
 Hibernate

Dept of Computer Science 1

Contents

1) Abstract

2) Introduction

3) Key terms

4) How Hibernate works?

5) Hibernate overview

6) Hibernate Query Language

7) Sample code

8) Tools for writing HQL

9) Conclusion and bibliography

 Hibernate

Dept of Computer Science 2

Chapter 1

ABSTRACT

 Hibernate is a powerful, high performance object/relational persistence and

query service. Hibernate lets you develop persistent classes following object-oriented

idiom - including association, inheritance, polymorphism, composition, and collections.

Hibernate allows you to express queries in its own portable SQL extension (HQL), as

well as in native SQL, or with an object-oriented criteria.

 Hibernate offers sophisticated query options, you can write plain SQL, object-

oriented HQL (Hibernate Query Language), or create programmatic Criteria and

Example queries. Hibernate can optimize object loading all the time, with various

fetching and caching options. Hibernate adapts to your development process, no matter if

you start with a design from scratch or work with an existing database and it will support

any application architecture.

 User-defined data types and dynamic beans are also supported. Hibernate is

released under the Lesser GNU Public License, which is sufficient for use in commercial

as well as open source applications. It supports numerous databases, including Oracle and

DB2, as well as popular open source databases such as PostgreSQL and MySQL. An

active user community helps to provide support and tools to extend Hibernate and make

using it easier.

 The main advantage of using hibernate is there reduces writing huge code.

Actually hibernate developers developed for easy use not to write huge code.

Here there is no need to write the jdbc code here we will use the connection pooling

technique and it happens internally and because of connection pooling we can reuse the

connection from the pool.

Hibernate supports wide range of databases including Oracle, DB2, Sybase, MS

SQL Server, PostgreSQL, MySQL, HypersonicSQL, Mckoi SQL, SAP DB, Interbase,

Pointbase, Progress, FrontBase, Ingres, Informix, and Firebird.

 Hibernate

Dept of Computer Science 3

Chapter 2

INTRODUCTION

 A major portion of the development of an enterprise application involves the

creation and maintenance of the persistence layer used to store and retrieve objects from

the database of choice. If changes are made to the underlying database schema, it can be

expensive to propagate those changes to the rest of the application. Hibernate steps in too

fill this gap, providing an easy-to-use and powerful object-relational persistence

framework for java applications.

 Hibernate provides support for collections and object relations, as well as

composite types. In addition to persisting objects, hibernate provides a rich query

language to retrieve objects from the database, as well as an efficient caching layer and

Java Management Extensions (JMX) support. User defined data types and dynamic beans

are also supported.

 Hibernate automates to a large extent the creation of an efficient persistence

layer for the enterprise application. Hibernate makes mapping objects to be persisted to

underlying database easier. In other words, Hibernate allows representing an underlying

database by using simple Java objects and vice versa.

 By facilitating direct retrieval of persistent objects from the database. Hibernate

automates/hides the process of creating objects and populating them with data retrieved

from the database (common in JDBC-based applications), saving the developer from such

tedious routine tasks.

 Hibernate uses the following ways to retrieve objects from the database:

• Hibernate Query Language (HQL).

• Query By Criteria (QBC) and Query BY Example (QBE) using Criteria API.

• Native SQL queries.

 Hibernate

Dept of Computer Science 4

Chapter 3

Key terms:

3.1) HQL

Although it is possible to use native SQL queries directly with a Hibernate-based

persistence layer, it is more efficient to use HQL instead. The reasons of choosing HQL

over the other two methods are given below:

• HQL allows representing SQL queries in object-oriented terms—by using objects

and properties of objects.

• Instead of returning plain data, HQL queries return the query result(s) in the form

of object(s)/tuples of object(s) that are ready to be accessed, operated upon, and

manipulated programmatically. This approach does away with the routine task of

creating and populating objects from scratch with the "resultset" retrieved from

database queried.

• HQL fully supports polymorphic queries. That is, along with the object to be

returned as a query result, all child objects (objects of subclasses) of the given

object shall be returned.

• HQL is easy to learn and implement, as its syntax and features are very similar to

SQL.

• HQL contains many advance features such as pagination, fetch join with dynamic

profiling, and so forth, as compared to SQL.

• HQL facilitates writing database-type independent queries that are converted to

the native SQL dialect of the underlying database at runtime. This approach helps

tap the extra features the native SQL query provides, without using a non-

standard native SQL query.

3.2) ORM

The term object/relational mapping (ORM) refers to the technique of mapping a data

representation from an object model to a relational data model with a SQL-based schema.

 Hibernate

Dept of Computer Science 5

So what can an ORM do for you? A ORM basically intends to takes most of that burden

of your shoulder. With a good ORM, you have to define the way you map your classes to

tables once - which property maps to which column, which class to which table, etc.

With a good ORM you can take the plain java objects you use in the application and tell

the ORM to persist them. This will automatically generate all the SQL needed to store the

object. An ORM allows you to load your objects just as easily: A good ORM will feature

a query language too. The main features include:

1. Less error-prone code

2. Optimized performance all the time

3. Solves portability issues

4. Reduce development time

3.3) Persistent class

 Hibernate provides transparent persistence, the only requirement for a persistent

class is a no-argument constructor. In a persistent class no interfaces have to be

implemented and no persistent super class has to be extended. The Persistent class can be

used outside the “persistence” context. Persistent classes are classes in an application that

implement the entities of the business problem.

3.4) Transparent persistence

 Hibernate provides transparent persistence, the only requirement for a persistent

class is a no-argument constructor. You don't even need classes, you can also persist a

model using Maps of Maps, or just about anything else. You don't even need tables;

Hibernate can map entities and particular properties to SQL expressions.

 Hibernate

Dept of Computer Science 6

Chapter 4

4) How Hibernate Works?

Rather than utilize bytecode processing or code generation, Hibernate uses

runtime reflection to determine the persistent properties of a class. The objects to be

persisted are defined in a mapping document, which serves to describe the persistent

fields and associations, as well as any subclasses or proxies of the persistent object. The

mapping documents are compiled at application startup time and provide the framework

with necessary information for a class.

Additionally, they are used in support operations, such as generating the database

schema or creating stub Java source files. A SessionFactory is created from the compiled

collection of mapping documents. The SessionFactory provides the mechanism for

managing persistent classes, the Sessioninterface. The Session class provides the

interface between the persistent data store and the application. The Session interface

wraps a JDBC connection, which can be user-managed or controlled by Hibernate, and is

only intended to be used by a single application thread, then closed and discarded.

 Hibernate

Dept of Computer Science 7

Chapter 5

5) Hibernate overview

 5.1) Hibernate architecture:

 . In Web (two-tiered) Architecture Hibernate may be used to persist Java Beans

used by servlets/JSPs in Model/View/Controller architecture.

 In enterprise (three-tiered) architecture Hibernate may be used by a Session EJB

that manipulates persistent objects. Hibernate is architecture-agnostic. Because Hibernate

provides persistence as a service, rather than as a framework, it integrates seamlessly

with various application architectures. We will show two common (recommended)

architectures incorporating Hibernate as a persistence layer

Web (two-tiered) Architecture

.

 Hibernate

Dept of Computer Science 8

Enterprise (three-tiered) Architecture

5.2) Steps in hibernate:

The hibernate involves some steps in order to perform the action

1)creation of persistent classes and objects:

 here simple classes are created using simple java beans with some properties. Here

naming conventions are used for getter and setter methods. Then no-argument constructor

is used. Various id are used for identifiers.

2)mapping file:

Hibernate needs to know how to load and store objects of the persistent class. This is

where the Hibernate mapping

file comes into play. The mapping file tells Hibernate what table in the database it has to

access, and what columns in that table it should use.

 Hibernate

Dept of Computer Science 9

2.1) Major elements in mapping file:

1. <hibernate-mapping> element

 The root element of hibernate mapping document is <hibernate-mapping>

element. This element has several optional attributes.

2. <class> element

 The <Class> element maps the domain object with corresponding entity in the

database. In simple words the <class> element maps a table with corresponding class .

<hibernate-mapping> element allows you to nest several persistent <class> mappings, as

shown above. It is however good practice to map only a single persistent class in one

mapping file and name it after the persistent superclass, e.g. User.hbm.xml

3. <id> element

 The <id> element defines the mapping from that property to the primary key

column. The <id> element represents the primary key column, and its associated attribute

in the domain object. Mapped classes must declare the primary key column of the

database table. Most classes will also have a JavaBeans-style property holding the unique

identifier of an instance.

4. <generator> element

 The optional <generator> child element names a Java class used to generate

unique identifiers for instances of the persistent class. If any parameters are required to

configure or initialize the generator instance, they are passed using the <param> element

.Some commonly used generators are :

1. Increment - generates identifiers of type long, short or int that are unique only when no

other process is inserting data into the same table. Do not use in a cluster.

 Hibernate

Dept of Computer Science 10

2. Sequence - uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, or a generator in

Interbase. The returned identifier is of type long, short or int

3. Assigned - lets the application to assign an identifier to the object before save() is

called. This is the default strategy if no <generator> element is specified.

4. Foreign - uses the identifier of another associated object. Usually used in conjunction

with a <one-to-one> primary key association.

5. <property> element

 The <property> element declares a persistent, JavaBean style property of the

class. The <property> elements represent all other attributes available in the domain

object. type name could be:

1. The name of a Hibernate basic type (eg. integer, string, character, date, timestamp,

float, binary, serializable, object, blob).

2. The name of a Java class with a default basic type (eg. int, float, char, java.lang.String,

java.util.Date, java.lang.Integer, java.sql.Clob).

3. The name of a serializable Java class.

6. <many-to-one> element

 An ordinary association to another persistent class is declared using a many-to-

one element. The relational model is a many-to-one association: a foreign key in one

table is referencing the primary key column(s) of the target table. A typical many-to-one

declaration looks like this:

<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

7. <one-to-one> element

 A one-to-one association to another persistent class is declared using a one-to-one

 Hibernate

Dept of Computer Science 11

element . A typical many-to-one declaration looks like this:

<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

8.<natural-id> element

A natural key is a property or combination of properties that is unique and non-null. If it

is also immutable, even better. Map the properties of the natural key inside the <natural-

id> element.

9.<component>,<dynamic-component> element

The <component> element maps properties of a child object to columns of the table of a

parent class.The <dynamic-component> element allows a Map to be mapped as a

component, where the property names refer to keys of the map.

10.<properties> element

The <properties> element allows the definition of a named, logical grouping of properties

of a class. The most important use of the construct is that it allows a combination of

properties to be the target of a property-ref. It is also a convenient way to define a multi-

column unique constraint.

11.<subclass>element

Finally, polymorphic persistence requires the declaration of each subclass of the root

persistent class. For thetable-per-class-hierarchy mapping strategy, the <subclass>

declaration is used.

Each subclass should declare its own persistent properties and subclasses. <version> and

<id> properties are assumed to be inherited from the root class.

3) Hibernate code:
 the hibernate code is written for the above created classes, objects with the mappings by

using hibernate classes and tags which will communicate with the database.

 Hibernate

Dept of Computer Science 12

5.3) Key features of Hibernate include:

1. Integrates elegantly with all popular J2EE application servers , web containers and in

standalone applications .

- Hibernate is typically used in Java Swing applications, Java Servlet-based applications,

or J2EE applications using EJB session beans

2. Free / open source

- Hibernate is licensed under the LGPL (Lesser GNU PublicLicense).critical component

of the JBoss Enterprise Middleware System (JEMS) suite of products

3. Natural programming model

- Hibernate supports natural OO idiom; inheritance, polymorphism, composition and the

Java collections framework

5. Extreme scalability

- Hibernate is extremely performant, has a dual-layer cache architecture, and may be used

in a cluster

6. The query language

- Hibernate addresses both sides of the problem; not only how to get objects into the

database, but also how to get them out again

7. EJB 3.0

- Implements the persistence API and query language defined by EJB 3.0 persistence

 Hibernate

Dept of Computer Science 13

Chapter 6

6) Hibernate Query Language (HQL):

Hibernate is equipped with an extremely powerful query language that looks very much

like SQL. Queries are case-insensitive, except for names of Java classes and properties.

HQL is a language for talking about ¡§sets of objects¡¨. It unifies relational operations

with object models. Make SQL be object oriented. It uses Classes and properties instead

of tables and columns. It supports Polymorphism, Associations , Much less verbose than

SQL .The Hibernate Query Language, designed as a minimal object-oriented extension to

SQL, provides an elegant bridge between the object and relational worlds.

Key features include:

1. Integrates elegantly with all popular J2EE application servers, web containers and in

standalone applications.

- Hibernate is typically used in Java Swing applications, Java Servlet-based applications,

or J2EE applications using EJB session beans

2. Free / open source

- Hibernate is licensed under the LGPL (Lesser GNU Public License).critical component

of the JBoss Enterprise Middleware System (JEMS) suite of products

3. Natural programming model

- Hibernate supports natural OO idiom; inheritance, polymorphism, composition and the

Java collections framework

5. Extreme scalability

- Hibernate is extremely performant, has a dual-layer cache architecture, and may be used

in a cluster

6. The query language

- Hibernate addresses both sides of the problem; not only how to get objects into the

 Hibernate

Dept of Computer Science 14

database, but also how to get them out again

7. EJB 3.0

- Implements the persistence API and query language defined by EJB 3.0 persistence

Other features include:

1. Full support for relational operations

2. Inner/outer/full joins, Cartesian products

3. Projection

4. Aggregation (max, avg) and grouping

5. Ordering

6. Sub queries

7. SQL function calls

6.1) HQL Syntax
As described earlier, most of HQL's syntax and features are very similar to SQL. An

HQL query may consist of following elements:

• Clauses

• Aggregate functions

• Subqueries

 Hibernate

Dept of Computer Science 15

Chapter 7

7) Sample code:

1) Preparing database

USER_ID <<PK>> int(11)

USER_NAME varchar(20)

USER_ PASSWORD varchar(10)

USER_ EMAIL varchar(20)

2. Creating persistent java objects

Following code sample represents a java object structure which represents the User table.

Generally these domain objects contain only getters and setters methods.

Source code for User.java

public class User {

 /** identifier field */

 private Long id;

 /** persistent fields */

 private String userName;

 private String userPassword;

 private String userEmail;

 /** default constructor */

 public User() {

 }

 public Long getId() {

 return this.id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public String getUserName() {

 return this.userName;

 }

 public void setUserName(String userName) {

 Hibernate

Dept of Computer Science 16

 this.userName = userName;

 }

 public String getUserPassword() {

 return this.userPassword;

 }

 public void setUserPassword(String userPassword) {

 this.userPassword = userPassword;

 }

 public String getUserEmail() {

 return this.userEmail;

 }

 public void setUserEmail(String userEmail) {

 this.userEmail = userEmail;

 }

}

3. Mapping POJO with persistence layer using hibernate mapping

document

Each persistent class needs to be mapped with its configuration file. Following code

represents Hibernate mapping file for User class.

Source code for User.hbm.xml

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

 <class name="User" table="user">

 <id column="USER_ID" name="id" type="java.lang.Long">

 <generator class="increment"/>

 Hibernate

Dept of Computer Science 17

 </id>

<property column="USER_NAME" length="20" name="userName" not- null="true"

type="java.lang.String"/>

<property column="USER_PASSWORD" length="10" name="userPassword" not-

null="true" type="java.lang.String"/>

<property column="USER_EMAIL" length="20" name="userEmail"

type="java.lang.String"/>

 </class>

</hibernate-mapping>

Source code for hibernate.cfg.xml
<hibernate-configuration>

 <session-factory>

 <!-- Database connection settings -->

 <property name="show_sql">true</property>

<property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect

</property>

<property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver

</property>

<property name="hibernate.connection.url">jdbc:mysql://localhost:3306/quickstart

</property>

<property name="hibernate.connection.username">root</property>

 <property name="hibernate.connection.password"></property>

<!-- Mapping files -->

 <mapping resource="User.hbm.xml"/>

</session-factory>

</hibernate-configuration>

Configuration config = new Configuration().addResource(¡§User.hbm.xml");

Configuration config = new Configuration().addClass(User.class)

.setProperty("hibernate.dialect", "org.hibernate.dialect. MySQLDialect")

.setProperty("hibernate.connection.driver_class", " com.mysql.jdbc.Driver")

.setProperty("hibernate.connection.url", "jdbc:mysql://localhost:3306/quickstart");

 SessionFactory sessions = config.buildSessionFactory();

4. Querying the database

Source code for UserQueryHibernate.java

import java.util.Iterator;

import org.hibernate.*;

 Hibernate

Dept of Computer Science 18

import org.hibernate.cfg.*;

public class UserQueryHibernate {

 public static void main(String[] args)

 throws Exception {

 //Fire up Hibernate

 SessionFactory sessionFactory = new Configuration()

 .configure().buildSessionFactory();

 //Open Session

 Session session = sessionFactory.openSession();

 //Query using Hibernate Query Language

 String SQL_STRING = " FROM User as users";

 Query query = session.createQuery(SQL_STRING);

 System.out.println("aftr createQuery");

 for (Iterator it = query.iterate(); it.hasNext();) {

 User user = (User) it.next();

 System.out.println("User name " + user.getUserName());

 System.out.println("User Email " + user.getUserEmail());

 }

 //Close Session

 session.close();

 }

}

 Hibernate

Dept of Computer Science 19

Chapter 8

8.1) Tools for writing HQL:

The Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks.

• Mapping Editor: An editor for Hibernate XML mapping files, supporting auto-

completion and syntax highlighting. It also supports semantic auto-completion for

class names and property/field names, making it much more versatile than a

normal XML editor.

• Console: The console is a new view in Eclipse. In addition to a tree overview of

your console configurations, you also get an interactive view of your persistent

classes and their relationships. The console allows you to execute HQL queries

against your database and browse the result directly in Eclipse.

• Development Wizards: Several wizards are provided with the Hibernate Eclipse

tools; you can use a wizard to quickly generate Hibernate configuration (cfg.xml)

files, or you may even completely reverse engineer an existing database schema

into POJO source files and Hibernate mapping files. The reverse engineering

wizard supports customizable templates.

• Hql editor: hql editor is used for the writing and running of the hql.

8.2)Advantages of Hibernate:

1) Writing queries are avoided.

2) Using ORM we can avoid the jdbc API completely and also provides ease to the

developer in developing the classes.

3) Easily migrate your code between different databases. Good for updating,

maintaining your application

4) Support for a wide range of databases including Oracle, DB2, Sybase, MS SQL

Server, PostgreSQL, MySQL, HypersonicSQL, Mckoi SQL, SAP DB, Interbase,

Point base, Progress, Front Base, Ingress, Informix, Firebird.

5) Free software and plugins are available in internet.

 Hibernate

Dept of Computer Science 20

Chapter 9

9.1) Conclusion:

Hibernate Query Language (HQL) is a rich and powerful object-oriented query

language available with the Hibernate O/R Mapping Framework. This query language,

designed as a "minimal object-oriented extension to SQL," allows you to represent SQL

queries in object-oriented terms—by using objects and properties of objects.

HQL provides many advanced features compared to SQL, yet is easier to learn

and use as its syntax and basic features are very similar to SQL. It facilitates writing

database-type independent queries that are converted to a local SQL dialect of the

underlying database at runtime

Hibernate delivers a high performance, open source persistence framework

comparable to many of its open source and commercial counterparts. Developers utilizing

Hibernate can greatly reduce the amount of time and effort needed to code, test, and

deploy applications.

9.2)Bibliography:
� http://www.hibernate.org

� http://hibernate.bluemars.net

� http://tools.hibernate.org

� http://forum.hibernate.org

� http://www.andromda.org

