsible for storing and delivering messages on behalf of application processes. S’s handler attempts to transfer the message to R’s handler. If the destination handler is unavailable because of a site crash, or a network partition, S’s handler will attempt to deliver the message periodically until R’s handler becomes available. Reliability is achieved by decoupling sender processes from receiver processes. A sender can submit a message without having to know whether the receiver is unavailable and without having to deal with transient network failures. The model can tolerate the failure of MQ handlers because messages are written to non-volatile storage automatically and can be retransmitted, if necessary.

Advantages: -
· This model is useful for applications that can be interconnected by an asynchronous, one way, “forward and forget” communication paradigm.

· The advantage of the MQ model is that it is easy to use, implement, and understand.

· It also supports disconnected operation of mobile equipment

Disadvantages: -

· The size of the disks imposes tight limits on the maximum throughput.

· Lack of support for two-way communication in many MQ products.

Transaction Processing Monitors: -

[image: image4.png]
A transaction processing monitor (TP monitor) allows a distributed client application to group together a series of service invocations by begin/end transaction markers. If a service fails during a transaction, the transaction monitor will roll back invocations issued within the transaction. TP monitors typically provide two-way commit protocols and serializability of requests. Thus, TP monitors can be used to maintain distributed data consistency in spite of crash failures, by employing a roll back mechanism.

TP monitors are primarily aimed at data-oriented applications that manage distributed, persistent data objects. Some areas of applications are management information systems, flight-reservation systems, and business workflow management.

Limitations: -
· They are hard to program.

· They introduce substantial performance overhead and excessive serialization in many situations such as groupware applications and real-time market data feeds.

Virtual Synchrony: -

Developed by Ken Birman, Virtual Synchrony guarantees that the behavior of a distributed application is predictable regardless of partial failures, asynchronous messaging, and objects that join and leave the system dynamically. The core of the model has a failure suspector service and a group abstraction. The failure suspector service detects faulty objects and sees that non-faulty objects have a consistent view of which objects are believed faulty. The failure suspector identifies a suspicious object on the basis of its timeout. It only detects crash failures and assumes that objects fail by crashing without emitting spurious messages.

[image: image5.png]
Object Group Computing in the Virtual Synchrony Model.

In an asynchronous system it is impossible to distinguish a crashed object from one that is very slow. Thus the failure suspector might report a healthy object as suspicious, for example when a machine or a network happens to be temporarily overloaded. But practically false suspicions occur infrequently. Consider following scenario:

“A client application mistakenly believes a server object as faulty, due to a high temporary load on the server’s machine. However, another client application is able to interact with that server without any problem. Believing the server has crashed, the first client requests the run-time system to create a new instance of the server on another host. The result is that now two servers with an inconsistent internal state exist, and that both clients and servers believe that the system is running correctly. In reality, the clients are submitting update requests to two different servers, which places the system into an inconsistent state.”

This problem can be solved through group abstraction of Virtual Synchrony. Objects with large usage can be created on several computing nodes and grouped together to form an object group. The object group abstraction allows programmers to assign a single object reference to a set of network objects that implement the same interface. Object groups appear like single entities to the client application. Client requests are transparently multicast to the group. A request succeeds as long as at least one group member is operational.

Virtual Synchrony also implements a roll forward recovery mechanism in which crashed objects are restarted and rejoined to their object group. Upon joining a group, an object obtains a copy of the replicated group state.

Virtual Synchrony is widely used in process oriented applications like teleconferencing, real time stock exchange, satellite surveillance system etc. Examples of toolkits that implement Virtual Synchrony are Horus, Isis and Transis.

[image: image6.png]
Limitation: -

It lacks high-level abstraction, standard APIs And framework, so applications may become hard to implement.
[image: image7.png]
Comparison between TP, MQ, VS

Comparison between CORBA and DCOM: -

	Feature
	CORBA
	DCOM

	Abstraction Level
	((((
	((((

	Java Integration
	((((
	((((

	OS Platform Support
	((((
	((

	All Java Implementation
	((((
	(

	Typed parameter support
	((((
	((((

	Ease of configuration
	(((
	(((

	Distributed method invocation
	((((
	(((

	State across Invocation
	((((
	(((

	Dynamic discovery and

Metadata support
	((((
	(((

	Dynamic Invocation
	((((
	((((

	Performance (remote ping)
	(((
	(((

	Wire level security
	((((
	((((

	Wire level Transaction
	((((
	(((

	Persistent object reference
	((((
	(

	URL based naming
	((((
	((

	Multilingual object Invocation
	((((
	((((

	Language- neutral protocol
	((((
	((((

	Intergalactic scaling
	((((
	((

	Open Standard
	((((
	((

Conclusion: -

As the table reflects, CORBA is more suitable for a distributed system than DCOM. This is probably because DCOM is a Microsoft product, which has been developed by a particular set of developers, whereas an open group called Object Management Group developed CORBA. OMG has members from all over the world who works on different environment and on different platform. So, OMG gets ideas and hardware specifications from all over the world which were used to develop CORBA. This rendered CORBA to be universally accepted.

References: -

· Distributed System Concept and Design – Coulouris, Dollimore, Kindberg
· Distributed System Principles and Paradigms – Tannenbaum, Van Steen
· Software Engineering – Sommerville
· Client/Server programming with Java and CORBA – Robert Orfall, Dan Harkey
· Constructing Reliable Distributed Communication Systems with CORBA - Silvano Maffeis, Douglas C. Schmidt
· CORBA: Integrating Diverse Applications Within Distributed Heterogeneous Environments - Steve Vinoski, IONA Technologies, Inc.
· The Open Agent Architecture _ A Framework for Building Distributed Software Systems - David L_ Martin, Adam J_ Cheyer, Douglas B_ Moran
· www.omg.org
Object Request Broker

Application Interface

Domain Interface

Common Facilities

Object

Services

Server

Client

Client

Server

Application

Coordination Code

Application

Coordination Code

Application

Coordination Code

� EMBED Word.Picture.8 ���

PAGE
6

_1187549629.doc
[image: image1.png]

