

 Final Term paper

 Cse :213
Roll no : b56
Vasundhra jaitly
Sec:ji803

Sub to :simrat mam
Topic:concept of paging

Concept of paging
Introduction to paging:

· Memory is divided into fixed size chunks; FRAMES
· Process is divided into fixed size chunks;PAGES
· A frame can hold one page of data
· Physical address space of a process need not be contiguous
· Very limited internal fragmentation
· No external fragmentation
Paging is one of the memory-management schemes by which a computer can store and retrieve data from secondary storage for use in main memory. In the paging memory-management scheme, the operating system retrieves data from secondary
storage in same-size blocks called pages. The main advantage of paging is that it allows the physical address space of a process to be noncontiguous. Before paging, systems had to fit whole programs into storage contiguously, which caused various storage and fragmentation problems.

Paging is an important part of virtual memory implementation in most contemporary general-purpose operating systems, allowing them to use disk storage for data that does not fit into physical Random-access memory (RAM). Paging is usually implemented as architecture-specific code built into the kernel of the operating system.

The main functions of paging are performed when a program tries to access pages that are not currently mapped to physical memory (RAM). This situation is known as a page fault The operating system must then take control and handle the page fault, in a manner invisible to the program. Therefore, the operating system must:

1. Determine the location of the data in auxiliary storage.

2. Obtain an empty page frame in RAM to use as a container for the data.

3. Load the requested data into the available page frame.

4. Update the page table to show the new data.

5. Return control to the program, transparently retrying the instruction that caused the page fault.

Because RAM is faster than auxiliary storage, paging is avoided until there is not enough RAM to store all the data needed. When this occurs, a page in RAM is moved to auxiliary storage, freeing up space in RAM for use. Thereafter, whenever the page in secondary storage is needed, a page in RAM is saved to auxiliary storage so that the requested page can then be loaded into the space left behind by the old page
[image: image1.png]
.
[image: image2.png]
Page Table

Non-contiguous allocation of memory for D
· Will base address register suffice?
· Page Table
· Within program
· Each logical address consists of a page number and an offset within the page
· Logical to Physical Address translation is done by processor hardware

(Page no, offset) --------> (frame no, offset)
Address Translation Scheme

Address generated by CPU is divided into:
· Page number (p) – used as an index into a page table which contains base address of each page in physical memory.
· Page offset (d) – combined with base address to define the physical memory address that is sent to the memory unit.
Address Translation Architecture

[image: image3.png]
Page Tables

[image: image4.png]
[image: image5.png]
[image: image6.png]Free Frames
[image: image7.png]
Page Table Implementation

Small PTs (up to 256 entries)
· Can be stored in Registers
· Example DEC PDP-11 (16 bit address & 8KB page size)
· Big PTs (1M entries) are stored in MM
· Page Table Base Register (PRTR) points to PT
· 2 memory access problem
· Hardware Solution – Translation Look-Aside Buffers (TLBs)
Page Table Structure

· Modern systems have large logical address space (232 – 264)
· Page table becomes very large
· One page table per process
· 232 logical-address space & page-size 4KB
Page table consists of 1 mega entries
· Each entry 4 bytes
· Memory requirements of page table = 4MB
Page Table Implementation

· Each virtual memory reference can cause two physical memory accesses
· one to fetch the page table
· one to fetch the data
· To overcome this problem a high-speed cache is set up for page table entries
· called the TLB - Translation Look a side Buffer.
[image: image8.png]
TLB
· Fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)
· Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each process to provide address-space protection for that process
· If ASIDs not supported by TLB?
TLB & ASID
· ASID allows entries for different processes to exist in TLB
· If ASID not supported?
· With each context switch, TLB must be flushed.
TLB

· Contains page table entries that have been most recently used
· Functions same way as a memory cache
· TLB is a CPU cache used by memory management hardware to speed up virtual to logical address translation
· In TLB, virtual address is the search key and the search result is a physical address
· Typically a content addressable memory
[image: image9.png]
[image: image10.png]
Hierarchical Paging
· 32-bit address line with 4Kb page size
· Logical address
· 20-bit page no. + 12-bit page offset
· Divide the page table into smaller pieces
· Page no. is divided into 10-bit page no. & 10-bit page offset
· Page table is itself “paged”
· “Forward-Mapped” page table
· Used in x86 processor family
[image: image11.png]
Page Size
· Important HW design decision
· Several factors considered
· Internal fragmentation
· Smaller page size, less amount of internal fragmentation
· Smaller page size, more pages required per process
· More pages per process means larger page tables
· Page faults and Thrashing!
Demand Paging

· Bring a page into memory only when it is needed.
· Less I/O needed
· Less memory needed
· Faster response
· More users
· Page is needed (reference to it
· invalid reference (abort
· not-in-memory (bring to memory.
[image: image12.png]
[image: image13.png]
Valid-Invalid Bit
[image: image14.png]
Page Fault:
· If there is ever a reference to a page, first reference will trap to
OS (page fault
· OS looks at an internal table (in PCB of process) to decide:
· Invalid reference (abort.
· Just not in memory.
· Get empty frame.
· Swap page into frame.
· Reset tables, validation bit = 1.
· Restart instruction that was interrupted
No Free Frames?
· Page replacement – find some page in memory, but not really in use, swap it out.
· Algorithm
· performance – want an algorithm which will result in minimum number of page faults.
· Same page may be brought into memory several times
Page Replacement
· Prevent over-allocation of memory by modifying page-fault service routine to include page replacement.
· Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk.
· Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory.
Basic Page Replacement

1. Find the location of the desired page on disk.
2. Find a free frame:

- If there is a free frame, use it.

- If there is no free frame, use a page replacement algorithm to select a victim frame.
3. Read the desired page into the (newly) free frame. Update the page and frame tables.
4. Restart the process.
[image: image15.png]
Page Replacement Algorithms
[image: image16.png]
FIFO Algorithm
[image: image17.png]
Optimal Page Replacement
[image: image18.png]
LRU Algorithm
Optimal algorithm not feasible

LRU, an approx. to Optimal is feasible

FIFO – looks back in time

Optimal – looks forward in time

[image: image19.png]
Frame Locking
· Some of the frames in MM may be locked
· Locked frame can not be replaced
· Kernel is held in locked frames
· Key control structures
· I/O buffers and other time critical areas are also locked
· Lock bit is associated with each frame
· In frame table as well in the current page table.
Replacement Algorithms
· FIFO:-circular buffer, round robin style (past)
· OPTIMAL:-time to next reference is longest (future)
· LRU:-page that has not been referenced for the longest time
· CLOCK
Swapper vs. Pager

Demand paging is similar to paging system with swapping where processes reside on disk
· To execute, we swap in into memory
· Rather than swapping the entire process into memory, we use a LAZY SWAPPER
· Lazy swapper never swaps a page into memory unless that page will be needed
· Using swapper is incorrect with Paging
· Swapper manipulates entire process, whereas pager is concerned with individual pages
· With demand paging, we use the term PAGER rather than swapper.
Memory Protection
· Memory protection implemented by associating protection bit with each frame
Valid-invalid bit attached to each entry in the page table:
· “valid” indicates that the associated page is in the process’ logical address space, and is thus a legal page
· “invalid” indicates that the page is not in the process’ logical address space
Basic Replacement Algorithms
· Clock Policy
· Additional bit called a use bit
· When a page is first loaded in memory, the use bit is set to 1
· When the page is referenced, the use bit is set to 1
· When it is time to replace a page, the first frame encountered with the use bit set to 0 is replaced.
· During the search for replacement, each use bit set to 1 is changed to 0
· Used in Multics OS
[image: image20.jpg]
 THANK YOU

