
A Tool For Very Fast Regular
Expression Matching

A Seminar Report
Submitted in partial fulfilment of

the requirements for the award of the degree of

Master of Technology
in

Computer Science and Engineering

by

Samyuktha M.
M105113

Department of Computer Science & Engineering

College of Engineering Trivandrum
Kerala - 695016

2010-11



College of Engineering Trivandrum
Department of Computer Science & Engineering

Certified that this Seminar Report entitled

A Tool For Very Fast Regular
Expression Matching

is a bonafide record of the seminar presented by

Samyuktha M.
M105113

in partial fulfilment of
the requirements for the award of the degree of

Master of Technology
in

Computer Science & Engineering

Mr. Rameez Mohammed A
Guide
Faculty
Dept.of Computer Science & Engineering

Dr. M.S Rajasree
Professor and
Head
Dept.of Computer Science & Engineering



Acknowledgement

I would like to express my sincere gratitude and heartful indebtedness to my guide Mr
Rameez Mohammed A, Lecturer , Department of Computer Science And Engineering for
his valuable guidance and encouragement in pursuing this seminar .

I am thankful to Dr. M S Rajasree, Head of the Department , Shine S , P.G Coordi-
nator, Shreelekshmi R, Asst. Professor and Anvar A, Asst. Professor and project
coordinator Department of Computer Science and Engineering for their help and support.

I also acknowledge my gratitude to other members of faculty in the Department of Computer
Science And Engineering and all my friends for their whole hearted cooperation and encour-
agement.

Above all I am thankful to the God Almighty.

Samyuktha M.

2



Contents

1 Abstract 4

2 Introduction 5

3 Dotstar 6
3.1 Elements Of Dotstar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Classification Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Compilation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Creating a Keyword Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Combining Keyword Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Computing Fail-Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Handling Complex Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Runtime Behaviour 11

5 Experimental Result 13

6 Conclusion 14

3



1 Abstract

DotStar is a tool for very fast regular expression matching. It is an innovative algorith-
mic solution that compiles user provided regular expressions into a compact automaton using
a sequence of more manageable intermediate representations. The resulting automaton can
search using a single pass without backtracking and is both space and time efficient. Regular
expressions are a common choice for defining configurable rules for data parsing because of
their expressiveness in detecting recurrent patterns and information. For many data inten-
sive applications, regular expression matching is the first line of defense in performing online
data filtering. Unfortunately, few solutions can keep up with the increasing data rates and
the complexity posed by sets with hundreds of expressions. DotStar addresses this problem by
providing a complete algorithmic solution and a software tool chain that can compile large sets
of user provided regex first into a sequence of intermediate representations.

4



2 Introduction

DotStar is an innovative algorithmic solution that compiles user-provided regular
expressions into a compact automaton using a sequence of more manageable intermediate rep-
resentations. The resulting automaton can search using a single pass without backtracking, and
is both space and time efficient. Regular expressions, or regex, are a common choice for defining
configurable rules for data parsing because of their expressiveness in detecting recurrent pat-
terns and information. For many data intensive applications, regex matching is the first line of
defense in performing online data filtering. Unfortunately, few solutions can keep up with the
increasing data rates and the complexity posed by sets with hundreds of expressions. DotStar
addresses this problem by providing a complete algorithmic solution and a software tool chain
that can compile large sets of user provided regex first into a sequence of intermediate repre-
sentations and then into an automaton that can search for matches in a single pass without
backtracking. The entire software tool chain supports the extended Posix standard syntax for
regex.

Regex concisely describe a set of strings without explicitly listing the set content. Each
expression consists of one or more strings connected with a set of operators such as alternate
(—), which chooses among two strings repetition (*), which repeats a string zero or more times
and optional (?). Given an input string, a matching operation determines if that string is a
possible pattern instance. An example is ABC*D, which recognizes any string that starts with
AB, continues with zero or more C, and finishes with D. Sample matching input strings might
be ABD,ABCD,or ABCCCD.

Very fast regex matching is currently a hot topic in applied research, with more applica-
tions searching large pattern sets with increasingly faster data streams. Applications include
scanning for signatures as part of antivirus software, selecting the proper tag using path ex-
pression in XML applications, pattern matching of DNA sequences in genome research, and
traffic flow classification using deep packet inspection at gigabit per second rates. Deep packet
inspection is one of the most demanding applications, and regex are a common threat detection
mechanism in both commercial and open source NIDSs.

Unfortunately, the automata that medium to large regex sets generate require prohibitive
amounts of memory, and the DFA and NFA based regex implementations suffer from amne-
sia and acalculia.Amnesia is the inability to efficiently follow the progress of multiple partial
matches.which forces the use of a separate state for each combination of a partial match. Acalcu-
lia is the inability to count subexpression occurrences.DotStar addresses both these weaknesses.
It is as fast as a DFA and uses counting and status bits to avoid state explosion.

5



3 Dotstar

At the core of DotStar is a large class of regex (the DotStar class) that DotStar tools can
compile into an Aho-Corasick automaton the de facto standard for keyword scanning going
through a series of intermediate representations that include the Glushkov automaton. Be-
cause Aho-Corasick automata remember all the suffixes of pattern instances at any given state,
DotStar can dramatically reduce memory requirements by eliminating one of the major causes
of amnesia.

To handle the regex that do not belong to the DotStar class,A set of classification and
rewriting rules are developed that automatically fragment more complex regex into a collection
of equivalent DotStar expressions. The runtime system connects the recognized fragments using
status bits and locations and leverages bit level parallelism and the vector operations available
on many commodity processors. Because bits and locations can count the number of specific
subexpression repetitions, acalculia is no longer a concern. As Figure (1) shows, the DotStar
tool chain comprises five elements.

3.1 Elements Of Dotstar

1:classification engine
2:expander
3:compiler
4:compactor
5:runtime engine

3.2 Classification Engine

A classification engine/preprocessor discriminates between DotStar expressions and the
more complex ones. An expander transforms complex expressions in a collection of DotStar
expressions, together with the data structures that will be used at runtime to resolve the de-
pendencies between them. A compiler implements DotStar expression combining and outputs
both an NFA description and a list of add on data items. A compactor reads the NFA de-
scription and builds a compact DFA representation. Finally, a runtime engine reads the binary
representation, selects a specific runtime code depending on the required add on items, and
streams input data through it. In Figure 1, ABC*D and BCCE belong to the DotStar class,
and the expander must fragment the other two expressions into four subexpressions (B[C-E] C,
CE*G, ABC*D, and BCCCE).

3.3 Compilation Steps

Figure 2 describes the four compilation steps to transform a set of DotStar regex into
an NFA. DotStar is based on an innovative evolution of the Aho-Corasick keyword scanning
algorithm. This algorithm operates on a tree containing a composite representation of all
keywords; the tree transforms into an NFA through the addition of a fail function, F(), which
points to the longest proper suffix already recognized. The execution process for each symbol
proceeds at most once across a keyword tree edge or a finite number of times across F()

6



Figure 1: Steps In Dotstar

edges until the algorithm either detects a proper suffix or reaches the root node. The DotStar
algorithm is innovative because it extends the keyword tree with a specific kind of loop, turning
it into a keyword graph.

3.4 Creating a Keyword Graph

Several definitions are key to understanding the DotStar compilation process. A DotStar
regex is a string built from a finite symbol alphabet character classes over the alphabet (such
as [a-z] or the wildcard .) and the grouping, alternative, and closure operators. The closure
operator cannot be applied to character classes.

A keyword graph is a directed graph with the following characteristics:

• It has an initial (root) node.

• Every edge is labeled with a symbol.

• Any two edges leaving a node have different symbols, and all edges that enter a node have
the same symbol.

• Any two cycles in the graph do not share edges unless one contains the other.

The concatenation of edge labels along a complex path from the root node to any
final node defines an instance of a regex pattern. A Glushkov automaton is an NFA described
by the tuple (S, S, i, F, d), where S is the set of states (m + 1 for an m symbols expression) S is
the alphabet i is the initial state F is the set of final states and d is the automatons transition
function. The compiler uses the Glushkov automaton as an intermediate step in building a
keyword graph for a DotStar regex. Figures(3a) and(3b) show a sample Glushkov automaton
and a sample keyword graph for ABC*D.

A Glushkov automaton has several interesting properties.No empty transitions, and it
is homogeneous.It has two special nodes, the initial node, ni, and the final node, nf, such that
no edge enters ni, no edge exits nf, and every other node is in a path from ni to nf .Every
maximal orbit in the graph representing the automaton is strongly stable. Thus, an edge exists
between any orbit exit node (vertex with outgoing edges not included in the orbit) and any
orbit enter node (vertex with incoming edges not included in the orbit).Every maximal orbit in

7



Figure 2: The four main compilation steps for DotStar regex. (a) The compiler transforms regex
into Glushkov automata, (b) expands Glushkov automata in keyword graphs, (c) combines
keyword graphs in a single graph, and (d) extends the keyword graph with a fail function, F().

the graph representing the automaton is strongly transverse. Consequently, if a node outside
the orbit has an edge toward one orbit enter node, it must have edges to every other orbit enter
node.

3.5 Combining Keyword Graphs

Figure 3c shows a sample combined keyword graph. Combining starts with an empty
keyword graph, which contains only the root node, and then adds one keyword graph at a
time. The procedure is designed to maintain the basic keyword graph properties, eventually
replicating nodes and subtrees to disambiguate partially overlapping patterns that contain
closures.

3.6 Computing Fail-Function

In computing F(), the compiler tries to identify the longest proper suffix of another pattern
instance already recognized while matching the current one. The basic Aho Corasick algorithm
visits the graph breadth first and, for each node, computes the F() of that node’s children using
the parent node’s F(). The breadth first visit ensures that, if n is the length of the path from
the radix to the current node, all patterns with length n - 1 have a correct F() defined. With
modifications, this algorithm can deal with loops and edges that have character class labels

When the F() computation reaches a loop’s backward edge, the target node will
already have an F(). The compiler computes a new F() using the backward edge source node
and compares it with the one already present. If the recognized pattern length for the new
F() is greater than the old length, the compiler must unroll the loop and continue processing
down the path. When the F() computation reaches a node using a character set and discovers
that it should have different F() targets depending on the input symbol, it duplicates the node,
splitting the character class edge into nonintersecting subsets, and sets a proper F() for each
one.

8



Figure 3: Building a keyword graph for a DotStar regex ABC*D. (a) Compilation starts with
the creation of a Glushkov automaton and continues with a breadth-first visit of the NFA. (b)
The result is a keyword graph that represents all the possible complex paths from the start
node to every final node. (c) Combining merges multiple keyword graphs into a single one.

3.7 Handling Complex Expressions

DotStar can also accommodate the complex regex of the extended Posix standard.
A complex regex is a string built from a finite symbol alphabet character classes over the
alphabet and the grouping, alternative, closure, optional, and repetition operators. Examples
of complex regex are A[a-z]*B and START.*MID.3,300END.The DotStar algorithm described
so far will experience state explosion if an expression contains a character class inside a closure
or a repetition operator. The problem arises while computing F(), since the process unrolls
loops in the graph when two suffixes overlap if the loop label is a character class or wild card,
the number of unrolls could become infinite. For example ”.*” would appear in the keyword
graph as a loop with a wild card label, making any other regex pattern instance the longest
proper suffix. The result will be a complete replication of the graph.

Figure 4 shows the resulting automaton after the compiler computes the F() of ABC*D
and BCCCCE.

To address this problem,solution modifies the Aho-Corasick runtime system by
compressing sections of the automaton. Specifically, the expander annotates NFA states with
actions and tests to be performed when the runtime system visits the state. All changes are
modular, and our runtime system can use a minimal set of add on items, depending on the
regex set’s specifics. The add on data that compresses sections of the automaton consists of
four elements. The status bit is a Boolean value associated with a closure over a wild card.
The runtime system sets the bit when it recognizes the prefix and tests the bit when it detects
the postfix to validate the match.

Another element is the masked status bit a Boolean value associated with a closure over
a character set. Again, the runtime system sets the bit when it recognizes the prefix and tests
the bit when it detects the postfix. It can also clear the bit while examining the input data
if the symbol does not belong to the character set. The other two elements are storage items.
Location contains an offset in the input stream and is associated with a bounded or unbounded
repetition operator over a wild card the runtime system stores the current input stream offset
when it detects the prefix and checks the value when it recognizes the postfix. Masked location
contains an offset in the input stream and is associated with a bounded or unbounded repetition

9



Figure 4: Finding Fail-Function

operator over a character set. Again, the runtime system stores the current input stream offset
when it detects the prefix, checks the value when it recognizes the postfix, and can clear the
value while examining the input data if the symbol does not belong to the character set.

The DotStar preprocessor examines the regex set, recognizing the problematic parts, and
the expander fragments them into multiple DotStar expressions. The expander allocates a
minimal set of add on data items and annotates expressions with set and test operations. Ex-
pressions that contain both a status bit set and a test or compare annotation become conditional
set expressions. If they contain location push and a test or compare annotation, they become
conditional push expressions.

Figure 5 shows the DotStar NFA for the regex set in Figures 1 and 2. Specific nodes in the
automaton are marked with operations or tests to be executed at runtime when the automaton
reaches a certain state.

10



Figure 5: DotStar NFA

4 Runtime Behaviour

Figure 6 shows the DotStar runtime behavior during a matching operation. Specific
states in the automaton trigger runtime operations on the add on data structure, which stores
status bits and location values. The figure shows the parsing of an 18-byte input string using
the sample NFA built for recognizing B[C-E]C.3,300CE*G, BCCCE, ABC*D[A-Z]*BCCCE,
and ABC*D. The leftmost graph shows the automaton transitions that occur when the run-
time system parses the first four characters; at the fourth byte, it reaches a setb, which tells it
to mark a status bit because it detected the prefix for ABC*D[A-Z]*BCCCE.

Figure 6: Runtime Behavior

11



This is also a final state for ABC*D, and the match is reported. Processing resumes as the
runtime system follows the failure transition to the root node down the middle branch (second
graph from the left). After three more bytes, a setloc state is reached, which detects a prefix for
the fourth expression and stores the current input stream position inside location memory. The
next character is an ”a” which does not belong to the character set used in the third expression
thus, the masked status bit is cleared. Processing continues across the automaton to reach
yet another final state (third graph from left), which detects both BCCCE (whose match is
reported) and a potential postfix for the third expression. This potential match is invalid, since
the status bit is not set and the match is not reported. Finally, processing resumes (rightmost
graph) and reaches a testloc state, which validates a match for the first expression.

In real-world regex sets, only a small number of automaton states require add-on actions
relative to the overall number of states (less than 7 percent on Linux NIDS, for example),
and the number of executions at runtime is very small (less than 1 percent with heavy hitting
test data). Moreover, typical regex sets require multiple operations for each marked state As
part of manipulating the regex set, the expander transforms operators and creates identical
fragment prefixes. When combined, these fragments create hot spot states that will require
several operations at runtime. As a result, the runtime system can exploit bit level parallelism
and vector operations to execute the add-on actions in parallel.As Figure 7 shows, the system
stores status bits and location values in vector registers. After every input character, it ANDs
each vector register to implement masked status bits and locations.

The extended automata states contain a bit set mask, which the runtime system ORs with
the current value, and a location value push mask, which the runtime system uses along with
splat and mask operations to set all the required locations at once. Extended states also con-
tain bit test registers, which the runtime system ANDs with current status bit values, as well
as location compare vectors, which the runtime system handles using vector splat, arithmetic,
compare, and gather instructions.The runtime system can speculatively or conditionally exe-
cute all these operations, depending on the target architecture support for branch prediction.
With this data layout, the system can exploit all the available parallelism in each transition’s
bookkeeping operations.

12



5 Experimental Result

In the experimental evaluation,applied DotStar to regex in three categories:

• XML tokenization, which uses a compact regex set to extract tags, attribute names and
values, cdata chunks, and so on. A standard XML compliance test suite served as the
input data.

• SMTP parsing, which uses a very small regex set to capture subpatterns and extract
protocol components. Test input data was the SMTP streams of the Berkeley dumps.

Figure 7: Experimental Result

• Network intrusion detection, which matches the input data stream against a large set of
complex patterns, working with 8-bit binary data.Used the Linux L7 traffic classification
and the Snort intrusion-detection patterns. The Berkeley traffic dump served as input
data.

DotStar also compares well with the FPGA/accelerator implementations for
the NIDS regex sets. Results for these implementations, which had only 200 regex, were
from1 Gbps7 to 4.4 Gbps8 and 8.06 Gbps.9 In contrast,Snort rule set has 500 regex, and
the Linux L7 implementation has 150 regex.

13



6 Conclusion

DotStar offers a novel approach for building an automaton to recognize both small
and large regex sets. With a structure similar to that of the familiar Aho-Corasick automaton,
it can detect in a single pass the exact and exhaustive matching of every regex, including over-
lapping matches. The mechanisms designed effectively cope with state explosion.Experimental
evaluation shows that DotStar efficiently parses both small and large regex, reaching a very
high matching speed for regex sets with a range of characteristics.Results are significantly bet-
ter than other state of the art NFA and DFA based systems, such as Regexlib and Boost, and
DotStar offers a more flexible solution to acceleration. With many core processors, such as the
Intel Larrabee on the horizon, Serves as a data point in the lively debate between special and
general purpose acceleration

14



References

[1] An Improved DFA for Fast Regular Expression Matching Domenico Ficara, Stefano Gior-
dano, Gregorio Procissi, Fabio Vitucci, Gianni Antichi, and Andrea Di Pietro

[2] Davide Pasetto, IBM Computational Science Center, Ireland Fabrizio Petrini and Virat
Agarwal, IBM T.J. Watson Research Center, Yorktown,Fast Regular Expression Match-
ing(dotstar)

[3] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Practical On-Line Search
Algorithms for Texts and Biological Sequences, Cambridge University Press, 2002.

15


