Knowx Innovations

Embedded C Concepts

Contents

5Chapter 1

51.1 Cx51 Introduction

61.2 What Is an Embedded System?

61.3 Compiling with an embedded compiler

71.4 Compiler and Cross Compilers

71.5 8051 Device Support

81.6 Output Files

91.7 Directives

10Chapter 2

102.1 Flow Of Control

102.2 Simple Statements

112.3 Compound Statements

122.4 The If Statement

132.5 The Switch Statement

152.6 The While Statement

162.7 The For Statement

172.8 The Do Statement

182.9 The Return Statement

192.10 Null Statements

192.11The Goto Statement

21Chapter 3: Language Extensions

213.1 Keywords

213.2 Memory Areas

213.3 Program Memory

223.4 Internal Data Memory

223.5 External Data Memory

233.6 Far Memory

243.7 SFR Memory

243.8 Memory Models

243.8.1 Small Model

243.8.2 Compact Model

253.8.3 Large Model

253.9 Memory Types

263.9.1 bdata

263.9.2 code

273.9.3 data

273.9.4 far

273.9.5 idata

273.9.6 pdata

283.9.7 xdata

283.10 Data Types

293.11 Special Function Registers

293.11.1 sfr

303.11.2 sfr16

303.11.3 sbit

313.12 Bit-Addressable Objects

323.12.1 Bit

333.13 Standard C Types

333.13.1 void

343.13.2 char

343.13.3 int

343.13.4 enum

353.13.5 float

353.13.6 double

353.14 Type Modifiers

353.14.1 signed

363.14.2 unsigned

363.14.3 short

363.14.5 long

363.15 Type Qualifiers

373.15.1 const

383.15.2 volatile

393.16 Storage Classess

393.16.1 auto

403.16.2 register

403.16.3 extern

403.16.4 static

413.17 Absolute Variable Location

423.18Arrays and Strings

433.18.1 Array Declarations

433.18.1 Array References

443.19 Structures

443.19.1 Structure Declarations

453.20 Pointers

463.20.1 Generic Pointers

483.20.1 Memory-Specific Pointers

503.20.2 Pointer Conversions

503.21 Function Declarations

523.21.1 Return Values

523.22 Memory Models

563.23 Reentrant Functions

60Chapter 4: Preprocessor

604.1 Header Files

614.1.1 How #include Works

614.2 Macros

624.2.1 Simple Macros

624.2.2 Complex Macros

644.3 Conditional Compilation

654.4 Preprocessor Directives

664.4.1 #pragma

664.4.2 #define

664.4.3 #if

684.4.4 #else

684.4.5 #undef

69Chapter 5

69Advanced Programming

695.1 Startup Code

705.2 Basic I/O

715.3 Memory Allocation

715.4 Function Parameters

715.4.1 Passing in Memory

725.4.2 Passing in Registers

735.5 Data Storage Formats

735.6 Bit Variables

745.6.1 1-Byte Scalars

745.6.2 2-Byte Scalars

745.6.3 4-Byte Scalars

745.7 Generic and Far Pointers

755.7.1 Generic Pointer Example

Chapter 1
1.1 Cx51 Introduction
The C programming language is a general-purpose programming language that provides code efficiency, elements of structured programming, and a rich set of operators? C is not a big language and is not designed for any one particular area of application. Its generality combined with its absence of restrictions, makes C a convenient and effective programming solution for a wide variety of software tasks. Many applications can be solved more easily and efficiently with C than with other more specialized languages.

The Cx51 Optimizing C Compiler is a complete implementation of the American National Standards Institute (ANSI) standard for the C language. The Cx51 Compiler is not a universal C compiler adapted for the 8051 target. It is a ground-up implementation, dedicated to generating extremely fast and compact code for the 8051 microprocessor. The Cx51 Compiler provides you with the flexibility of programming in C and the code efficiency and speed of assembly language.

The C language on its own is not capable of performing operations (such as input and output) that would normally require intervention from the operating system. Instead, these capabilities are provided as part of the standard library. Because these functions are separate from the language itself, C is especially suited for producing code that is portable across a wide number of platforms.

Since the Cx51 Compiler is a cross compiler, some aspects of the C programming language and standard libraries are altered or enhanced to address the peculiarities of an embedded target processor

Why C for Microcontrollers?

•Compatibility
•Direct access to hardware address

•Direct connection to interrupts

•Optimization consideration

•Development environment

•Reentrancy

1.2 What Is an Embedded System?

An embedded system is a combination of computer hardware and software, and perhaps additional mechanical or other parts, designed to perform a specific function. A good example is the microwave oven. Almost every household has one, and tens of millions of them are used every day, but very few people realize that a processor and software are involved in the preparation of their lunch or dinner
1.3 Compiling with an embedded compiler

 Figure 1.1 Compiling with an embedded compiler
 Figure 1.1 Compiling with an embedded compiler
1.4 Compiler and Cross Compilers

 Uses OS as platform Uses OS as platform

Uses 2nd

 platform i.e. hardware

 Figure 1.2 Compiler and Cross Compilers

1.5 8051 Device Support

The 8051 Family is one of the fastest growing Microcontroller Architectures. More than 500 device variants from various silicon vendors are available today. New extended 8051 devices, like the Philips 80C51MX architecture, are dedicated for large applications with several megabytes of code and data space.

For optimum support of these different 8051 variants, Keil provides several development tools that are listed in the table below. A new output file format (OMF2) allows direct support of up to 16MB code and data space. The CX51 Compiler is a variant of the C51 compiler that is designed for the new Philips 80C51MX architecture.

	Development Tools
	Supported Microcontrollers
	Description

	C51 Compiler,
A51 Macro Assembler,
BL51 Linker/Locater
	Classic 8051 Devices.
	Supports standard 8051 devices and includes support for 32 x 64K code banks.

	C51 Compiler (with OMF2 Output),
AX51 Macro Assembler,
LX51 Linker/Locater
	Classic 8051 Devices,
Extended 8051 Variants,
Dallas 390/52xx/400/41x.
	Supports standard and extended 8051 devices. Includes support for code banking and up to 16MB code and xdata memory.

	CX51 Compiler,
AX51 Macro Assembler,
LX51 Extended Linker/Locater
	Philips 80C51MX Devices.
	Supports Philips 80C51MX devices that provide a linear 16MB address space.

The Cx51 Compiler is available in different packages. The table above refers to the entire line of the 8051 development tools.

1.6 Output Files

The Cx51 Compiler generates a number of output files during compilation. By default, each output file shares the same filename as the source file. However, each has a different file extension. The following table lists the files and gives a brief description of each.

	File Extension
	Description

	.LST
	Files with this extension are listing files that contain the formatted source text along with any errors detected by the compiler. Listing files may optionally contain the symbols used and the assembly code generated. Refer to the PRINT directive for more information.

	.OBJ
	Files with this extension are object modules that contain relocatable object code. Object modules may be linked to an absolute object module by the Lx51 Linker/Locator.

	.I
	Files with this extension contain the source text as expanded by the preprocessor. All macros are expanded and all comments are deleted in this listing. Refer to the PREPRINT directive for more information.

	.SRC
	Files with this extension are assembly source files generated from your C source code. These files can be assembled with the A51 Assembler. Refer to the SRC directive for more information.

1.7 Directives
The C51 Compiler provides a number of directives you may use to control source file compilation. Directives are composed of one or more letters or digits and, unless otherwise specified, may be specified after the filename on the command line or within the source file using #pragma. For example:

C51 testfile.c SYMBOLS CODE DEBUG

or
#pragma SYMBOLS CODE DEBUG

The source file to compile is testfile.c and SYMBOLS, CODE, and DEBUG are the directives.

Control directives may be divided into three groups:

· Source controls define macros on the command line and determine the name of the file to be compiled.

· Object controls affect the form and content of the generated object module (*.OBJ). These directives allow you to specify the optimizing level or include debugging information in the object file.

· Listing controls govern various aspects of the listing file (*.LST), in particular its format and specific content.

Chapter 2
2.1 Flow Of Control

Every procedural language provides statements for determining the flow of control within programs. Although declarations are a type of statement, in C the unqualified word statement usually refers to procedural statements rather than declarations. In this chapter we are concerned only with procedural statements.

In the C language, statements can be written only within the body of a function; more specifically, only within compound statements. The normal flow of control among statements is sequential, proceeding from one statement to the next. However, as we shall see, most of the statements in C are designed to alter this sequential flow so that algorithms of arbitrary complexity can be implemented. This is done with statements that control whether or not other statements execute and, if so, how many times. Furthermore, the ability to write compound statements permits the writing a sequence of statements wherever a single, possibly controlled, statement is allowed. These two features provide the necessary generality to implement any algorithm, and to do it in a structured way.

2.2 Simple Statements

The C language uses semicolons as statement terminators. A semicolon follows every simple (non-compound) statement, even the last one in a sequence.

When one statement controls other statements, a terminator is applied only to the controlled statements. Thus we would write

if(x > 5) x = 0; else ++x;

with two semicolons, not three. Perhaps one good way to remember this is to think of statements that control other statements as "super" statements that "contain" ordinary (simple and compound) statements. Then remember that only simple statements are terminated. This implies, as stated above, that compound statements are not terminated with semicolons. Thus

while(x < 5) {func(); ++x;}
is perfectly correct. Notice that each of the simple statements within the compound statement is terminated.

2.3 Compound Statements

The terms compound statement and block both refer to a collection of statements that are enclosed in braces to form a single unit. Compound statements have the form

{ObjectDeclaration?... Statement?... }
ObjectDeclaration?... is an optional set of local declarations. If present, C requires that they precede the statements; in other words, they must be written at the head of the block. Statement?... is a series of zero or more simple or compound statements. Notice that there is not a semicolon at the end of a block; the closing brace suffices to delimit the end. In this example the local variable temp is only defined within the inner compound statement.

void main(void){ short n1,n2;
 n1=1; n2=2;
 { short temp;
 temp=n1; n1=n2; n2=temp; /* switch n1,n2 */
 }
}
The power of compound statements derives from the fact that one may be placed anywhere the syntax calls for a statement. Thus any statement that controls other statements is able to control units of logic of any complexity.

When control passes into a compound statement, two things happen. First, space is reserved on the stack for the storage of local variables that are declared at the head of the block. Then the executable statements are processed.

One important limitation in C is that a block containing local declarations must be entered through its leading brace. This is because bypassing the head of a block effectively skips the logic that reserves space for local objects. Since the goto and switch statements (below) could violate this rule.

2.4 The If Statement

If statements provide a non-iterative choice between alternate paths based on specified conditions. They have either of two forms

if (ExpressionList) Statement1
or

if (ExpressionList) Statement1
else Statement2
ExpressionList is a list of one or more expressions and Statement is any simple or compound statement. First, ExpressionList is evaluated and tested. If more than one expression is given, they are evaluated from left to right and the right-most expression is tested. If the result is true (non-zero), then the Statement1 is executed and the Statement2 (if present) is skipped. If it is false (zero), then Statement1 is skipped and Statement2 (if present) is executed. In this first example, the function isGreater() is executed if G2 is larger than 100.

if(G2 > 100) isGreater();
[image: image1.png]G2 €100

G2> 100

isGreater();

A 3-wide median filter can be designed using if-else conditional statements.

short Median(short u1,short u2,short u3){ short result;
 if(u1>u2)
 if(u2>u3) result=u2; // u1>u2,u2>u3 u1>u2>u3
 else
 if(u1>u3) result=u3; // u1>u2,u3>u2,u1>u3 u1>u3>u2
 else result=u1; // u1>u2,u3>u2,u3>u1 u3>u1>u2
 else
 if(u3>u2) result=u2; // u2>u1,u3>u2 u3>u2>u1
 else
 if(u1>u3) result=u1; // u2>u1,u2>u3,u1>u3 u2>u1>u3
 else result=u3; // u2>u1,u2>u3,u3>u1 u2>u3>u1
 return(result):}
if ((G2==G1)||(G4>G3)) True(); else False();
[image: image2.png](G21=G1)&&(G4<G3) (G2==G1)[[(G4>G3)

False(); True();

2.5 The Switch Statement
Switch statements provide a non-iterative choice between any number of paths based on specified conditions. They compare an expression to a set of constant values. Selected statements are then executed depending on which value, if any, matches the expression. Switch statements have the form

switch (ExpressionList) { Statement?...}

where ExpressionList is a list of one or more expressions. Statement?... represents the statements to be selected for execution. They are selected by means of case and default prefixes--special labels that are used only within switch statements. These prefixes locate points to which control jumps depending on the value of ExpressionList. They are to the switch statement what ordinary labels are to the goto statement. They may occur only within the braces that delimit the body of a switch statement.

The case prefix has the form

case Constant Expression :
and the default prefix has the form

default:
The terminating colons are required; they heighten the analogy to ordinary statement labels. Any expression involving only numeric and character constants and operators is valid in the case prefix.

After evaluating ExpressionList, a search is made for the first matching case prefix. Control then goes directly to that point and proceeds normally from there. Other case prefixes and the default prefix have no effect once a case has been selected; control flows through them just as though they were not even there. If no matching case is found, control goes to the default prefix, if there is one. In the absence of a default prefix, the entire compound statement is ignored and control resumes with whatever follows the switch statement. Only one default prefix may be used with each switch.

If it is not desirable to have control proceed from the selected prefix all the way to the end of the switch block, break statements may be used to exit the block. Break statements have the form

break;
Some examples may help clarify these ideas. Assume Port A is specified as an output, and bits 3,2,1,0 are connected to a stepper motor. The switch statement will first read Port A and the data with 0x0F (PORTA&0x0F). If the result is 5, then PortA is set to 6 and control is passed to the end of the switch (because of the break). Similarly for the other 3 possibilities

#define PORTA *(unsigned char volatile *)(0x0000)
void step(void){ /* turn stepper motor one step */
 switch (PORTA&0x0F) {
 case 0x05:
 PORTA=0x06; // 6 follows 5;
 break;
 case 0x06:
 PORTA=0x0A; // 10 follows 6;
 break;
 case 0x0A:
 PORTA=0x09; // 9 follows 10;
 break;
 case 0x09:
 PORTA=0x05; // 5 follows 9;
 break;
 default:
 PORTA=0x05; // start at 5
 }
}
The body of the switch is not a normal compound statement since local declarations are not allowed in it or in subordinate blocks. This restriction enforces the C rule that a block containing declarations must be entered through its leading brace.

2.6 The While Statement

The while statement is one of three statements that determine the repeated execution of a controlled statement. This statement alone is sufficient for all loop control needs. The other two merely provide an improved syntax and an execute-first feature. While statements have the form

while (ExpressionList) Statement
where ExpressionList is a list of one or more expressions and Statement is an simple or compound statement. If more than one expression is given, the right-most expression yields the value to be tested. First, ExpressionList is evaluated. If it yields true (non-zero), then Statement is executed and ExpressionList is evaluated again. As long as it yields true, Statement executes repeatedly. When it yields false, Statement is skipped, and control continues with whatever follows.

In the example

i = 5;
while (i) array[--i] = 0;
elements 0 through 4 of array[] are set to zero. First i is set to 5. Then as long as it is not zero, the assignment statement is executed. With each execution i is decremented before being used as a subscript.

It is common to use the while statement it implement gadfly loops

#define RDRF 0x20 // Receive Data Register Full Bit
// Wait for new serial port input, return ASCII code for key typed
char SCI_InChar(void){
 while ((SCISR1 & RDRF) == 0){};
 return(SCIDRL);
}
#define TDRE 0x80 // Transmit Data Register Empty Bit
// Wait for buffer to be empty, output ASCII to serial port
void SCI_OutChar(char data){
 while ((SCISR1 & TDRE) == 0){};
 SCIDRL = data;
}
The continue statement has the form

continue;
It causes control to jump directly back to the top of the loop for the next evaluation of the controlling expression. If loop controlling statements are nested, then continue affects only the innermost surrounding statement. That is, the innermost loop statement containing the continue is the one that starts its next iteration.

The break statement (described earlier) may also be used to break out of loops. It causes control to pass on to whatever follows the loop controlling statement. If while (or any loop or switch) statements are nested, then break affects only the innermost statement containing the break. That is, it exits only one level of nesting.

2.7 The For Statement

The for statement also controls loops. It is really just an embellished while in which the three operations normally performed on loop-control variables (initialize, test, and modify) are brought together syntactically.

It has the form

for (ExpressionList? ;
ExpressionList? ;
ExpressionList?) Statement

For statements are performed in the following steps:

The first ExpressionList is evaluated. This is done only once to initialize the control variable(s).

The second ExpressionList is evaluated to determine whether or not to perform Statement. If more than one expression is given, the right-most expression yields the value to be tested. If it yields false (zero), control passes on to whatever follows the for statement. But, if it yields true (non-zero), Statement executes.

The third ExpressionList is then evaluated to adjust the control variable(s) for the next pass, and the process goes back to step 2. E.g.,

for(J=100;J<1000;J++) { process();}
[image: image3.png]1=100

000

<1000

process;
T
=

|

A five-element array is set to zero, could be written as

for (i = 4; i >= 0; --i) array[i] = 0;
or a little more efficiently as

for (i = 5; i; array[--i] = 0) ;
Any of the three expression lists may be omitted, but the semicolon separators must be kept. If the test expression is absent, the result is always true.

Thus

for (;;) {...break;...}

will execute until the break is encountered.

As with the while statement, break and continue statements may be used with equivalent effects. A break statement makes control jump directly to whatever follows the for statement. And a continue skips whatever remains in the controlled block so that the third ExpressionList is evaluated, after which the second one is evaluated and tested. In other words, a continue has the same effect as transferring control directly to the end of the block controlled by the for.

2.8 The Do Statement

The do statement is the third loop controlling statement in C. It is really just an execute-first while statement.

It has the form

do Statement while (ExpressionList) ;

Statement is any simple or compound statement. The do statement executes in the following steps:

Statement is executed.

Then, ExpressionList is evaluated and tested. If more than one expression is given, the right most expression yields the value to be tested. If it yields true (non-zero), control goes back to step 1; otherwise, it goes on to whatever follows.

As with the while and for statements, break and continue statements may be used. In this case, a continue causes control to proceed directly down to the while part of the statement for another test of ExpressionList. A break makes control exit to whatever follows the do statement.

I=100; do { process(); I--;} while (I>0);
[image: image4.png]

The example of the five-element array could be written as

i = 4;
do {array[i] = 0; --i;} while (i >= 0);
or as

i = 4;
do array[i--] = 0; while (i >= 0);
or as

i = 5;
do array[--i] = 0; while (i);

2.9 The Return Statement
The return statement is used within a function to return control to the caller. Return statements are not always required since reaching the end of a function always implies a return. But they are required when it becomes necessary to return from interior points within a function or when a useful value is to be returned to the caller. Return statements have the form

return ExpressionList? ;
ExpressionList? is an optional list of expressions. If present, the last expression determines the value to be returned by the function. I f absent, the returned value is unpredictable.

2.10 Null Statements

The simplest C statement is the null statement. It has no text, just a semicolon terminator. As its name implies, it does exactly nothing. In fact, in C programs, all of the work is accomplished by expressions; this includes assignments and calls to functions that invoke operating system services such as input/output operations. It follows that anything can be done at any point in the syntax that calls for an expression. Take, for example, the statement

while ((SCISR1 & TDRE) == 0); /* Wait for TDRE to be set */
in which the (SCISR1&TDRE)==0) controls the execution of the null statement following. The null statement is just one way in which the C language follows a philosophy of attaching intuitive meanings to seemingly incomplete constructs. The idea is to make the language as general as possible by having the least number of disallowed constructs.

2.11The Goto Statement

Goto statements break the sequential flow of execution by causing control to jump abruptly to designated points. They have the general form goto Name where Name is the name of a label which must appear in the same function. It must also be unique within the function.

short data[10];
void clear(void){ short n;
 n=1;
loop: data[n]=0;
 n++;
 if(n==10) goto done;
 goto loop;
done:
}
Notice that labels are terminated with a colon. This highlights the fact that they are not statements but statement prefixes which serve to label points in the logic as targets for goto statements. When control reaches a goto, it proceeds directly from there to the designated label. Both forward and backward references are allowed, but the range of the jump is limited to the body of the function containing the goto statement.

As we observed above, goto statements, cannot be used in functions which declare locals in blocks which are subordinate to the outermost block of the function.Because they violate the structured programming criteria, gotostatements should be used sparingly, if at all. Over reliance on them is a sure sign of sloppy thinking.

Chapter 3: Language Extensions

3.1 Keywords

To facilitate many of the features of the 8051, the Cx51 Compiler adds a number of new keywords to the scope of the C language:

	· _at_
· alien
· bdata
· bit
· code
· compact
· data
	· far
· idata
· interrupt
· large
· pdata
· _priority_
· reentrant
	· sbit
· sfr
· sfr16
· small
· _task_
· using
· xdata

3.2 Memory Areas

The 8051 architecture supports several physically separate memory areas or memory spaces for program and data. Each memory area offers certain advantages and disadvantages. There are memory spaces that may be:

· read from but not written to.

· read from or written to.

· read from or written to more quickly than other memory spaces.

The wide variety of memory space available on the 8051 is quite different from most mainframe, minicomputer, and microcomputer architectures where the program, data, and constants are all loaded into the same physical memory space within the computer

3.3 Program Memory

Program (CODE) memory is read only; it cannot be written to. Program memory may reside within the 8051 CPU, it may be external, or it may be both, depending upon the 8051 derivative and the hardware design.

· The 8051 architecture supports up to 64K Bytes of program memory. However, program space can be expanded using code banking.

· Some devices offer a larger code space.

· Program code, including all functions and library routines, is stored in program memory.

· Constant variables may also be stored in program memory.

· The 8051 executes programs stored in program memory only.

· Program memory may be accessed from your C programs using the code memory type specifier.

3.4 Internal Data Memory
Internal data memory resides within the 8051 CPU and is read/write. Up to 256 bytes of internal data memory are available depending upon the 8051 derivative. The first 128 bytes of internal data memory are both directly and indirectly addressable. The upper 128 bytes of data memory (from 0x80 to 0xFF) can be addressed only indirectly (this address space, when accessed directly, is mapped to SFRs). There is also a 16 byte area starting at 20h that is bit-addressable.

Access to internal data memory is very fast because it can be accessed using an 8-bit address. However, internal data memory is limited to a maximum of 256 bytes.

Internal data can be broken down into three distinct memory types: data, idata, and bdata.

· The data memory specifier always refers to the first 128 bytes of internal data memory. Variables stored here are accessed using direct addressing.

· The idata memory specifier refers to all 256 bytes of internal data memory; however, this memory type specifier code is generated by indirect addressing which is slower than direct addressing.

· The bdata memory specifier refers to the 16 bytes of bit-addressable memory in the internal data area (20h to 2Fh). This memory type specifier allows you to declare data types that may also be accessed at the bit level.

3.5 External Data Memory

External data memory is read/write. Since external data memory is indirectly accessed through a data pointer register (which must be loaded with an address), it is slower than access to internal data memory.

Several 8051 devices provide on-chip XRAM space that is accessed with the same instructions as the traditional external data space. This XRAM space is typically enabled via dedicated chip configuration SFR registers and overlaps the external memory space.

There may be up to 64K Bytes of external data memory; though, this address space does not necessarily have to be used as memory. Your hardware design may map peripheral devices into the memory space. If this is the case, your program would access external data memory to program and control the peripheral. This technique is referred to as memory-mapped I/O.

The C51 Compiler offers two memory types that access external data: xdata and pdata.

· The xdata memory specifier refers to any location in the 64K Byte address space of external data memory. The large memory model locates variables in this memory space.

· The pdata memory type specifier refers to exactly one (1) page (256 bytes) of external data memory. The compact memory model locates variables in this memory space.

3.6 Far Memory

Far memory refers to the extended address space of many new 8051 variants. The Cx51 Compiler uses generic 3-byte pointers to access extended memory spaces. Two Cx51 memory types, far and const far, access variables in extended RAM space and constants in extended ROM space.

The Philips 51MX Architecture provides hardware support for 8MB code and xdata space using universal pointers. The new instructions of the 80C51MX architecture are used by the Cx51 Compiler to access far and const far variables.

The Dallas 390 Architecture supports an extended code and xdata address space in contiguous mode with a 24-bit DPTR register and the traditional MOVX and MOVC instructions. Variables defined with far and const far are located in these extended xdata and code address spaces.

Classic 8051 devices may also use far and const far variables if you configure XBANKING.A51 for your target hardware. This is useful for devices that provide an address extension SFR or additional memory spaces that can be mapped into the xdata space. You may also use xdata banking hardware to extend the address space of a classic 8051 device information.

3.7 SFR Memory

The 8051 provides 128 bytes of memory for Special Function Registers (SFRs). SFRs are bit, byte, or word-sized registers that are used to control timers, counters, serial I/O, port I/O, and peripherals. Refer to Special Function Registers for more information.

3.8 Memory Models

The memory model determines the default memory type to use for function arguments, automatic variables, and declarations that include no explicit memory type. The C51 Compiler provides three memory models:

· Small Model

· Compact Model

· Large Model
3.8.1 Small Model
In this model, all variables, by default, reside in the internal data memory of the 8051 system—as if they were declared explicitly using the data memory type specifier.

In this memory model, variable access is very efficient. However, all objects (that are not explicitly located in another memory area) and the stack must fit into the internal RAM. Stack size is critical because the stack space used depends on the nesting depth of the various functions.

3.8.2 Compact Model

Using the compact model, by default, all variables reside in a single page of external data memory of the 8051 system—as if they were explicitly declared using the pdata memory type specifier. This memory model can accommodate a maximum of 256 bytes of variables. The limitation is due to the addressing scheme used which is indirect through registers R0 and R1 (@R0, @R1). This memory model is not as efficient as the small model and variable access is not as fast. However, the compact model is faster than the large model.

When using the compact model, the C51 Compiler accesses external memory with instructions that use the @R0 and @R1 operands. R0 and R1 are byte registers and provide only the low-order byte of the address. If your target hardware has more than 256 bytes of external memory, the high-order address byte (or page) is provided by Port 2 on most 8051 devices (check your data sheet to confirm this). You must initialize Port 2 with the proper external memory page (in the startup code) and you must specify the starting address for PDATA to the linker.

3.8.3 Large Model

In the large model, all variables, by default, reside in external data memory (which may be up to 64K Bytes). This is the same as if they were explicitly declared using the xdata memory type specifier.

The data pointer (DPTR) is used to address external memory. It is important to note that memory access through the data pointer is inefficient and slow, especially on variables that are two or more bytes long. This type of data access mechanism generates more code than the small model or compact model.

3.9 Memory Types

The Cx51 Compiler supports the architecture of the 8051 and its derivatives and provides access to all memory areas. Each variable may be explicitly assigned to a specific memory space (by including a memory type specifier in the declaration) or implicitly assigned (based on the memory model).

The following table summarizes the memory type specifiers you may use.

	Memory Type
	Description

	code
	Program memory (64 KBytes); accessed by opcode MOVC @A+DPTR.

	data
	Directly addressable internal data memory; fastest access to variables (128 bytes).

	idata
	Indirectly addressable internal data memory; accessed across the full internal address space (256 bytes).

	bdata
	Bit-addressable internal data memory; supports mixed bit and byte access (16 bytes).

	xdata
	External data memory (64 KBytes); accessed by opcode MOVX @DPTR.

	far
	Extended RAM and ROM memory spaces (up to 16MB); accessed by user defined routines or specific chip extensions (Philips 80C51MX, Dallas 390).

	pdata
	Paged (256 bytes) external data memory; accessed by opcode MOVX @Rn.

As with the signed and unsigned attributes, you may include memory

3.9.1 bdata

The bdata memory type may be used to declare variables only. You may not declare bdata functions. This memory is directly accessed using 8-bit addresses and is the on-chip bit-addressable RAM of the 8051. Variables declared with the bdata type are bit-addressable and may be read and written using bit instructions.

Variables declared bdata are located in the BDATA memory class.

Declare bdata variables as follows:

unsigned char bdata bdata_var;

3.9.2 code

The code memory type may be used for constants and functions. This memory is accessed using 16-bit addresses and may be on-chip or external.

· For constants (ROM variables), code memory is limited to 64K. Objects are limited to 64K and may not cross a 64K boundary. Constant variables declared code are located in the CODE memory class.

· For program code (functions), code memory is limited to 64K. Program functions are stored in the CODE memory class by default. The code memory type specifier is not required.

Declare code objects as follows:

unsigned char code code_constant;

unsigned int func (void)

{

return (0);

}

3.9.3 data

The data memory type may be used to declare variables only. You may not declare data functions. This memory is directly accessed using 8-bit addresses and is the on-chip RAM of the 8051. It has the shortest (fastest) access time but the amount of data is limited in size (to 128 bytes or less).

Variables declared data are located in the DATA memory class.

Declare data variables as follows:

unsigned char data fast_variable;

3.9.4 far

The far memory type may be used for variables and constants. This memory is accessed using 24-bit addresses and may be on-chip or external.

· For variables, far memory is limited to 16M. Objects are limited to 64K and may not cross a 64K boundary. Variables declared far are located in the HDATA memory class.

· For constants (ROM variables), far memory is limited to 16M. Objects are limited to 64K and may not cross a 64K boundary. Constant variables declared far are located in the HCONST group.

Declare far objects as follows:

unsigned char far far_variable;

unsigned char const far far_const_variable;

3.9.5 idata

The idata memory type may be used to declare variables only. You may not declare idata functions. This memory is indirectly accessed using 8-bit addresses and is the on-chip RAM of the 8051. The amount of idata is limited in size (to 256 bytes or less). The lower addresses of idata overlap the corresponding addresses of data memory.

Variables declared idata are located in the IDATA memory class.

Declare idata variables as follows:

unsigned char idata variable;

3.9.6 pdata

The pdata memory type may be used to declare variables only. You may not declare pdata functions. This memory is indirectly accessed using 8-bit addresses and is one 256-byte page of external data RAM of the 8051. The amount of pdata is limited in size (to 256 bytes).

Variables declared pdata are located in the PDATA memory class.

Declare pdata variables as follows:

unsigned char pdata variable;

3.9.7 xdata

The xdata memory type may be used to declare variables only. You may not declare xdata functions. This memory is indirectly accessed using 16-bit addresses and is the external data RAM of the 8051. The amount of xdata is limited in size (to 64K or less).

Variables declared xdata are located in the XDATA memory class.

Declare xdata variables as follows:

unsigned char xdata variable;

3.10 Data Types

The Cx51 Compiler provides several basic data types you may use in your C programs. The compiler supports the standard C data types as well as several data types that are unique to the Cx51 platform.

	Data Types
	Bits
	Bytes
	Value Range

	bit
	1
	
	0 to 1

	signed char
	8
	1
	-128 — +127

	unsigned char
	8
	1
	0 — 255

	enum
	8 / 16
	1 or 2
	-128 — +127 or -32768 — +32767

	signed short int
	16
	2
	-32768 — +32767

	unsigned short int
	16
	2
	0 — 65535

	signed int
	16
	2
	-32768 — +32767

	unsigned int
	16
	2
	0 — 65535

	signed long int
	32
	4
	-2147483648 — +2147483647

	unsigned long int
	32
	4
	0 — 4294967295

	float
	32
	4
	±1.175494E-38 — ±3.402823E+38

	double
	32
	4
	±1.175494E-38 — ±3.402823E+38

	sbit
	1
	
	0 or 1

	sfr
	8
	1
	0 — 255

	sfr16
	16
	2
	0 — 65535

3.11 Special Function Registers

The 8051 family of microcontrollers provides a distinct memory area for accessing Special Function Registers (SFRs). SFRs are used in your program to control timers, counters, serial I/Os, port I/Os, and peripherals. SFRs reside from address 0x80 to 0xFF and can be accessed as bits, bytes, and words. For more information about Special Function Registers, refer to the Intel 8-Bit Embedded Controllers data book or other 8051 data books.

Within the 8051 family, the number and type of SFRs vary. Note that no SFR names are predefined by the Cx51 Compiler. However, declarations for SFRs are provided in include files.

The C51 Compiler provides a number of include files for various 8051 derivatives. Each file contains declarations for the SFRs available on that derivative.

The Cx51 Compiler provides access to SFRs with the sfr, sfr16, and sbit data types.

3.11.1 sfr

The sfr type defines a special function register (SFR). It is used as follows:

sfr name = address;

Where

	name
	is the name of the SFR.

	address
	is the address of the SFR.

SFRs are declared in the same fashion as other C variables. The only difference is that the type specified is sfr rather than char or int. For example:

sfr P0 = 0x80; /* Port-0, address 80h */

sfr P1 = 0x90; /* Port-1, address 90h */

sfr P2 = 0xA0; /* Port-2, address 0A0h */

sfr P3 = 0xB0; /* Port-3, address 0B0h */

P0, P1, P2, and P3 are the SFR name declarations. Names for sfr variables are defined just like other C variable declarations. Any symbolic name may be used in an sfr declaration.

The address specification after the equal sign ('=') must be a numeric constant. Expressions with operators are not allowed. Classic 8051 devices support the SFR address range 0x80-0xFF. The Philips 80C51MX provides an additional extended SFR space with the address range 0x180-0x1FF.

3.11.2 sfr16

The sfr16 type defines a 16-bit special function register (SFR). It is used as follows:

sfr16 name = address;

Where

	name
	is the name of the 16-bit SFR.

	address
	is the address of the 16-bit SFR.

Some 8051 derivatives have 16-bit SFRs thare are created using consecutive addresses in SFR memory to specify 16-bit values. For example, the 8052 uses addresses 0xCC and 0xCD for the low and high bytes of timer/counter 2 respectively. The Cx51 Compiler provides the sfr16 data type to access two 8-bit SFRs as a single 16-bit SFR.

Access to 16-bit SFRs using sfr16 is possible only when the low byte immediately precedes the high byte (little endian) and when the low byte is written last. The low byte is used as the address in the sfr16 declaration. For example:

sfr16 T2 = 0xCC; /* Timer 2: T2L 0CCh, T2H 0CDh */

sfr16 RCAP2 = 0xCA; /* RCAP2L 0CAh, RCAP2H 0CBh */

In this example, T2 and RCAP2 are declared as 16-bit special function registers.

The sfr16 declarations follow the same rules as outlined for sfr declarations. Any symbolic name can be used in an sfr16 declaration. The address specification after the equal sign ('=') must be a numeric constant. Expressions with operators are not allowed. The address must be the low byte of the SFR low-byte, high-byte pair.

3.11.3 sbit

The sbit type defines a bit within a special function register (SFR). It is used in one of the following ways:

sbit name = sfr-name ^ bit-position;

sbit name = sfr-address ^ bit-position;

sbit name = sbit-address;

Where

	name
	is the name of the SFR bit.

	sfr-name
	is the name of a previously-defined SFR.

	bit-position
	is the position of the bit within the SFR.

	sfr-address
	is the address of an SFR.

	sbit-address
	is the address of the SFR bit.

With typical 8051 applications, it is often necessary to access individual bits within an SFR. The sbit type provides access to bit-addressable SFRs and other bit-addressable objects. For example:

sbit EA = 0xAF;

This declaration defines EA as the SFR bit at address 0xAF. On the 8051, this is the enable all bit in the interrupt enable register.

3.12 Bit-Addressable Objects

Bit-addressable objects are objects that may be addressed as words or as bits. Only data objects that occupy the bit-addressable area of the 8051 internal memory fall into this category.

The Cx51 Compiler places variables declared with the bdata memory type into the bit-addressable area. Furthermore, variables declared with the bdata memory type must be global (declared outside the scope of a function). You may declare these variables as shown below:

int bdata ibase; /* Bit-addressable int */

char bdata bary [4]; /* Bit-addressable array */

The variables ibase and bary are bit-addressable. Therefore, the individual bits of these variables may be directly accessed and modified. Use the sbit keyword to declare new variables that access the bits of bdata variables. For example:

sbit mybit0 = ibase ^ 0; /* bit 0 of ibase */

sbit mybit15 = ibase ^ 15; /* bit 15 of ibase */

sbit Ary07 = bary[0] ^ 7; /* bit 7 of bary[0] */

sbit Ary37 = bary[3] ^ 7; /* bit 7 of bary[3] */

The above example represents declarations, not assignments to the bits of the ibase and bary bdata variables. The expression following the carat symbol ('^') in the example specifies the position of the bit to access with this declaration. This expression must be a constant value. The range depends on the type of the base variable included in the declaration. The range is 0-7 for char and unsigned char, 0-15 for int, unsigned int, short, and unsigned short, and 0-31 for long and unsigned long.

3.12.1 Bit

The bit type defines a single-bit variable. It is used as follows:

bit name « = value »;

Where

	name
	is the name of the bit variable.

	value
	is the value to assign to the bit.

The bit type may be used for variable declarations, argument lists, and function-return values. A bit variable is declared like other C data types. For example:

static bit done_flag = 0; /* bit variable */

bit testfunc (/* bit function */

 bit flag1, /* bit arguments */

 bit flag2)

{

.

.

.

return (0); /* bit return value */

}

All bit variables are stored in a bit segment located in the internal memory area of the 8051. Because this area is only 16 bytes long, a maximum of 128 bit variables may be declared within any one scope.

Memory types may be included in the declaration of a bit variable. However, because bit variables are stored in the internal data area of the 8051, data and idata memory types only may be included in the declaration. Any other memory types are invalid.

The following restrictions apply to bit variables and bit declarations:

· A bit cannot be declared as a pointer. For example:

· bit *ptr; /* invalid */

· An array of type bit is invalid. For example:

· bit ware [5]; /* invalid */

· Functions that disable interrupts (#pragma disable) and functions that are declared using an explicit register bank (using n) cannot return a bit value. The Cx51 Compiler generates an error message for functions of this type that attempt to return a bit type.

3.13 Standard C Types

The C Language supports a number of standard data types you may use to define program variables.

· void

· char

· int

· enum

· float

· double
3.13.1 void

The void data type defines functions with no return value, functions with no argument list, and pointers to objects of an undefined type. It is used as follows:

void function-name (argument-list);

return-type function-name (void);

void *name;

Where

	function-name
	is the name of the a function.

	argument-list
	is the arguments passed to the function.

	return-type
	is the return type of the function.

	name
	is the pointer to the void object(s).

3.13.2 char

The char data type defines a 1-byte binary integer. It is used as follows:

« {signed|unsigned} » char name « = value »;

Where

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

	
	

3.13.3 int

The int data type defines a binary integer. It is used as follows:

« {signed|unsigned} » « {long|short} » int name « = value »;

Where

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

3.13.4 enum

The enum keyword defines set of constants of type char or type int depending on the range of values of the set. It is used as follows:

enum « tag » {name « = value », ...};

Where

	tag
	is the name of the enum set.

	name
	is the name of an enum constant.

	value
	is the value to assign to the constant. If the value is missing, then it is assumed to be the value of the previous constant in the set + 1. The default value for the first constant in the list is 0.

Define an enum type in your program as follows:

enum tag name « = value »;

Where

	tag
	is the name of the enum set.

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

3.13.5 float

The float data type defines an floating-point number. It is used as follows:

float name « = value »;

Where

	name
	is the name of the variable.

	Value
	is the value to assign to the variable.

3.13.6 double

The double data type defines an floating-point number. It is used as follows:

double name « = value »;

Where

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

· The double data type is identical to the float data type. Variables of type double are implemented using the same 4-byte storage format as float types.

3.14 Type Modifiers

The C Language supports several type modifiers you may apply to your program's variables. The type modifiers change the amount of storage allocated to the variable and the range of values it may represent.

· signed

· unsigned

· short

· long
3.14.1 signed

[image: image5.png]

The signed type modifier specifies that a char or int variable stores both positive and negative values. It is used as follows:

signed data-type name « = value »;

Where

	data-type
	is the data type (char or int) of the variable.

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

3.14.2 unsigned

The unsigned type modifier specifies that a char or int variable stores only positive values. It is used as follows:

unsigned data-type name « = value »;

Where

	data-type
	is the data type (char or int) of the variable.

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

3.14.3 short

The short type modifier specifies that an int variable uses less-than or the same amount of storage as an int type. It is used as follows:

« {signed|unsigned} » short « int » name « = value »;

Where

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

3.14.5 long

The long type modifier specifies that an int variable uses more-than or the same amount of storage as an int type. It is used as follows:

« {signed|unsigned} » long « int » name « = value »;

Where

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

3.15 Type Qualifiers

The Compiler supports two type qualifiers: const and volatile.

· The const type qualifier declares an object that is not changed at run-time.

· The volatile type qualifier declares an object whose value may be changed by something external to the code in which it appears. In an embedded system this would typically be hardware.

3.15.1 const

In ANSI C, the const type qualifier is used to define and access objects that are constant and that may not be changed. A variable that is declared with const may not be assigned to in the program.

The Cx51 Compiler conforms to the ANSI definition of const objects.

· Variables declared with the const type qualifier alone are stored in the memory area (data, idata, xdata, and so on) associated with their definition.

· Variables you want to locate in ROM must be declared with the code memory type. For example:

· code char test[] = "This is a text string";

· Variables declared with const far are stored in the HCONST memory area. This area is typically allocated to ROM memory.

· Finally, the STRING compiler directive specifies where string constants are stored. This directive allows you to place strings in CODE memory, HCONST memory, or in XCONST memory (constant space in XDATA).

Constant objects are typically initialized when they are defined (in your source files). The following variable definitions show different ways to create constant objects:

#pragma STRING(XDATA)

/* table is stored in the default memory area */

const int table[2][2] =

 { 0, 2, 4, 8 };

/* pi is stored in the HCONST class */

const float far pi = 3.1415927;

/* The string is stored in the XCONST class */

printf("This is a string\n");

When using pointers to const objects, you may exclude the const type qualifier in the pointer definition. For example:

const unsigned char mask [] =

 { 0x01, 0x02, 0x04, 0x08 };

const unsigned char *cp = mask;

 unsigned char *p = mask; /* same as cp */

.

.

.

*p = 'a'; // This has no effec.

 // It causes no error or warning

*cp = 'a'; // This causes an error

As shown, it is possible to assign the address of a const object (mask) to a non-const pointer (p) and subsequently use the pointer to change the const object. In this case, the compiler does generate code to write to the const object. The effects of this code is undefined and may or may not work as expected.

It is not possible to use a const pointer to change the const object it points to. Attempts to do so will cause a compiler error.

An interesting use of const is to define a pointer that may not be changed. For example:

char text [] = "This is a string.";

char *const textp = text;

.

.

.

*textp = 'A'; // This is OK (it changes text[0])

textp++; // This causes an error (textp is const)

textp[2] = 'B'; // This is OK (it changes text[2])

3.15.2 volatile

The volatile type qualifier is used to restrict assumptions the compiler makes about object values. For example:

unsigned char reg1; // Hardware Register #1

unsigned char reg2; // Hardware Register #2

void func (void)

{

while (reg1 & 0x01) // Repeat while bit 0 is set

 {

 reg2 = 0x00; // Toggle bit 7

 reg2 = 0x80;

 }

}

This program uses two variables (reg1 and reg2) to access hardware registers. In most cases, the compiler loads reg1 into a register and does not re-read it between loop iterations (even though the hardware register may be changing). In addition, the three assignments to reg2 may simply be optimized to the final assignment (no code is generated for the first two assignments).

These effects are caused by the optimizer and are not bugs generated by the compiler. In fact, these are the types of optimizations the compiler should make. However, in this case they are certainly undesirable.

The volatile type qualifier was introduced to solve these types of problems. For example:

volatile unsigned char reg1; // Hardware Register #1

volatile unsigned char reg2; // Hardware Register #2

void func (void)

{

while (reg1 & 0x01) // Repeat while bit 0 is set

 {

 reg2 = 0x00; // Toggle bit 7

 reg2 = 0x80;

 }

}

By defining reg1 and reg2 as volatile, the compiler now knows that accesses to these variables may not be optimized out. The resulting code executes as desired.

3.16 Storage Classess

[image: image6.png]

The C Language supports a number of storage classes you may apply to your program's variables. The storage classes are used to define the scope and lifetime of variables and functions.

· auto

· register

· static

· extern
3.16.1 auto

[image: image7.png]

The auto storage class is the default storage class for local variables. It is used as follows:

auto data-type name « = value »;

Where

	data-type
	is the data type of the variable.

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

3.16.2 register

The register storage class defines local variables that should be stored in a register or registers rather than in RAM. It is used as follows:

register data-type name « = value »;

Where

	data-type
	is the data type of the variable.

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

In general, the Cx51 Compiler ignores the register storage class. All variables are stored in registers if and when possible.

3.16.3 extern

The extern storage class declares a global variable that is defined in another source module. It is used as follows:

extern data-type name;

Where

	data-type
	is the data type of the variable.

	name
	is the name of the variable.

When you use extern to declare a variable, the variable cannot be initialized (it is already initialized where it is defined).

3.16.4 static

The static storage class limits the scope of a variable and changes the lifetime of local variables. It is used as follows:

static data-type name « = value »;

Where

	data-type
	is the data type of the variable.

	name
	is the name of the variable.

	value
	is the value to assign to the variable.

When you use static to declare a variable outside a function, that variable cannot be accessed outside the source file in which it is declared.

When you use static to declare a variable inside a function, that variable is initialized at startup (like other global variables) and retains its value between calls to that function. It is not reinitialized on entry to the function.

3.17 Absolute Variable Location

Variables may be located at absolute memory locations in your C program source modules using the _at_ keyword. The usage for this feature is:

[memory_space] type variable_name _at_ constant;

Where

	memory_space
	Is the memory space for the variable. If this is excluded from the declaration, the default memory space is used. Refer to Memory Models for more information about the default memory space.

	type
	Is the variable type.

	variable_name
	Is the variable name.

	constant
	Is the address where the variable is located.

The absolute address following the _at_ keyword must conform to the physical boundaries of the memory space for the variable. The Cx51 Compiler checks for and reports invalid address specifications.

The following restrictions apply to absolute variable location using the _at_ keyword:

1. Absolute variables cannot be initialized.

2. Functions may not be located at an absolute address.

3. Bit variables may not be located at an absolute address.

The following example demonstrates how to locate several different variable types using the _at_ keyword.

struct link

 {

 struct link idata *next;

 char code *test;

 };

struct link list idata _at_ 0x40; /* list at idata 0x40 */

char xdata text[256] _at_ 0xE000; /* array at xdata 0xE000 */

int xdata i1 _at_ 0x8000; /* int at xdata 0x8000 */

volatile char xdata IO _at_ 0xFFE8; /* xdata I/O port at 0xFFE8 */

void main (void){

 link.next = (void *) 0;

 i1 = 0x123

 text [0] = 'a';

 IO = 6;

}

If you wish to declare variables in one source module and access them in another, use the following external declarations to access the _at_ variables defined above in another source file.

struct link

 {

 struct link idata *next;

 char code *test;

 };

extern struct link idata list; /* list at idata 0x40 */

extern char xdata text[256]; /* array at xdata 0xE000 */

extern int xdata i1; /* int at xdata 0x8000 */

extern volatile char xdata IO; /* xdata I/O port at 0xFFE8 *

3.18Arrays and Strings

An array is a collection of like variables that share a single name. The individual elements of an array are referenced by appending a subscript, in square brackets, behind the name. The subscript itself can be any legitimate C expression that yields an integer value, even a general expression. Therefore, arrays in C may be regarded as collections of like variables. Although arrays represent one of the simplest data structures, it has wide-spread usage in embedded systems.
Strings are similar to arrays with just a few differences. Usually, the array size is fixed, while strings can have a variable number of elements. Arrays can contain any data type (char short int even other arrays) while strings are usually ASCII characters terminated with a NULL (0) character. In general we allow random access to individual array elements.

3.18.1 Array Declarations

Just like any variable, arrays must be declared before they can be accessed. The number of elements in an array is determined by its declaration. Appending a constant expression in square brackets to a name in a declaration identifies the name as the name of an array with the number of elements indicated. Multi-dimensional arrays require multiple sets of brackets. The examples in Listing 8-1 are valid declarations.
short data[5]; /* define data, allocate space for 5 16-bit integers */
char string[20]; /* define string, allocate space for 20 8-bit characters */
int time,width[6]; /* define time, width, allocate space for 16-bit characters */
short xx[10][5]; /* define xx, allocate space for 50 16-bit integers */
short pts[5][5][5]; /* define pts, allocate space for 125 16-bit integers */
extern char buffer[]; /* declare buffer as an external character array */
3.18.1 Array References

In C we may refer to an array in several ways. Most obviously, we can write subscripted references to array elements, as we have already seen. C interprets an unsubscripted array name as the address of the array. In the following example, the first two lines set xto equal the value of the first element of the array. The third and fourth lines both set pt equal to the address of the array. This operator may also be used with array elements. Thus, the expression &data[3] yields the address of the fourth element. Notice too that &data[0] and data+0 and data are all equivalent. It should be clear by analogy that &data[3] and data+3 are also equivalent.
short x,*pt,data[5]; /* a variable, a pointer, and an array */
void Set(void){
 x=data[0]; /* set x equal to the first element of data */
 x=*data; /* set x equal to the first element of data */
 pt=data; /* set pt to the address of data */
 pt=&data[0]; /* set pt to the address of data */
 x=data[3]; /* set x equal to the fourth element of data */
 x=*(data+3); /* set x equal to the fourth element of data */
 pt=data+3; /* set pt to the address of the fourth element */
 pt=&data[3]; /* set pt to the address of the fourth element */
}
 Example showing array references

3.19 Structures

A structure is a collection of variables that share a single name. In an array, each element has the same format. With structures we specify the types and names of each of the elements or members of the structure. The individual members of a structure are referenced by their subname. Therefore, to access data stored in a structure, we must give both the name of the collection and the name of the element. Structures are one of the most powerful features of the C language. In the same way that functions allow us to extend the C language to include new operations, structures provide a mechanism for extending the data types. With structures we can add new data types derived from an aggregate of existing types.

3.19.1 Structure Declarations

Like other elements of C programming, the structure must be declared before it can be used. The declaration specifies the tagname of the structure and the names and types of the individual members. The following example has three members: one 16-bit integer and two character pointers

struct theport{
 int mode; // 0 for I/O, 1 for in only -1 for out only
 unsigned char volatile *addr; // pointer to its address
 unsigned char volatile *ddr;}; // pointer to its direction reg
The above declaration does not create any variables or allocate any space. Therefore to use a structure we must define a global or local variable of this type. The tagname (theport) along with the keyword struct can be used to define variables of this new data type:

struct theport PortA,PortB,PortC;
The above line defines the three variables and allocates 6 bytes for each of variable. If you knew you needed just three copies of structures of this type, you could have defined them as

struct theport{
 int mode;
 unsigned char volatile *addr;
 unsigned char volatile *ddr;}PortA,PortB,PortC;
3.20 Pointers

The Cx51 Compiler supports the declaration of variable pointers using the * character. The Cx51 Compiler pointers may be used to perform all operations available in standard C. However, because of the unique architecture of the 8051 and its derivatives, the Cx51 Compiler provides two different types of pointers:

· generic pointers

· memory-specific pointers

Comparison: Memory Specific & Generic Pointers
You can significantly accelerate an 8051 C program by using memory specific pointers. The following sample program shows the differences in code & data size and execution time for various pointer declarations.

	Description
	Idata Pointer
	xdata Pointer
	Generic Pointer

	Sample Program
	char idata *ip;
char val;
val = *ip;
	char xdata *xp;
char val;
val = *xp;
	char *p;
char val;
val = *p;

	8051 Program Code
Generated
	MOV R0,ip
MOV val,@R0
	MOV DPL,xp +1
MOV DPH,xp
MOV A,@DPTR
MOV val,A
	MOV R1,p + 2
MOV R2,p + 1
MOV R3,p
CALL CLDPTR

	Pointer Size
Code Size
Execution Time
	1 byte
4 bytes
4 cycles
	2 bytes
9 bytes
7 cycles
	3 bytes
11 bytes + library call
13 cycles

3.20.1 Generic Pointers
Generic pointers are declared like standard C pointers. For example:

char *s; /* string ptr */

int *numptr; /* int ptr */

long *state; /* Texas */

Generic pointers are always stored using three bytes. The first byte is the memory type, the second is the high-order byte of the offset, and the third is the low-order byte of the offset. Generic pointers may be used to access any variable regardless of its location in 8051 memory space. Many of the Cx51 Compiler library routines use these pointer types for this reason. By using these generic pointers, a function can access data regardless of the memory in which it is stored.

The following code and assembly listing shows the values assigned to generic pointers for variables in different memory areas. Note that the first value is the memory space followed by the high-order byte and low-order byte of the address.

stmt level source

 1 char *c_ptr; /* char ptr */

 2 int *i_ptr; /* int ptr */

 3 long *l_ptr; /* long ptr */

 4

 5 void main (void)

 6 {

 7 1 char data dj; /* data vars */

 8 1 int data dk;

 9 1 long data dl;

 10 1

 11 1 char xdata xj; /* xdata vars */

 12 1 int xdata xk;

 13 1 long xdata xl;

 14 1

 15 1 char code cj = 9; /* code vars */

 16 1 int code ck = 357;

 17 1 long code cl = 123456789;

 18 1

 19 1

 20 1 c_ptr = &dj; /* data ptrs */

 21 1 i_ptr = &dk;

 22 1 l_ptr = &dl;

 23 1

 24 1 c_ptr = &xj; /* xdata ptrs */

 25 1 i_ptr = &xk;

 26 1 l_ptr = &xl;

 27 1

 28 1 c_ptr = &cj; /* code ptrs */

 29 1 i_ptr = &ck;

 30 1 l_ptr = &cl;

 31 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)

 ; SOURCE LINE # 5

 ; SOURCE LINE # 6

 ; SOURCE LINE # 20

0000 750000 R MOV c_ptr,#00H

0003 750000 R MOV c_ptr+01H,#HIGH dj

0006 750000 R MOV c_ptr+02H,#LOW dj

 ; SOURCE LINE # 21

0009 750000 R MOV i_ptr,#00H

000C 750000 R MOV i_ptr+01H,#HIGH dk

000F 750000 R MOV i_ptr+02H,#LOW dk

 ; SOURCE LINE # 22

0012 750000 R MOV l_ptr,#00H

0015 750000 R MOV l_ptr+01H,#HIGH dl

0018 750000 R MOV l_ptr+02H,#LOW dl

 ; SOURCE LINE # 24

001B 750001 R MOV c_ptr,#01H

001E 750000 R MOV c_ptr+01H,#HIGH xj

0021 750000 R MOV c_ptr+02H,#LOW xj

 ; SOURCE LINE # 25

0024 750001 R MOV i_ptr,#01H

0027 750000 R MOV i_ptr+01H,#HIGH xk

002A 750000 R MOV i_ptr+02H,#LOW xk

 ; SOURCE LINE # 26

002D 750001 R MOV l_ptr,#01H

0030 750000 R MOV l_ptr+01H,#HIGH xl

0033 750000 R MOV l_ptr+02H,#LOW xl

 ; SOURCE LINE # 28

0036 7500FF R MOV c_ptr,#0FFH

0039 750000 R MOV c_ptr+01H,#HIGH cj

003C 750000 R MOV c_ptr+02H,#LOW cj

 ; SOURCE LINE # 29

003F 7500FF R MOV i_ptr,#0FFH

0042 750000 R MOV i_ptr+01H,#HIGH ck

0045 750000 R MOV i_ptr+02H,#LOW ck

 ; SOURCE LINE # 30

0048 7500FF R MOV l_ptr,#0FFH

004B 750000 R MOV l_ptr+01H,#HIGH cl

004E 750000 R MOV l_ptr+02H,#LOW cl

 ; SOURCE LINE # 31

0051 22 RET

 ; FUNCTION main (END)

In the above example listing, the generic pointers c_ptr, i_ptr, and l_ptr are all stored in the internal data memory of the 8051. However, you may specify the memory area in which a generic pointer is stored by using a memory type specifier. For example:

char * xdata strptr; /* generic ptr stored in xdata */

int * data numptr; /* generic ptr stored in data */

long * idata varptr; /* generic ptr stored in idata */

These examples are pointers to variables that may be stored in any memory area. The pointers, however, are stored in xdata, data, and idata respectively.

3.20.1 Memory-Specific Pointers

Memory-specific pointers always include a memory type specification in the pointer declaration and always refer to a specific memory area.

For example:

char data *str; /* ptr to string in data */

int xdata *numtab; /* ptr to int(s) in xdata */

long code *powtab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte required by generic pointers is not needed by memory-specific pointers. Memory-specific pointers can be stored using only one byte (idata, data, bdata, and pdata pointers) or two bytes (code and xdata pointers).

Like generic pointers, you may specify the memory area in which a memory-specific pointer is stored. To do so, prefix the pointer declaration with a memory type specifier.

 For example:

char data * xdata str; /* ptr in xdata to data char */

int xdata * data numtab; /* ptr in data to xdata int */

long code * idata powtab; /* ptr in idata to code long */

Memory-specific pointers may be used to access variables in the declared 8051 memory area only. Memory-specific pointers provide the most efficient method of accessing data objects, but at the cost of reduced flexibility.

The following code and assembly listing shows how pointer values are assigned to memory-specific pointers. Note that the code generated for these pointers is much less involved than the code generated in the generic pointers example listing.

stmt level source

 1 char data *c_ptr; /* memory-specific char ptr */

 2 int xdata *i_ptr; /* memory-specific int ptr */

 3 long code *l_ptr; /* memory-specific long ptr */

 4

 5 long code powers_of_ten [] =

 6 {

 7 1L,

 8 10L,

 9 100L,

 10 1000L,

 11 10000L,

 12 100000L,

 13 1000000L,

 14 10000000L,

 15 100000000L

 16 };

 17

 18 void main (void)

 19 {

 20 1 char data strbuf [10];

 21 1 int xdata ringbuf [1000];

 22 1

 23 1 c_ptr = &strbuf [0];

 24 1 i_ptr = &ringbuf [0];

 25 1 l_ptr = &powers_of_ten [0];

 26 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)

 ; SOURCE LINE # 18

 ; SOURCE LINE # 19

 ; SOURCE LINE # 23

0000 750000 R MOV c_ptr,#LOW strbuf

 ; SOURCE LINE # 24

0003 750000 R MOV i_ptr,#HIGH ringbuf

0006 750000 R MOV i_ptr+01H,#LOW ringbuf

 ; SOURCE LINE # 25

0009 750000 R MOV l_ptr,#HIGH powers_of_ten

000C 750000 R MOV l_ptr+01H,#LOW powers_of_ten

 ; SOURCE LINE # 26

000F 22 RET

 ; FUNCTION main (END)

3.20.2 Pointer Conversions

The Cx51 Compiler converts between memory-specific pointers and generic pointers. Pointer conversions may be forced by explicit program code using type casts or may be coerced by the compiler implicitly.

The Cx51 Compiler converts a memory-specific pointer into a generic pointer when the memory-specific pointer is passed as an argument to a function which requires a generic pointer. This is the case for functions such as printf, sprintf, and gets which use generic pointers as arguments. For example:

extern int printf (void *format, ...);

extern int myfunc (void code *p, int xdata *pq);

int xdata *px;

char code *fmt = "value = %d | %04XH\n";

void debug_print (void) {

 printf (fmt, *px, *px); /* fmt is converted */

 myfunc (fmt, px); /* no conversions */

}

In the call to printf, the argument fmt, which represents a 2-byte pointer to code space, is automatically converted or coerced into a 3-byte generic pointer. This is done because the prototype for printf requires a generic pointer as the first argument.

3.21 Function Declarations

The C51 Compiler provides a number of extensions for standard C function declarations. These extensions allow you to:

· Declare a function as an interrupt procedure

· Choose the register bank used

· Select the memory model

· Declare a reentrant function

· Declare alien (PL/M-51) functions

You may include these extensions or attributes (many of which may be combined) in the function declaration. Use the following standard format for your C51 Compiler function declarations.

« return_type » funcname (« args ») « {small | compact | large} »

 « reentrant »

 « interrupt x »

 « using y »

Where

	return_type
	is the type of the value returned from the function. If no type is specified, int is assumed.

	funcname
	is the name of the function.

	args
	is the argument list for the function.

	small
	explicitly defines the function uses the small memory model.

	compact
	explicitly defines the function uses the compact memory model.

	large
	explicitly defines the function uses the large memory model.

	reentrant
	indicates that the function is recursive or reentrant.

	interrupt
	indicates that the function is an interrupt function.

	x
	is the interrupt number.

	using
	specifies which register bank the function uses.

	y
	is the register bank number.

[image: image8.png]

The stack pointer on the classic 8051 accesses internal data memory only. The Cx51 Compiler locates the stack area immediately following all variables in the internal data memory. The stack pointer accesses internal memory indirectly and can use all of the internal data memory up to the 0xFF limit.

The total stack space of the classic 8051 is limited to 256 bytes. Rather than consume stack space with function parameters or arguments, the Cx51 Compiler assigns a fixed memory location for each function parameter. When a function is called, the caller must copy the arguments into the assigned memory locations before transferring control to the desired function. The function then extracts its parameters, as needed, from these fixed memory locations. Only the return address is stored on the stack during this process. Interrupt functions require more stack space because they must switch register banks and save the values of a few registers on the stack.

By default, the Cx51 Compiler passes up to three function arguments in registers. This enhances speed performance.

3.21.1 Return Values

CPU registers are always used for function return values. The following table lists the return types and the registers used for each.

	Return Type
	Registers
	Storage Format

	bit
	Carry Flag
	

	char, unsigned char, 1-byte ptr
	R7
	

	int, unsigned int, 2-byte ptr
	R6 & R7
	MSB in R6, LSB in R7

	long, unsigned long
	R4-R7
	MSB in R4, LSB in R7

	float
	R4-R7
	32-Bit IEEE format

	generic ptr
	R1-R3
	Memory type in R3, MSB R2, LSB R1

3.22 Memory Models

A function's arguments and local variables are stored in the default memory space specified by the memory model. You may, however, specify which memory model to use for a single function by including the small, compact, or large function attribute in the function declaration. For example:

#pragma small /* Default to small model */

extern int calc (char i, int b) large reentrant;

extern int func (int i, float f) large;

extern void *tcp (char xdata *xp, int ndx) compact;

int mtest (int i, int y) /* Small model */

 {

 return (i * y + y * i + func(-1, 4.75));

 }

int large_func (int i, int k) large /* Large model */

 {

 return (mtest (i, k) + 2);

 }

The advantage of functions using the SMALL memory model is that the local data and function argument parameters are stored in the internal 8051 RAM. Therefore, data access is very efficient. The internal memory is limited. Occasionally, the small model cannot satisfy the requirements of a very large program and other memory models must be used. For this situation, you may declare that a function use a different memory model, as shown above.

By specifying the function model attribute in the function declaration, you can select which of the three possible reentrant stacks and frame pointers to use. Stack access in the SMALL model is more efficient than in the LARGE model.

Interrupt Functions

The 8051 and its derivatives provide a number of hardware interrupts that may be used for counting, timing, detecting external events, and sending and receiving data using the serial interface. The standard interrupts found on an 8051 are listed in the following table:

	Interrupt
Number
	Description
	Address

	0
	EXTERNAL INT 0
	0003h

	1
	TIMER/COUNTER 0
	000Bh

	2
	EXTERNAL INT 1
	0013h

	3
	TIMER/COUNTER 1
	001Bh

	4
	SERIAL PORT
	0023h

As 8051 vendors create new parts, more interrupts are added. The Cx51 Compiler supports interrupt functions for 32 interrupts (0-31). Use the interrupt vector address in the following table to determine the interrupt number.

	Interrupt
Number
	Address

	0
	0003h

	1
	000Bh

	2
	0013h

	3
	001Bh

	4
	0023h

	5
	002Bh

	6
	0033h

	7
	003Bh

	8
	0043h

	9
	004Bh

	10
	0053h

	11
	005Bh

	12
	0063h

	13
	006Bh

	14
	0073h

	15
	007Bh

	
	
	Interrupt
Number
Address
16
0083h
17
008Bh
18
0093h
19
009Bh
20
00A3h
21
00Abh
22
00B3h
23
00BBh
24
00C3h
25
00CBh
26
00D3h
27
00DBh
28
00E3h
29
00Ebh
30
00F3h
31
00FBh

The interrupt function attribute specifies that the associated function is an interrupt service routine. For example:

unsigned int interruptcnt;

unsigned char second;

void timer0 (void) interrupt 1 using 2 {

 if (++interruptcnt == 4000) { /* count to 4000 */

 second++; /* second counter */

 interruptcnt = 0; /* clear int counter */

 }

}

The interrupt attribute takes as an argument an integer constant in the 0 to 31 value range. Expressions with operators and the interrupt attribute are not allowed in function prototypes. The interrupt attribute affects the object code of the function as follows:

· When required, the contents of ACC, B, DPH, DPL, and PSW are saved on the stack at function invocation time.

· All working registers used in the interrupt function are stored on the stack if a register bank is not specified with the using attribute.

· The working registers and special registers that were saved on the stack are restored before exiting the function.

· The function is terminated by the 8051 RETI instruction.

In addition, the Cx51 Compiler generates the interrupt vector automatically.

The following sample program demonstrates how to use the interrupt attribute. The program also shows you what the code generated to enter and exit the interrupt function looks like. The using function attribute is used to select a register bank different from that of the non-interrupt program code. However, because no working registers are needed in this function, the code generated to switch the register bank is eliminated by the optimizer.

stmt level source

 1 extern bit alarm;

 2 int alarm_count;

 3

 4

 5 void falarm (void) interrupt 1 using 3 {

 6 1 alarm_count *= 2;

 7 1 alarm = 1;

 8 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION falarm (BEGIN)

0000 C0E0 PUSH ACC

0002 C0D0 PUSH PSW

 ; SOURCE LINE # 5

 ; SOURCE LINE # 6

0004 E500 R MOV A,alarm_count+01H

0006 25E0 ADD A,ACC

0008 F500 R MOV alarm_count+01H,A

000A E500 R MOV A,alarm_count

000C 33 RLC A

000D F500 R MOV alarm_count,A

 ; SOURCE LINE # 7

000F D200 E SETB alarm

 ; SOURCE LINE # 8

0011 D0D0 POP PSW

0013 D0E0 POP ACC

0015 32 RETI

 ; FUNCTION falarm (END)

In the example above, note that the ACC and PSW registers are saved at offset 0000h and restored at offset 0011h. Note also the RETI instruction generated to exit the interrupt.

The following rules apply to interrupt functions.

· No function arguments may be specified for an interrupt function. The compiler emits an error message if an interrupt function is declared with any arguments.

· Interrupt function declarations may not include a return value. They must be declared as void (see the above examples). The compiler emits an error message if any attempt is made to define a return value for the interrupt function. The implicit int return value, however, is ignored by the compiler.

· The compiler recognizes direct calls to interrupt functions and rejects them. It is pointless to call interrupt procedures directly, because exiting the procedure causes execution of the RETI instruction which affects the hardware interrupt system of the 8051 chip. Because no interrupt request on the part of the hardware existed, the effect of this instruction is indeterminate and usually fatal. Do not call an interrupt function indirectly through a function pointer.

· The compiler generates an interrupt vector for each interrupt function. The code generated for the vector is a jump to the beginning of the interrupt function. Generation of interrupt vectors can be suppressed by including the NOINTVECTOR control directive in the Cx51 command line. In this case, you must provide interrupt vectors from separate assembly modules. Refer to the INTVECTOR and INTERVAL control directives for more information about the interrupt vector table.

· The Cx51 Compiler allows interrupt numbers within the 0-31 range. Refer to your 8051 derivative document to determine which interrupts are available.

· Functions called from an interrupt procedure must function with the same register bank as the interrupt procedure. When the NOAREGS directive is not explicitly specified, the compiler may generate absolute register accesses using the register bank selected by the using attribute or by the REGISTERBANK control for that function. Unpredictable results may occur when a function assumes a register bank other than the one currently selected.

3.23 Reentrant Functions

A reentrant function may be shared by several processes at the same time. When a reentrant function is executing, another process can interrupt the execution and then begin to execute that same reentrant function.

Normally, functions in Cx51 cannot be called recursively or in a fashion which causes reentrancy. The reason for this limitation is that function arguments and local variables are stored in fixed memory locations. Recursive calls to the function use the same memory locations. And, in this case, arguments and locals would get corrupted.

The reentrant function attribute allows you to declare functions that may be reentrant and, therefore, may be called recursively. For example:

int calc (char i, int b) reentrant {

 int x;

 x = table [i];

 return (x * b);

}

Reentrant functions can be called recursively and can be called simultaneously by two or more processes. Reentrant functions are often required in real-time applications or in situations where interrupt code and non-interrupt code must share a function.

As in the above example, you may selectively define (using the reentrant attribute) functions as being reentrant. For each reentrant function, a reentrant stack area is simulated in internal or external memory depending upon the memory model used, as follows:

· Small model reentrant functions simulate the reentrant stack in idata memory.

· Compact model reentrant functions simulate the reentrant stack in pdata memory.

· Large model reentrant functions simulate the reentrant stack in xdata memory.

Reentrant functions use the default memory model to determine which memory space to use for the reentrant stack. You may specify (with the small, compact, and large function attributes) which memory model to use for a function. The following rules apply to functions declared with the reentrant attribute.

· bit type function arguments may not be used. Local bit scalars are also not available. The reentrant capability does not support bit-addressable variables.

· Reentrant functions must not be called from alien functions.

· Reentrant function cannot use the alien attribute specifier to enable PL/M-51 argument passing conventions.

· A reentrant function may simultaneously have other attributes like using and interrupt and may include an explicit memory model attribute (small, compact, large).

· Return addresses are stored in the 8051 hardware stack. Any other required PUSH and POP operations also affect the 8051 hardware stack.

· Reentrant functions using different memory models may be intermixed. However, each reentrant function must be properly prototyped and must include its memory model attribute in the prototype. This is necessary for calling routines to place the function arguments in the proper reentrant stack.

· Each of the three possible reentrant models contains its own reentrant stack area and stack pointer. For example, if small and large reentrant functions are declared in a module, both small and large reentrant stacks are created along with two associated stack pointers (one for small and one for large).

The reentrant stack simulation architecture is inefficient, but necessary due to a lack of suitable addressing methods available on the 8051. For this reason, use reentrant functions sparingly.

The simulated stack used by reentrant functions has its own stack pointer which is independent of the 8051 stack and stack pointer. The stack and stack pointer are defined and initialized in the STARTUP.A51 file.

The following table details the stack pointer assembler variable name, data area, and size for each of the three memory models.

	Model
	Pointer
	Stack Information

	SMALL
	?C_IBP
(1 Byte)
	The stack is located in indirectly accessible internal memory (idata). The maximum reentrant stack size is 256 bytes. To access the small reentrant stack, R0 or R1 is loaded with the value of ?C_IBP and the reentrant stack is accessed indirectly using the MOV A, @R0/@R1 and MOV @R0/@R1, A instructions.

	COMPACT
	?C_PBP
(1 Byte)
	The stack is located in Page-addressable external memory (pdata). The maximum reentrant stack size is 256 bytes. To access the compact reentrant stack, R0 or R1 is loaded with the value of ?C_PBP and the reentrant stack is accessed indirectly using the MOVX A, @R0/@R1 and MOVX @R0/@R1, A instructions.

	LARGE
	?C_XBP
(2 Bytes)
	The stack is located in Externally accessible memory (xdata). The maximum reentrant stack size is 64K Bytes. To access the large reentrant stack, DPTR is loaded with the value of ?C_XBP and the reentrant stack is accessed indirectly using the MOVX A, @DPTR and MOVX @DPTR, A instructions.

The simulated stack area for reentrant functions is organized from top to bottom—it stacks down. The 8051 hardware stack is just the opposite and is organized bottom to top—it stacks up. When using the SMALL memory model, both the simulated stack and the 8051 hardware stack share the same memory area but grow towards each other.

The simulated stack and stack pointers are declared and initialized in the Cx51 Compiler startup code in STARTUP.A51 which can be found in the LIB subdirectory. You must modify the startup code to specify which simulated stack(s) to initialize in order to use reentrant functions. You can also modify the starting address for the top of the simulated stack(s) in the startup code.

 When calling a function with a reentrant stack, the compiler MUST know that the function has a reentrant stack. The compiler figures this out from the function prototype which should include the reentrant keyword (just like the function definition). The compiler must also know the memory model used by the function (to determine which reentrant stack to stuff arguments on). This is determined either from the memory model specified for the function, or the memory model specified to the compiler, or from the default memory model (small).

To pass arguments, the compiler generates code that decrements the stack pointer and then "pushes" arguments onto the stack by storing the argument indirectly through R0/R1 or DPTR.

When a reentrant function is called, it decreases the stack pointer (for local variables) and accesses arguments using the stack pointer plus an offset (which corresponds to the number of bytes of local variables).

When a reentrant function returns, it adjusts the stack pointer to the value before arguments were pushed. So the caller does not need to perform any stack adjustment after calling a reentrant function.

Chapter 4: Preprocessor

The preprocessor built into the Cx51 Compiler processes the source text of a source file before it is actually compiled into machine language and object code. Preprocessing is the first thing the compiler does. The purpose of the preprocessor is to replace or insert additional text into the source file just prior to compilation.

Most of the obvious functions of the preprocessor require activation in your source code. However, there are several things the preprocessor always does:

· Each C comment is replaced by a single space.

· Line continuations (indicated by a backslash ('\') at the end of a line) are removed and the lines they break apart are joined for compilation.

· Predefined macro names are replaced with their predefined text.

In addition to these operations, the preprocessor in the Cx51 Compiler supports the more obvious preprocessor operations:

· Header Files,

· Macros,

· Conditional Compilation.

If you encounter preprocessor problems, you may direct the compiler to generate a Preprocessor File that shows the exact output from the preprocessor.

4.1 [image: image9.png]

Header Files

Header files or include files are included and processed by the preprocessor. They provide you with a convenient way to publish global variables, function prototypes, manifest constants, and macro definitions that are used throughout a large development effort.

The #include directive specifies the name of the header file to include.

4.1.1 How #include Works

The #include directive tells the C preprocessor to include the contents of the file specified in the input stream to the compiler and then continue with the rest of the original file.

For example, the header file, file.h contains the following:

char *func (void);

The program file, myprog.c includes this header file:

#include "file.h"

void main (void)

{

while (1)

 {

 printf (func());

 }

}

The output generated by the proprocessor is:

char *func (void);

void main (void)

{

while (1)

 {

 printf (func());

 }

}

Header files typically contain variable and function declarations along with macro definitions. But, they are not limited to only those. A header file may contain any valid C program fragment. However, this practice is error-prone, very confusing, and not at all recommended.

4.2 Macros

Perhaps the most useful aspect of the C preprocessor is the ability to create and use macros. Macros enable you to assign short names to source code blocks. When you use the macro name in your source file, the preprocessor replaces it with the source code block specified in the macro definition.

A macro definition includes the name of the macro, the macro body, and may include macro arguments.

· Simple Macros require no arguments and are the simplest macros to define.

· Complex Macros accept one or more arguments and may be used like functions.

· Macro Operators lists special macro operators that may be used in macro definitions.

· Predefined Macros lists macros that are defined by the compiler at compile-time.

4.2.1 Simple Macros

A simple macro is merely an abbreviation for a fragment of code. It is often called a manifest constant because it defines a name for a constant value.

Macros must be defined using the #define directive before they can be used. For example:

#define LEN 128

defines a macro named LEN. When LEN is used in your program (or in preprocessor directives) it is replaced with the text 128. So, a C statement like

char buffer[LEN];

is expanded by the preprocessor into

char buffer[128];

and is subsequently compiled by the compiler

4.2.2 Complex Macros

A complex macro accepts arguments and generates a fragment of code using the values of those arguments. Macros that accept arguments appear to be functions. However, arguments are not typed as in a C function. They are merely replaced by the text passed to the macro when expanded.

Macros with arguments must be defined using the #define directive before they can be used. The argument list is enclosed in parentheses and must immediately follow the macro name. Spaces are not allowed between and macro name and open parenthesis. For example:

#define MAX(x,y) ((x) > (y) ? (x) : (y))

defines a macro named MAX that takes two arguments (x and y). When MAX is used in your program (or in preprocessor directives) it is replaced with the text ((x) > (y) ? (x) : (y)). If x and y are numeric constants, the preprocessor can determine the result of the macro and substitute the greater value.

A C statement like

int a = MAX(15,20);

is expanded by the preprocessor into

int a = 20;

While a C statement like

int a = MAX(myvar,20);

is expanded by the preprocessor into

int a = ((myvar) > (20) ? (myvar) : (20));

· The number of arguments passed to a macro must match the number of arguments specified in the macro definition.

· It is common practice to surround arguments used in a macro definition with parentheses. This is done so that compound expressions, when passed to a macro, do not cause unwanted side-effects. For example:

· #define MAX(x,y) ((x) > (y) ? (x) : (y))

· int a = MAX(x-5,10);

expands as

int a = ((x-5) > (10) ? (x-5) : (10));

Without the additional parentheses,

#define MAX(x,y) x > y ? x : y

int a = MAX(x-5,10);

expands as

int a = x-5 > 10 ? x-5 : 10;

with a potentially different meaning.

· Macros that use arguments more than once can introduce undesired side-effects into your program. For example:

· #define MAX(x,y) ((x) > (y) ? (x) : (y))

· maxval = MAX(a+b, func(c));

expands as

maxval = ((a+b) > (func(c)) ? (a+b) : (func(c)));

The function func appears to be invoked only once in the program, but because of the macro definition, it is actually called twice. Each call may return a different value and the result of MAX may be incorrect.

· Macros may be defined with a null or empty argument list. For example:

· #define MYMACRO() (func();)

To call such a macro, you must specify the macro name along with an empty argument list. For example:

MYMACRO()

· To pass an empty argument to a macro, you must include at least one whitespace character in the place of that argument.

4.3 Conditional Compilation

Conditional compilation directives allow you to designate parts of the program for the compiler to ignore. These parts are not compiled and no object code is generated for them. Conditional directives resemble the C if statement and may be used to test defined macros or arithmetic expressions. The test performed by a conditional directive is done at compile-time by the compiler. Depending on the result of the test, source code is either included or excluded from the compilation.

There are several reasons to use conditional compilation in your program.

· Your program may require different code depending on which device or architecture you use. In some cases, library routines may exist in one configuration that do not exist in another. Conditional compilation allows you to handle such a situation by substituting alternate functions with the unavailable library routines.

· Many complex functions require comprehensive test code to verify or validate I/O and proper operation. Intermediate values may be tested and output as well. After verification, you may wish to retain the test cases for future reference. You can include them in conditional blocks you control with a macro. For example:

#define DEBUG 0

The following test case compiles only when DEBUG is defined to a value other than 0.

#if DEBUG /*** Test Case ***/

.

.

.

#endif

· Often, it is necessary to replace or rewrite certain sections of a working program. Conditionals allow you to retain old code in the source file by placing it in a conditional block. For example:

· #if 0 /*** Old code from 1999 ***/

· .

· .

· .

· #endif

Following is a list of the available conditional compilation directives.

	Directive
	Description

	#elif
	Initiates an alternative branch of the if condition, when the previous #if, #ifdef, #ifndef, or #elif branch was not taken.

	#else
	Initiates an alternative branch when the previous #if, #ifdef, or #ifndef branch was not taken.

	#endif
	Ends a #if, #ifdef, #ifndef, #elif, or #else block.

	#ifdef
	Evaluates an expression for conditional compilation. The argument to be evaluated is the name of a definition.

	#ifndef
	Same as #ifdef but the evaluation succeeds if the definition is not defined.

	#if
	Evaluates an expression for conditional compilation.

4.4 Preprocessor Directives

Preprocessor directives must be the first non-whitespace text specified on a line. All directives are prefixed with the pound or number-sign character ('#'). For example:

#pragma PRINT

#include <stdio.h>

#define DEBUG 1

Whitespace is allowed before and after the number-sign ('#'). A number-sign ('#') that appears alone on a line is interpreted as a null preprocessor directive. For example:

define myfavnum 45

#

 # include

The entire proprocessor directive must be contained in a single source line. Line continuations, backslash ('\') followed by a new-line character, may be used in preprocessor directives since these are removed by the preprocessor. For example:

#define mycode \

 { \

 volatile unsigned char i; \

 for (i=0; i<100; i++); \

 }

The number-sign ('#') and the preprocessor directive must be explicitly specified and may not come from a macro expansion. For example:

#define mydef #define otherdef 16

mydef

In this case, mydef is expanded to define otherdef 16 since # is interpreted as a stringize operator. This expansion is processed by the compiler and a syntax error is generated.

The following table lists the preprocessor directives and gives a brief description of each.

	Directive
	Description

	#define
	Defines a preprocessor macro or constant.

	#elif
	Initiates an alternative branch of the if condition, when the previous #if, #ifdef, #ifndef, or #elif branch was not taken.

	#else
	Initiates an alternative branch when the previous #if, #ifdef, or #ifndef branch was not taken.

	#endif
	Ends a #if, #ifdef, #ifndef, #elif, or #else block.

	#error
	Outputs an error message defined by the user.

	#ifdef
	Evaluates an expression for conditional compilation. The argument to be evaluated is the name of a definition.

	#ifndef
	Same as #ifdef but the evaluation succeeds if the definition is not defined.

	#if
	Evaluates an expression for conditional compilation.

	#include
	Reads source text from an external file. The notation sequence determines the search sequence of the included files. The compiler searches for include files specified with less-than/greater-than symbols ('<', '>') in the include file directory. Include files specified with double-quotes (" ") are searched for in the current directory.

	#line
	Specifies a line number and an optional filename. This specification is used in error messages to identify the error position. For line synchronization with debug information or the listing file, this preprocessor directive must be combined with the NOPREPROCESS Compiler directive.

	#message
	Outputs a information message defined by the user.

	#pragma
	Allows you to specify directives that may be included on the compiler command line. Pragmas may contain the same directives that are specified on the command line.

	#undef
	Deletes a preprocessor macro or constant definition.

	#warning
	Outputs a warning message defined by the user.

4.4.1 #pragma

The #pragma directive specifies compiler directives that may change during program compilation.

#pragma directive « directive ... »

4.4.2 #define

The #define directive defines a preprocessor macro.

#define macro-name « (arg« , arg ... ») » replacement-text
You may use #define to create function-like macros with or without arguments. Macros are syntactically similar to function calls. When a defined macro is encountered in the source file, the macro-name and any arguments are replaced by the replacement-text. For example:

#define my_macro(a,b,c) a+b+c

int func (int x, int y, int z)

{

return(my_macro(x,y,z));

}

appears as follows after macro expansion:

int func (int x, int y, int z)

{

return(x+y+z);

}

4.4.3 #if

The #if directive tests an expression and if the result is true (non-zero) allows the compiler to process subsequent text (until the next #else, #elif, or #endif directive). If the result is false (zero), subsequent text is not processed by the compiler.

#if expression
.

.

.

#endif

4.4.4 #else

The #else directive specifies an alternative text block to the block following a #if or #elif directive. If the result of the preceding #if or #elif is false, the text following the #else is processed by the compiler.

#if expression
.

.

.

#else

.

.

.

#endif

4.4.5 #undef

The #undef directive un-defines a macro name.

#undef macro-name
#undef causes the previously defined macro macro-name to no longer be defined as a macro. If macro-name is not defined, #undef is ignored. Predefined macros are not affected by #undef.

Chapter 5

Advanced Programming
This chapter describes advanced programming information that experienced software engineers will find invaluable. Knowledge of these topics is not necessary to successfully create an embedded 8051 target program using the Cx51 Compiler. However, the following sections provide insight into how many non-standard procedures are accomplished.

This chapter discusses the following topics:

· Files you may alter to customize the startup procedures

· Files you may alter to customize run-time execution of library routines

· Conventions the Cx51 Compiler uses to name code and data segments

· How to interface Cx51 functions to assembly and PL/M-51 routines

· Data storage formats for the different Cx51 data types

· Different optimizing features of the Cx51 Compiler

5.1 Startup Code
Startup code is executed immediately upon reset of the target system. The Keil startup code performs (optionally) the following operations in order:

· Clears internal data memory

· Clears external data memory

· Clears paged external data memory

· Initializes the small model reentrant stack and pointer

· Initializes the large model reentrant stack and pointer

· Initializes the compact model reentrant stack and pointer

· Initializes the 8051 hardware stack pointer

· Transfers control to code that initializes global variables or to the main C function if there are no initialized global variables

Following is a list of the startup files that are available.

	Startup File
	Description

	STARTUP.A51
	Startup code for classic 8051 devices.

	START_AD.A51
	Startup code for Analog Devices MicroConverter devices.

	START390.A51
	Startup code for Dallas DS80C390/400/41x/5240/5250 contiguous mode devices.

	START4XX.A51
	Startup code for Dallas DS89C420/430/440/450 devices.

	STARTLPC.A51
	Startup code for Philips LPC700 devices series.

	START900.A51
	Startup code for Philips LPC90x - LPC93x devices series.

	START950.A51
	Startup code for Philips LPC95x - LPC99x devices series.

	START_MX.A51
	Startup code for Philips 80C51MX devices.

	START751.A51
	Startup code for Philips 80C75x devices.

	START_XC.A51
	Startup code for Infineon XC800 devices.

	STARTUP32.A51
	Startup code for ST uPSD32xx devices.

	STARTUP34.A51
	Startup code for ST uPSD33xx devices.

	STARTUP34.A51
	Startup code for ST uPSD34xx devices

5.2 Basic I/O

The following files contain the source code for the low-level stream I/O routines. When you use µVision IDE, you can simply add the modified versions to the project.

	C Source File
	Description

	PUTCHAR.C
	Used by all stream routines that output characters. You may adapt this routine to your individual hardware (for example, LCD or LED displays).
The default version outputs characters via the serial interface. An XON/XOFF protocol is used for flow control. Line feed characters ('\n') are converted into carriage return/line feed sequences ('\r\n').

	GETKEY.C
	Used by all stream routines that input characters. You may adapt this routine to your individual hardware (for example, matrix keyboards). The default version reads a character via the serial interface. No data conversions are performed.

5.3 Memory Allocation

The following files contain the source code for the memory allocation routines.

	C Source File
	Description

	CALLOC.C
	This file contains the source code for the calloc library routine. This routine allocates memory for an array from the memory pool.

	FREE.C
	This file contains the source code for the free library routine. This routine returns a previously allocated memory block to the memory pool.

	INIT_MEM.C
	This file contains the source code for the init_mempool library routine. This routine allows you to specify the location and size of a memory pool from which memory may be allocated using the malloc, calloc, and realloc routines.

	MALLOC.C
	This file contains the source code for the malloc library routine. This routine allocates memory from the memory pool.

	REALLOC.C
	This file contains the source code for the realloc library routine. This routine resizes a previously allocated memory block.

5.4 Function Parameters
By default, C functions pass up to three parameters in registers. Remaining parameters are passed in fixed memory locations. You may use the NOREGPARMS directive to disable passing parameters in registers.

Parameters are passed in fixed memory locations if parameter passing in registers is disabled or if there are too many parameters to fit in registers. Functions that pass parameters in registers are flagged by the Cx51 Compiler with an underscore character ('_') prefixed to the function name at code generation time.

Functions that pass parameters only in fixed memory locations are not prefixed with an underscore.
5.4.1 Passing in Memory

Parameters passed to assembly routines in fixed memory locations use segments named ?function_name?BYTE and ?function_name?BIT to hold the parameter values passed to the function function_name. Bit parameters are copied into the ?function_name?BIT segment prior to calling the function. All other parameters are copied into the ?function_name?BYTE segment. All parameters are assigned space in these segments even if they are passed using registers. Parameters are stored in the order in which they are declared in each respective segment.

The fixed memory locations used for parameter passing may be in internal data memory or external data memory depending upon the memory model used. The SMALL memory model is the most efficient and uses internal data memory for parameter segments. The COMPACT and LARGE models use external data memory for the parameter passing segments.

5.4.2 Passing in Registers

C functions may pass parameters in registers and fixed memory locations. A maximum of 3 parameters may be passed in registers. All other parameters are passed using fixed memory locations. The following tables define what registers are used for passing parameters.

	Arg Number
	char,
1-byte ptr
	int,
2-byte ptr
	long, float
	generic ptr

	1
	R7
	R6 & R7
(MSB in R6,LSB in R7)
	R4—R7
	R1—R3
(Mem type in R3, MSB in R2, LSB in R1)

	2
	R5
	R4 & R5
(MSB in R4,LSB in R5)
	R4—R7
	R1—R3
(Mem type in R3, MSB in R2, LSB in R1)

	3
	R3
	R2 & R3
(MSB in R2,LSB in R3)
	
	R1—R3
(Mem type in R3, MSB in R2, LSB in R1)

The following examples clarify how registers are selected for parameter passing.

	Declaration
	Description

	func1 (
int a)
	The first and only argument, a, is passed in registers R6 and R7.

	func2 (
int b,
int c,
int *d)
	The first argument, b, is passed in registers R6 and R7. The second argument, c, is passed in registers R4 and R5. The third argument, d, is passed in registers R1, R2, and R3.

	func3 (
long e,
long f)
	The first argument, e, is passed in registers R4, R5, R6, and R7. The second argument, f, cannot be located in registers since those available for a second parameter with a type of long are already used by the first argument. This parameter is passed using fixed memory locations.

	func4 (
float g,
char h)
	The first argument, g, passed in registers R4, R5, R6, and R7. The second parameter, h, cannot be passed in registers and is passed in fixed memory locations.

5.5 Data Storage Formats

This section describes the storage formats of the data types available in the Cx51 compiler. The Cx51 compiler offers a number of basic data types to use in your C programs. The following table lists these data types along with their size requirements and value ranges.

	Data Type
	Bits
	Bytes
	Value Range

	Bit
	1
	—
	0 to 1

	signed char
	8
	1
	-128 to +127

	unsigned char
	8
	1
	0 to 255

	Enum
	8 / 16
	1 or 2
	-128 to +127 or -32768 to +32767

	signed short
	16
	2
	-32768 to +32767

	unsigned short
	16
	2
	0 to 65535

	signed int
	16
	2
	-32768 to +32767

	unsigned int
	16
	2
	0 to 65535

	signed long
	32
	4
	-2147483648 to 2147483647

	unsigned long
	32
	4
	0 to 4294967295

	Float
	32
	4
	±1.175494E-38 to ±3.402823E+38

	data *, idata *, pdata *
	8
	1
	0x00 to 0xFF

	code*, xdata *
	16
	2
	0x0000 to 0xFFFF

	generic pointer
	24
	3
	Memory type (1 byte); Offset (2 bytes) 0 to 0xFFFF

5.6 Bit Variables

Scalars of type bit are stored using a single bit. Pointers to bits and arrays of bits are not allowed. Bit objects are always located in the bit-addressable internal memory of the 8051 CPU. The BL51 Linker/Locator overlays bit objects if possible.

5.6.1 1-Byte Scalars

Scalars of type signed char and unsigned char are stored in a single byte (8 bits). Memory-specific pointers that reference data, idata, and pdata are stored using a single byte (8 bits). If an enum can be represented with an 8-bit value, the enum is also stored in a single byte.

5.6.2 2-Byte Scalars

Scalars of type signed int, unsigned int, signed short, unsigned short, enum, and memory-specific pointers that reference xdata or code are stored using two bytes (16 bits). The high-order byte is stored first, followed by the low-order byte. For example, an integer value of 0x1234 is stored in memory as follows:

	Address
	+0
	+1

	Contents
	0x12
	0x34

5.6.3 4-Byte Scalars

Scalars of type long are stored using four bytes (32 bits). The bytes are stored in high to low order. For example, the long value 0x12345678 is stored in memory as follows:

	Address
	+0
	+1
	+2
	+3

	Contents
	0x12
	0x34
	0x56
	0x78

5.7 Generic and Far Pointers

Generic pointers have no declared explicit memory type. They may point to any memory area on the 8051. They are stored using three bytes (24 bits). The first byte contains a value that indicates the memory area or memory type. The remaining two bytes contain the address offset with the high-order byte first.

	
	Address+0
	Address+1
	Address+2

	Contents
	Memory Type
	High Byte Offset
	Low Byte Offset

Depending on the compiler version, the memory type byte has the following values:

	Compiler
	Memory Type

	
	idata
	data
	bdata
	xdata
	pdata
	code

	C51 Compiler
(8051 Devices)
	0x00
	0x00
	0x00
	0x01
	0xFE
	0xFF

	CX51 Compiler
(Philips 51MX Devices)
	0x7F
	0x7F
	0x7F
	0x00
	0x00
	0x80

The Philips 80C51MX architecture supports new CPU instructions that operate on a universal pointer. Universal pointers are identical with C51 generic pointers.

Values not specified in the table above access far memory. Generic pointers and far pointers have the same format.

5.7.1 Generic Pointer Example

The following example shows the memory storage of a generic pointer (on the C51 compiler) that references address 0x1234 in the xdata memory area.

	
	Address+0
	Address+1
	Address+2

	Contents
	0x01
	0x12
	0x34

MAP Files

(map)

Listing File

(lst)

DS51-Simulator/

Debugger

Absolute Object

File

L52/BL51 Linker

C51 Complier

C SOURCE (.C)

PROGRAM BUILDING

In-Circuit

Emulator

Other Object

Files or Libraries

(.obj or .lib)

OHS51 Object Hex

Converter

HEX File (.hex)

Program Device

Compiler

Edit the program

Compilation

Running / Execution

Output

Cross Compiler

Edit the program

Compilation

Execution and output

PAGE

- 23 -

