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Data Compression


CHAPTER 1

INTRODUCTION

1.1 Data Migration: - Data migration is the process of transferring data between storage types, formats, or computer systems. Data migration is usually performed programmatically to achieve an automated migration, freeing up human resources from tedious tasks. It is required when organizations or individuals change computer systems or upgrade to new systems, or when systems merge (such as when the organizations that use them undergo a merger or takeover). To achieve an effective data migration procedure, data on the old system is mapped to the new system providing a design for data extraction and data loading. The design relates old data formats to the new system's formats and requirements. Programmatic data migration may involve many phases but it minimally includes data extraction where data is read from the old system and data loading where data is written to the new system. If a decision has been made to provide a set input file specification for loading data onto the target system, this allows a pre-load 'data validation' step to be put in place, interrupting the standard ETL process. Such a data validation process can be designed to interrogate the data to be transferred, to ensure that it meets the predefined criteria of the target environment, and the input file specification. An alternative strategy is to have on-the-fly data validation occurring at the point of loading, which can be designed to report on load rejection errors as the load progresses. However, in the event that the extracted and transformed data elements are highly 'integrated' with one another, and the presence of all extracted data in the target system is essential to system functionality, this strategy can have detrimental, and not easily quantifiable effects. After loading into the new system, results are subjected to data verification to determine whether data was accurately translated, is complete, and supports processes in the new system. During verification, there may be a need for a parallel run of both systems to identify areas of disparity and forestall erroneous data loss. Automated and manual data cleaning is commonly performed in migration to improve data quality, eliminate redundant or obsolete information, and match the 
requirements of the new system. Data migration phases (design, extraction, cleansing, load, verification) for applications of moderate to high complexity are commonly repeated several times before the new system is deployed.
1.2 Data Compression: - Compression is useful because it helps to reduce the consumption of expensive resources, such as hard disk space or transmission bandwidth. On the downside, compressed data must be decompressed to be used, and this extra processing may be detrimental to some applications. For instance, a compression scheme for video may require expensive hardware for the video to be decompressed fast enough to be viewed as it is being decompressed (the option of decompressing the video in full before watching it may be inconvenient, and requires storage space for the decompressed video). The design of data compression schemes therefore involves trade-offs among various factors, including the degree of compression, the amount of distortion introduced (if using a lossy compression scheme as shown in Figure1), and the computational resources required to compress and uncompress the data.
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Figure 1.-Demonstration of lossy and lossless compression

1.3 Overview: - Large-scale scientific simulation codes produce huge amounts of output, which is placed on secondary storage for fault-tolerance purposes or future time-based analysis. This analysis is usually conducted on a workstation that is geographically separated from the machine where the simulation ran, such as a scientist’s local workstation. To reduce application turnaround time including data migration, one can overlap computation and migration, but with typical network bandwidths of less than 1 mbps from supercomputers to the outside world, often migration is still the longest part of a simulation run. Compression can help by reducing data size, but is very computation-intensive for the relatively incompressible dense floating point data that forces in simulation codes. So that we need to incorporate compression into migration in a way that reliably reduces application turnaround time on today’s popular parallel platforms. Generic, data-specific, and parallel compression algorithms can improve file I/O performance and apparent Internet bandwidth .However, when integrating compression with long-distance transport of data from today’s parallel simulations. These issues include: what kind of compression ratios can we expect? Will they fluctuate over the lifetime of the application? If so, how should we make the decision whether to compress? Will the compression ratios differ with the degree of parallelism? If so, how can we handle the resulting load imbalance during migration? Are special compression algorithms needed? Can we exploit the time-series nature of simulation snapshots and checkpoints, to further improve compression performance? What kind of performance can we expect on today’s supercomputers and internet? 
CHAPTER 2

CORE TECHNOLOGY

Multidimensional arrays are the most common output from scientific simulations. Simulation codes may assign separate arrays to each processor or may divide large arrays

Into disjoint subarrays, each of which is assigned to a processor. Many visualization tools can only read array data in traditional row-major or column-major order, while the simulation uses a different distribution. In this case, reorganization of array data between its memory and disk distributions is required (Figure 2). 
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Figure 2.-Different array distributions in memory and on disk

Simulations typically perform output operations at regular intervals. The two most important output operations are snapshots and checkpoints. A snapshot stores the current “image” of simulation data, for future visualization or analysis. A checkpoint saves enough simulation data for computation to restart from the most recent checkpoint if the system crashes. These I/O operations bracket each computation phase. Similarly, an I/O phase is defined as the period between two consecutive computation phases. The processors in a parallel run can be divided into two broad types of I/O systems, I/O 
Servers And I/O clients. I/O clients perform the simulation code’s computation, and I/O servers do the file I/O. Dedicated I/O servers are only used for I/O, so are usually idle when I/O clients are busy. Non-dedicated I/O servers act as I/O clients during computation phases and as I/O servers at I/O time. Often, the I/O operations of a simulation are collective, where all processors co-operate to 1carry out I/O tasks. we use I/O servers  to store  the output to the local file system, then migrate it. This local storing prevents compute processors from stalling while data is migrated. We can also migrate output immediately without local storing, but this does not allow overlap between data transfer and other application activities, and performs poorly in current typical hardware configurations, so we do not consider it further. Figure 3. Shows the data flow in a simulation run with I/O and migration, along with three possible spots for performing compression wise Client Side-Compression (CC), Server Side-Compression (SC),
Server Side-Compression on Already Stored Data (SC2). These are as follows:-
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Figure 3.-Data flow with migration and three possible compression points

1. Client-side Compression during an I/O Phase (CC):  Under CC, each client compresses each of its output parts and sends them to a server, along with metadata such as the compressed part size and the compression method. I/O servers receive compressed parts from clients and store them to disk. CC’s advantage is its high degree of parallelism in compression. However, CC’s compression cost is fully visible to clients. Further, if the array distributions in memory and on disk are different, servers must decompress the parts, reorganize the data, and recompress the new parts. Therefore, we assume the same array distribution in memory and on disk for CC, with client’s array parts assigned to servers in a round-robin manner. Codes with independent arrays on each processor, such as codes for irregular problems, fit this model.
2. Server-side Compression during an I/O Phase (SC): In SC, servers receive output data from clients during an I/O phase, compress them, and store them to disk. SC allows the array to be reorganized to any target distribution before compression, and thus is more flexible than CC. However, some or all of the compression cost will not be hidden with SC, if the servers start to stage the data before all of it has arrived from the clients, and force clients to wait during compression. Further, scientists usually use far fewer dedicated I/O processors than compute processors, so aggregate compression performance with SC will be worse than CC. To keep the flexibility of SC, but also exploit as many processors as possible like CC, we can choose to use all the processors as non-dedicated I/O processors, and perform SC using them.
3. Server-side Compression on Already-Stored Outputs (SC2): Before being transferred to a remote machine, a staged output needs to be read into memory from the local file system. SC2 reads and compresses the stored output, and then migrates it. This overlaps the compression with computation, so the visible I/O cost may be shorter than CC and SC. However, concurrent compression and computation will slowdown the simulation so much that SC2 is only suitable for dedicated I/O servers, thus limiting the degree of parallelism during compression. Further, more time will be spent in file I/O, due to the uncompressed data.
 To see how the data migration performance gets improved we will consider some data sets. Floating point arrays are the most common data type for scientiﬁc simulations. Typical ﬂoating point arrays are dense, i.e. most of the array elements contain important numbers, but also can be sparse, and therefore highly compressible. Sparse output arrays are not unusual near the beginning and end of a simulation run. Integer arrays are also widely used; for example, ﬂoating point data often have an accompanying integer array describing the coordinate system. Simulations typically include text annotations and textual formatting information in their HDF (Hierarchical Data Format) output. To reﬂect this wide spectrum of data, we used the eight data sets in Table 1. Astrophysics, Cactus, ZEUS-MP, and Flash are simulation results from four different astrophysics codes. Gen1 is the output of a rocket simulation code. SCAR-B and AVHRR are direct observation data from an airborne scanning spectrometer and a satellite. Bible contains the whole Bible. The compression ratios in Table 1 were calculated as the compressed size using UNIX gzip, divided by the uncompressed size. The compression will be discussed in the next section.
Table 1. Descriptions or array data sets
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Cactus 3 192 x 192 x 192 54 MB 3469 MB 064
ZEUS-MP 3 256 X 256 X 256 64 MB 355 MB 0.0535
Flash 7 16457 X 9x 9 X 9 64bit float_ | 91.53 MB 7.56 MB 0.083
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· Smoke/Sulfates, Clouds and Radiation - Brazil (SCAR-B) data include physical and chemical components of the Earth's surface, the atmosphere and the radiation field collected in Brazil with an emphasis in biomass burning.

· The Advanced Very High Resolution Radiometer (AVHRR) is a space-borne sensor embarked on the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES). AVHRR instruments measure the reflectance of the Earth in 5 relatively wide (by today's standards) spectral bands.
· ZEUS-MP is a hydrodynamics code that is popular for solving problems in astrophysics.
Because compression is highly data dependent, we performed parallel compression experiments on each data set. We used from 1 to 64 processors, in powers of 2, and distributed the arrays evenly over the processors, using an HPF-style distribution whose ﬁrst directive is BLOCK and the others are all *. An exception was Gen1, which consists of many small independent arrays, and it was distributed by assigning each block to a compute processor in a round-robin manner. Figure 4. Shows the results. The X-axis of the graph represents the number of processors used, and the Y-axis represents the aggregate compression rate, calculated as the size of the uncompressed data divided by the elapsed time to compress it. This graph shows two important compression characteristics of each data set. First, there is a wide range in compression ratios across the data sets (0.055 - 0.84), and a wide range of single-processor compression rates, from 1.40 MB/s to 8.00 MB/s. The highly compressible arrays had the best aggregate compression rates (ZEUS-MP, Flash, and AVHRR). The text data had one of the lowest compression rates, although it can be compressed to 32% of the original Size. Experiments with postscript ﬁles, not shown in Figure 4, also showed a low compression rate. Second, Figure 4 shows that except for the highly compressible data sets, compression rates scale up linearly as the number of processors increases. The most compressible data sets show lower scalability because different chunks have different compression ratios and therefore different compression rates. For example, the compression ratios of ZEUS-MP chunk data ranged from 0.001 to 0.394 with 64 processors. For the less compressible arrays, the compression ratio was almost uniform across all processors. Since the overall performance of parallel compression is deter-

Mined by the last processor to ﬁnish, these results raise potential load imbalance issues for highly compressible data sets, as discussed later. 
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Figure 4.-Aggregate compression rate of each array when number of processors varies.
We consider 30 compute processors and 2 dedicated I/O processors 2, and distributed the arrays over the compute processors using a (BLOCK... BLOCK) distribution and a mesh appropriate for the array rank. For the approaches that allow data reorganization, we reorganized the arrays to traditional row-major order on disk. Each I/O processor took care of half the data blocks. For CC, parts were assigned to I/O servers in a round-robin manner. For migration, eight data streams (allowing multithreaded streams from each I/O processor)were used  for better migration performance.  Figure 5 shows the results averaged over 5 or more runs, with error bars representing 95% conﬁdence intervals. In CC and SC, data compression is included in the I/O cost, and in SC2, compression cost is explicitly shown. Considering the total cost of I/O and migration, migration with compression always performs well than NC, even for a dense ﬂoating point array which only compresses to 84% of the original size (Astrophysics). With highly compressible data, the beneﬁt is tremendous, showing up to 11 times better performance than NC. Compression can increase I/O cost for CC and SC, but the migration performance improves from reduced data transfer time. The migration cost may or may not be visible to the application, depending on the length of its computation periods, which is a tunable parameter. However, the application will always see the amount of time spent in a collective I/O call. If we compare apparent I/O costs only, CC always always performs well than SC, as it uses 15 times more processors for compression. Since the total size of compressed data will be similar no matter which compression method is used, CC performs better than the other two approaches. For highly compressible arrays, the compressed data size at each I/O processor can be quite different, causing a load imbalance problem in migration With CC, this problem 3In additional experiments not shown in this paper, we found that migration performance on the SP2 depends on the number of concurrent migration streams, and not on the number of processors generating those streams. Thus only a small number of processors are needed to generate enough traffic to saturate the migration path. Seems less serious than the other approaches, as it compresses smaller chunks than SC and SC2, and distributes them to I/O processors in a round-robin manner, evening out the load. Also, for four data sets (Cactus, ZEUS- MP, Flash, and SCAR-B), CC’s I/O cost was actually less than NC/SC2’s I/O cost, because compression was fast, the compressed data were very small. In this case, no matter how fast the network is, NC cannot outperform CC for a single migration, as long as the decompression at the other side does not become a bottleneck. Although SC performs worse than CC during I/O, when compared to the long migration after the I/O, the difference between the two approaches seems relatively small in many cases. This makes SC attractive, because it is more ﬂexible than CC. The performance gap between CC and SC will increase signiﬁcantly. Moreover, CC was the only approach that outperformed NC even with dense ﬂoating point data in that experiment. The same arguments can be applied to SC2. The only advantage of SC2 over CC is the reduced apparent I/O cost, but in our experiments, the I/O cost of CC is close to that of SC2, or even better.
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Figure 5.-Performance comparison of three different compression approaches
CHAPTER 3

RELATED WORK

3.1 Data Migration and Types: - The Data Migration is very vast topic, there can be also esoteric processes to do. But there are also different categories of data migration.
1. Storage migration:-A business may choose to rationalize the physical media to take advantage of more efficient storage technologies. This will result in having to move physical blocks of data from one tape or disk to another, often using virtualization techniques. The data format and content itself will not usually be changed in the process and can normally be achieved with minimal or no impact to the layers above.
2. Database migration:- Similarly, it may be necessary to move from one database vendor to another, or to upgrade the version of database software being used. The latter case is less likely to require a physical data migration, but this can happen with major upgrades. In these cases a physical transformation process may be required since the underlying data format can change significantly. This may or may not affect behavior in the applications layer, depending largely on whether the data manipulation language or protocol has changed – but modern applications are written to be agnostic to the database technology so that a change from Sybase, My SQL, DB2 or SQL Server to Oracle should only require a testing cycle to be confident that both functional and non-functional performance has not been adversely affected.
3. Application migration: - Changing application vendor – for instance a new CRM or ERP platform – will inevitably involve substantial transformation as almost every application or suite operates on its own specific data model. Further, to allow the application to be sold to the widest possible market, commercial off-the-shelf packages are generally configured for each customer using metadata. Application programming interfaces (APIs) are supplied to protect the integrity of the data they have to handle. Use of the API is normally a condition of the software warranty, although a waiver may be allowed if the vendor's own or certified partner professional services and tools are used.
4. Business process migration: - Business processes operate through a combination of human and application systems actions, often orchestrated by business process management tools. When these change they can require the movement of data from one store, database or application to another to reflect the changes to the organization and information about customers, products and operations. Examples of such migration drivers are mergers and acquisitions, business optimization and reorganization to attack new markets or respond to competitive threat. The first two categories of migration are usually routine operational activities that the IT department takes care of without the involvement of the rest of the business. The last two categories directly affect the operational users of processes and applications, are necessarily complex, and delivering them without significant business downtime can be challenging. A highly adaptive approach, concurrent synchronization, a business-oriented audit capability and clear visibility of the migration for stakeholders are likely to be key requirements in such migrations.

3.2 Enhancement in BBFTP:-Data is stored on various media in files or databases, and is generated and consumed by software applications which in turn support business processes. The need to transfer and convert data can be driven by multiple business requirements and the approach taken to the migration depends on those requirements. Four major migration categories are proposed on this basis.
There are numerous data-specific and parallel compression techniques for scientific data and file I/O. Among them, No present a runtime parallel I/O system for irregular applications based on collective I/O techniques and optimized by making parts and on-line compression mechanisms. HDF supports various compression methods at the array and chunk level for its data sets. Compression has also been introduced for efficient web transmission, mainly focusing on HTTP. Today, the potential performance gain from compressed migration is much higher than that for compressed file I/O. The FTP specification  defines a “compressed mode” of data transfer as well as stream and block mode, although it is not supported by most implementations, with the notable exception of  BBFTP  , which also supports parallel client streams, a special case of migration where migration cost is not hidden at all. Our compression approaches can be added to BBFTP to support parallel servers.

CHAPTER 4

APPLICATION AND ENHANCMENT 

4.1 Application to Other Parallel I/O Systems: - Perhaps the most popular parallel I/O library in use today is the ROMIO implementation of two-phase I/O (TPIO). With TPIO, all processors who will make I/O calls cooperate to reorganize the output data in their memories, and then once reorganization is complete, each processor writes a contiguous portion of an output file. TPIO’s separation of reorganization and file I/O distinguishes it from the server directed I/O used in Panda .Because TPIO’s “I/O servers” are not dedicated to I/O, we can use a large number of servers to reorganize the data and then immediately compress it and write it out, in the manner of SC. However, our previous work showed that it is not a good idea for non-dedicated I/O servers to migrate stored data. While the migration code itself is minimal, file system read operations on staged data can slow down the application’s computation by up to 27% on the SP2. Further, compression performance will benefit from having many servers, but migration performance will drop if the number of senders is too high. For these reasons, TPIO implementations that add migration support should write staged data to a shared file system, and use one or two additional dedicated processors to migrate the data. The same approach should be taken if SC or SC2 is used with server-directed I/O and a large number of non-dedicated I/O processors.
4.2 Predicting Compression Performance: - In the experiments reported in this paper, the addition of compression never increases application turnaround time. However, for

Example, if we speed up the SDSC SP’s file system to 30 MB/s (aggregate), speed the internet bandwidth up to 1 MB/s, and increases the number of iterations in a simulation

run to 50, NC would be faster than CC in Figure 6. If we know the compression characteristics of the output beforehand, we can decide in advance whether to perform

Compression for data migration. However, when we run a simulation, we often do not know the nature of output that the simulation will generate, and since simulation data

is evolving, the compression characteristics of the data are also changing. Thus how can we predict the compression performance of a data set without compressing it first, and

how fast can we do that while retaining some level of accuracy? The most obvious solution for this problem is sampling, only taking a small portion of the data and compressing it for prediction. If we know that the data are uniform, i.e., each chunk shows almost the same data compression characteristics, this task can be done efficiently by taking one reasonably sized chunk and compressing it. However, this is not always true for scientific data, as our experiments revealed. Some chunks may be highly  compressible, while the others are moderately or not very compressible. Further,

compression of a single chunk cannot be parallelized. A better alternative is for processors to compress their first (large) buffer of output data, examine the compression

ratio, and decide whether to output/send the compressed data or the uncompressed version. Under this approach, the processors can communicate to arrive at a global decision as to whether to compress, or they can make the decision separately for each chunk. Since the data are evolving over time, another possibility is to base the compression decision on the compression ratio from the previous output phase. For example, we can compress the data from the first few output phases, and based on this result, decide whether to compress the next few output phases. Periodically we perform compression again, and correct the predicted values. We designed a performance model- based approach to decide whether or not to compress, but it is not included here due to the space limit. 
4.3 Delta Compression: - In general, simulations begin their runs with a given initial state, and the simulation data evolve from there as the simulation time goes on. Therefore, when we take intermediate snapshots periodically, it is likely that the difference between two consecutive arrays, or the “temporal difference”, will contain only relatively small numbers. This delta array might be more compressible than the original data, leading us to the idea that migrating compressed delta arrays might be faster than migrating the whole (either compressed or uncompressed) output. Similar techniques have been applied to enhance HTTP and video compression performance , but our problem deals with much larger data sets with different characteristics. Unfortunately, the use of delta arrays faces several challenges. First, since the output data can be as large as the size of main memory, and the delta has to be calculated while the simulation is still running, it is not obvious to calculate deltas efficiently in the general case. Efficiently calculating the original output from deltas and a previous output is another challenge. However, the most serious challenge is whether deltas are actually more compressible than the original output. We experimented with the three data sets for which we had time series snapshots (Gen1, Cactus, and ZEUS-MP). Of these three, only ZEUS-MP had smaller compressed delta arrays than regular compressed arrays. Since ZEUS-MP is already highly compressible, the overhead of creating and managing the deltas is unlikely to be offset by reduced migration costs. However, the poor compression ratios we obtained for delta arrays may be overcome by the use of a compression algorithm specifically crafted for use with delta arrays containing small values. The compression ratios they obtained are better than those we obtained for dense data sets, but their best compression ratios were obtained by looking at the differences between up to ten consecutive snapshots simultaneously. It is not clear how to translate their approaches into on-line algorithms for use during a simulation run, and the compression rates of their algorithms are unknown. Our future work will address these issues. 

CONCLUSION

So we have seen that, in the data migration the performance is an important factor, and we have seen three different approaches to enhance or improve that migration performance using parallel processors: CC performed compression at the I/O clients, while SC and SC2 compressed data on the server side before or after, respectively, they staged the data to disk for migration. And we observed  that CC gives the best performance overall, and it will be likely to dominate the NC approach either in a single migration or a real simulation run in a current typical parallel environment, with reasonable processing power. CC has no signiﬁcant drawbacks when we do not have to reorganize the data. When we really need reorganization and have dedicated I/O processors available, SC2 is best. Although SC2 performs worse than SC for shorter computation periods, it will eventually outperform SC with longer computation phases.
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