UNIT I
INTRODUCTION TO 8085 MICROPROCESSOR
1.1 Introduction

Microprocessor is a Central Processing Unit (CPU) etched on a single chip. A single Integrated Circuit (IC) has all the functional components of a CPU namely Arithmetic Logic Unit (ALU), Control Unit and registers. The 8085 microprocessor is an 8-bit processor that includes on its chip most of the logic circuitry for performing computing tasks and for communicating with peripherals. The architecture of a microprocessor is to be learnt in terms of registers, memory addressing, addressing modes, instruction set, interfacing with memory and Input and Output (I/O) devices and interrupt handling. It is necessary to learn about the above mentioned concepts to write efficient assembly language programs, and to design microprocessor based systems. This unit gives you an overall idea about the microprocessors, the detailed discussion about 8085 architecture and interfacing of 8085 with Programmable Peripheral Interface (PPI) devices.
1.2 Learning Objectives

· To understand the basics and evolution of microprocessors

· To study about the functional components of 8085 in detail

· To discuss the different types of memory addressing schemes 0f 8085
· To learn the various addressing modes supported by 8085
· To study the various types of instructions provided by 8085

· To study the pin diagram and the signals of various pins of 8085
· To discuss about the timing and execution of instructions by 8085
· To understand the interrupt handling of 8085

1.3 Functional Components of a Microprocessor

A digital computer is a programmable machine specially designed for making computation. Its main components are: CPU (Central Processing Unit), memory, input device and output device as shown in figure 1.1. 









Figure 1.1 Schematic Diagram of a Digital Computer

A microcomputer is a small digital computer. The CPU of a microcomputer is a microprocessor. Other components are same as those of any other digital computer. In figure 1.1, if we change the label CPU as Microprocessor, we get the organization of a microcomputer. 

The physical devices and circuitry of a computer are called hardware. A physical device may be electronic, magnetic, mechanical or an optical device etc. A sequence of instructions to perform a particular task is called a program. A set of programs written for a particular computer is known as software for that computer. The input and output devices are known as peripherals. Sometimes the term peripheral also includes memory. Programs are subroutines stored in ROM (Read Only Memory)s, Programmable ROM (PROM)s, Erasable PROM(EPROM)s and/or EEPROMs are known as firmware. The commonly available firmwares are: monitors, microprograms, subroutines for input and output devices. 

The Central Processing Unit (CPU) fetches instructions from the memory and performs specified tasks. It stores results in the memory or sends results to the output device according to the instructions given in the program. The CPU controls and communicates with memory and input/output devices. Under the control of the CPU, programs and data are stored in the memory and displayed on Cathode Ray Tube (CRT). The schematic diagram of a CPU is shown in figure 1.2. 






Figure 1.2 Schematic Diagram of a CPU or a Microprocessor

The CPU of a large computer is implemented on one or more circuit boards. ICs are used as its components. Recent practice is to use microprocessors to perform different functions within the CPU of a large computer. The major sections of a CPU are Arithmetic and Logic Unit (ALU), Accumulator, General and Special purpose registers and Timing and Control Unit. The function of an ALU is to perform arithmetic operations such as addition and subtraction; and logical operations such as AND, OR and EXCLUSIVE-OR. Timing and control unit controls the entire operations of a computer. It acts as a brain. It also controls all other devices connected to the CPU. It generates timing signals necessary for input and output devices. The accumulator is a register, which contains one of the operands and stores results of most arithmetic and logical operations. General purpose registers are used for temporary storage of data and intermediate results while computer is making execution of a program. Special purpose registers are used by the microprocessor itself. Some of them are not accessible to programmers. Examples of special purpose registers are program counter, stack pointer, instruction register and status register. 

The memory is a storage device. It stores program, data, results etc.

The computer receives data and instructions through input devices. An input device converts instructions, input data and signals into proper binary form suitable for a digital computer. A key-board and simple switches are used as input devices. The user enters instructions and data through a key-board or simple switches. Computers are also used to measure and control physical quantities like temperature, pressure, speed, position etc. For these purposes transducers are used to convert physical quantities into proportional electrical signals. A/D converters are used to convert analog electrical signals into digital signals, which are sent to the computer. Transducers and sensors, data acquisition system etc. are also included in input devices. A/D converter forms a part of data acquisition system. 

The computer sends results to output devices. An output device may store, print, display or send electrical signal to control/actuate certain equipment. The examples of simple output devices are printers, CRT, LEDs, D/A converter, controllers, actuators etc. Sometimes input and output devices may be combined in a single unit, which acts as both an input as well as an output device. A keyboard and CRT are combined to form a video terminal, which is a common I/O device for human interaction with a computer. 

With the advent of LSI and VLSI technology it became possible to build the entire CPU on a single chip IC. A CPU built into a single LSI/VLSI chip is called a microprocessor. A digital computer using microprocessor as its CPU is called a microcomputer. The term micro initiates its physical size; not it’s computing power. Today the computing power of a powerful microprocessor approaches that a CPU on earlier large computer. The main sections of a microprocessor are: ALU, timing and control unit, accumulator, general purpose and special purpose registers. In this subject we’ll study about two microprocessors namely Intel 8085 (8-bit) and Intel 8086 (16-bit).
Have you understood?

1. What are the major components of a digital computer?

2. What are the functional components of a CPU?

3. What is a microprocessor?

1.4 Evolution of Microprocessors

The first microprocessor was introduced in 1971 by Intel Corporation, U.S.A. It was a 4-bit microprocessor, the Intel 4004. The 4004 was introduced on November 15, 1971 and originally ran at a clock speed of 108KHz (108,000 cycles per second, or just over one-tenth a megahertz). The 4004 contained 2,300 transistors and was built on a 10-micron process. This means that each line, trace, or transistor could be spaced about 10 microns (millionths of a meter) apart. Data was transferred 4 bits at a time, and the maximum addressable memory was only 640 bytes. The 4004 was designed for use in a calculator but proved to be useful for many other functions because of its inherent programmability. In 1972, Intel introduced the 1st 8-bit processor, the Intel 8008. The Intel 8004 and 8008 both used Positive Channel Metal Oxide Semiconductor (PMOS) technology. In 1973 a more powerful and faster 8-bit processor, the Intel 8080 was introduced. It employed Negative Channel metal Oxide semiconductor (NMOS) technology. The 8008 processor contained 3,500 transistors and was built on the same 10-micron process as the previous processor. The big change in the 8008 was that it had an 8-bit data bus, which meant it could move data 8 bits at a time twice as much as the previous chip. It could also address more memory, up to 16KB. This chip was primarily used in dumb terminals and general-purpose calculators. 

The next chip in the lineup was the 8080, introduced in April 1974, running at a clock rate of 2MHz. Due to mostly the faster clock rate, the 8080 processor had 10 times the performance of the 8008. The 8080 chip contained 6,000 transistors and was built on a 6-micron process. Similar to the previous chip, the 8080 had an 8-bit data bus, so it could transfer 8 bits of data at a time. The 8080 could address up to 64KB of memory, significantly more than the previous chip. It was the 8080 that helped start the PC revolution because this was the processor chip used in what is generally regarded as the first personal computer, the Altair 8800. The CP/M operating system was written for the 8080 chip, and Microsoft was founded and delivered its first product: Microsoft BASIC for the Altair. These initial tools provided the foundation for a revolution in software because thousands of programs were written to run on this platform. In fact, the 8080 became so popular that it was cloned. A company called Zilog formed in late 1975, joined by several ex-Intel 8080 engineers. In July 1976, it released the Z-80 processor, which was a vastly improved version of the 8080. It was not pin compatible but instead combined functions such as the memory interface and RAM refresh circuitry, which enabled cheaper and simpler systems to be designed. The Z-80 also incorporated a superset of 8080 instructions, meaning it could run all 8080 programs. It also included new instructions and new internal registers, so software designed for the Z-80 would not necessarily run on the older 8080. The Z-80 ran initially at 2.5MHz (later versions ran up to 10MHz) and contained 8,500 transistors. The Z-80 could access 64KB of memory. 

Intel released the 8085, it’s follow-up to the 8080, in March 1976. Even though it predated the Z-80 by several months, it never achieved the popularity of the Z-80 in personal computer systems. It was popular as an embedded controller, finding use in scales and other computerized equipment. The 8085 ran at 5MHz and contained 6,500 transistors. It was built on a 3-micron process and incorporated an 8-bit data bus. Along different architectural lines, MOS Technologies introduced the 6502 in 1976. This chip was designed by several ex-Motorola engineers who had worked on Motorola's first processor, the 6800. The 6502 was an 8-bit processor like the 8080, but it sold for around $25, whereas the 8080 cost about $300 when it was introduced. The price appealed to Steve Wozniak, who placed the chip in his Apple I and Apple II designs. The chip was also used in systems by Commodore and other system manufacturers. The 6502 and its successors were also used in game consoles, including the original Nintendo Entertainment System (NES) among others. Motorola went on to create the 68000 series, which became the basis for the Apple Macintosh line of computers. Today those systems use the PowerPC chip, also by Motorola and a successor to the 68000 series. 

All these previous chips set the stage for the first PC processors. Intel introduced the 8086 in June 1978. The 8086 chip brought with it the original x 86 instructions set that is still present in current x86-compatible chips such as the Pentium 4 and AMD Athlon. A dramatic improvement over the previous chips, the 8086 was a full 16-bit design with 16-bit internal registers and a 16-bit data bus. This meant that it could work on 16-bit numbers and data internally and also transfer 16 bits at a time in and out of the chip. The 8086 contained 29,000 transistors and initially ran at up to 5MHz. The chip also used 20-bit addressing, so it could directly address up to 1MB of memory. Although not directly backward compatible with the 8080, the 8086 instructions and language were very similar and enabled older programs to quickly be ported over to run. This later proved important to help jumpstart the PC software revolution with recycled CP/M (8080) software.

Although the 8086 was a great chip, it was expensive at the time and more importantly required expensive 16-bit board designs and infrastructure to support it. To help bring costs down, in 1979 Intel released what some called a crippled version of the 8086 called the 8088. The 8088 processor used the same internal core as the 8086, had the same 16-bit registers, and could address the same 1MB of memory, but the external data bus was reduced to 8 bits. This enabled support chips from the older 8-bit 8085 to be used, and far less expensive boards and systems could be made. These reasons are why IBM chose the 8088 instead of the 8086 for the first PC. This decision would affect history in several ways. The 8088 was fully software compatible with the 8086, so it could run 16-bit software. Also, because the instruction set was very similar to the previous 8085 and 8080, programs written for those older chips could be quickly and easily modified to run. This enabled a large library of programs to be quickly released for the IBM PC, thus helping it become a success. The overwhelming blockbuster success of the IBM PC left in its wake the legacy of requiring backward compatibility with it. To maintain the momentum, Intel has pretty much been forced to maintain backward compatibility with the 8088/8086 in most of the processors it has released since then.

To date, backward compatibility has been maintained, but innovating and adding new features has still been possible. One major change in processors was the move from the 16-bit internal architecture of the 286 and earlier processors to the 32-bit internal architecture of the 386 and later chips, which Intel calls IA-32 (Intel Architecture, 32-bit). Intel's 32-bit architecture dates to 1985, and it took a full 10 years for both a partial 32-bit mainstream OS (Windows 95) as well as a full 32-bit OS requiring 32-bit drivers (Windows NT) to surface, and another 6 years for the mainstream to shift to a fully 32-bit environment for the OS and drivers (Windows XP). That's a total of 16 years from the release of 32-bit computing hardware to the full adoption of 32-bit computing in the mainstream with supporting software. 

Now we are in the midst of another major architectural jump, as Intel and AMD are in the process of moving from 32-bit to 64-bit computing for servers, desktop PCs, and even portable PCs. Intel had introduced the IA-64 (Intel Architecture, 64-bit) in the form of the Itanium and Itanium 2 processors several years earlier, but this standard was something completely new and not an extension of the existing 32-bit technology. IA-64 was first announced in 1994 as a CPU development project with Intel and HP (codenamed Merced), and the first technical details were made available in October 1997. The result was the IA-64 architecture and Itanium chip, which was officially released in 2001. The fact that the IA-64 architecture is not an extension of IA-32 but is instead a whole new and completely different architecture is fine for non-PC environments such as servers, but the PC market has always hinged on backward compatibility. Even though emulating IA-32 within IA-64 is possible, such emulation and support is slow.

With the door now open, AMD seized this opportunity to develop 64-bit extensions to IA-32, which it calls AMD64 (originally known as x86-64). Intel eventually released its own set of 64-bit extensions, which it calls EM64T or IA-32e mode. As it turns out, the Intel extensions are almost identical to the AMD extensions, meaning they are software compatible. It seems for the first time that Intel has unarguably followed AMD's lead in the development of PC architecture. To make 64-bit computing a reality, 64-bit operating systems and 64-bit drivers are also needed. Microsoft began providing trial versions of Windows XP Professional x64 Edition (which supports AMD64 and EM64T) in April 2005, and major computer vendors now offer systems with Windows XP Professional x64 already installed. Major hardware vendors have also developed 64-bit drivers for current and recent hardware. Linux is also available in 64-bitcompatible versions, making the move to 64-bit computing possible.

The latest development is the introduction of dual-core processors from Intel, IBM, Sun and AMD. Dual-core processors have two full CPU cores operating off of one CPU package in essence enabling a single processor to perform the work of two processors. Although dual-core processors don't make games (which use single execution threads and are usually not run with other applications) play faster, dual-core processors, like multiple single-core processors, split up the workload caused by running multiple applications at the same time. If you've ever tried to scan for viruses while checking email or running another application, you've probably seen how running multiple applications can bring even the fastest processor to its knees. With dual-core processors available from both Intel and AMD, your ability to get more work done in less time by multitasking is greatly enhanced. Current dual-core processors also support AMD64 or EM64T 64-bit extensions, enabling you to enjoy both dual-core and 64-bit computing's advantages.

PCs have certainly come a long way. The original 8088 processor used in the first PC contained 29,000 transistors and ran at 4.77MHz. The AMD Athlon 64FX has more than 105 million transistors, while the Pentium 4 670 (Prescott core) runs at 3.8GHz and has 169 million transistors thanks to its 2MB L2 cache. Dual-core processors, which include two processor cores and cache memory in a single physical chip, have even higher transistor counts: The Intel Pentium D processor has 230 million transistors, and the AMD Athlon 64 X2 includes over 233 million transistors. As dual-core processors and large L2 caches continue to be used in more and more designs, look for transistor counts and real-world performance to continue to increase. And the progress doesn't stop there because, according to Moore's Law, processing speed and transistor counts are doubling every 1.52 years.

1.5 INTEL 8085

Intel 8085 is an 8-bit, N-channel Metal Oxide semiconductor (NMOS) microprocessor. It is a 40 pin IC package fabricated on a single Large Scale Integration (LSI) chip. The Intel 8085 uses a single +5V DC supply for its operation. Its clock speed is about 3MHz. The clock cycle is of 320 ns. The time for the clock cycle of the Intel 8085 is 200 ns. It has 80 basic instructions and 246 opcodes. The 8085 is an enhanced version of its predecessor, the 8080A; its instruction set is upward compatible with that of the 8080A, meaning that 8085 instruction set includes all the 8080A instructions plus some additional ones. Programs written for 8080A will be executed by 8085, but the 8085 and 8080A are not pin compatible.
1.5.1 Architecture
The architecture of Intel 8085 consists of three main sections, arithmetic and logic unit, timing and control unit and several registers. The functional block diagram of 8085 is shown in figure 1.3. These important sections are described in the subsequent sections.

Arithmetic and Logic Unit (ALU)
The ALU performs the following arithmetic and logical operations.

1. Addition

2. Subtraction

3. Logical AND

4. Logical OR

5. Logical EXCLUSIVE OR

6. Complement (logical NOT)

7. Increment (add 1)

8. Decrement (subtract 1)

9. Left shift

10. Clear

 The ALU is the unit that manipulates the data. ALU includes the accumulator, the temporary register, the arithmetic and logic circuits and flags.
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Figure 1.3 Architecture of 8085

Timing and Control Unit

The timing and control unit is a section of the CPU. It generates timing and control signals, which are necessary for the execution of instructions. It controls data flow between CPU and peripherals (including memory). It provides status, control and timing signals, which are required for the operation of memory and I/O devices. It controls the entire operations of the microprocessor and peripherals connected to it. Hence you can understand that the control unit of the CPU acts as the brain of a computer system. This unit synchronizes all the microprocessor operations with the clock and generates the control signals necessary for communication between the microprocessor and peripherals.
Registers

Figure 1.3 shows the various registers of Intel 8085.

Registers are used by the microprocessor for temporary storage and manipulation of data and instructions. Data remain in the register till they are sent to the memory or I/O devices. In a large computer the number of registers is more and hence the program requires less transfer of data to and from the memory. In a small computer the number of registers is small due to the limited size of the chip. If a digital computer requires frequent access to memory then the performance comes down due to the mismatch in the speed with which the CPU and the memory operate. The 8085 programming model includes six registers, one accumulator, and one flag register, as shown in Figure. In addition, it has two 16-bit registers: the stack pointer and the program counter. They are described briefly as follows.

General Purpose Registers
The 8085 has six general-purpose registers to store 8-bit data; these are identified as B, C, D, E, H, and L as shown in the figure 1.4. They can be combined as register pairs - BC, DE, and HL - to perform some 16-bit operations. The programmer can use these registers to store or copy data into the registers by using data copy instructions. The HL register pair is also used to address memory locations. In other words, HL register pair plays the role of memory address register.
Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This register is used to store 8-bit data and to perform arithmetic and logical operations. The result of an operation is stored in the accumulator. The accumulator is also identified as register A. This is used during the execution of a program for temporary storage. It holds one of the operands, which serves as one of the inputs to ALU. The other operand may be either in the memory or in one of the registers. The final result of an arithmetic or logic operation is placed in the accumulator. 
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    Figure 1.4 General Registers
Other Registers

Program Counter

This 16-bit register deals with sequencing the execution of instructions. This register is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a 16-bit register. The microprocessor uses this register to sequence the execution of the instructions. The function of the program counter is to point to the memory address from which the next byte is to be fetched. When a byte (machine code) is being fetched, the program counter is incremented by one to point to the next memory location. However, please note that the program counter is loaded with some absolute value during the execution of branch instructions.
Stack Pointer

The stack pointer is also a 16-bit register used as a memory pointer. It points to a memory location in R/W memory, called the stack. The beginning of the stack is defined by loading 16-bit address in the stack pointer. The stack is the sequence of memory locations defined by the programmer. The stack is used to save the content of a register during the execution of the program.

Instruction Register/Decoder

The instruction register and the decoder are considered as a part of the ALU. It is a temporary storage for the current instruction of a program. Latest instruction is sent here from memory prior to execution. The decoder decodes the instruction and establishes the sequence of events to follow. However, you please understand that the instruction register is not programmable and can not be accessed through any instruction.
Flag Register
The ALU includes five flip-flops, which are set or reset after an operation according to data conditions of the result in the accumulator and other registers. They are called Zero (Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags; their bit positions in the flag register are shown in the Figure below. The most commonly used flags are Zero, Carry, and Sign. The microprocessor uses these flags to test data conditions. The flag register is shown in figure 1.5.
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Figure 1.5 Flag Register of 8085

For example, after an addition of two numbers, if the sum in the accumulator id larger than eight bits, the flip-flop uses to indicate a carry -- called the Carry flag (CY) – is set to one. When an arithmetic operation results in zero, the flip-flop called the Zero (Z) flag is set to one. The first Figure shows an 8-bit register, called the flag register, adjacent to the accumulator. However, it is not used as a register; five bit positions out of eight are used to store the outputs of the five flip-flops. The flags are stored in the 8-bit register so that the programmer can examine these flags (data conditions) by accessing the register through an instruction.

These flags have critical importance in the decision-making process of the microprocessor. The conditions (set or reset) of the flags are tested through the software instructions. For example, the instruction JC (Jump on Carry) is implemented to change the sequence of a program when CY flag is set. The thorough understanding of flag is essential in writing assembly language programs. The combination of the flag register and the accumulator is called Program Status Word (PSW) and PSW is the 16-bit unit for stack operation.
1.5.2 Properties and Pin description

Properties

· Single + 5V Supply

· 4 Vectored Interrupts (One is Non Maskable)

· Serial In/Serial Out Port

· Decimal, Binary, and Double Precision Arithmetic

· Direct Addressing Capability to 64K bytes of memory

· The Intel 8085 is a new generation, complete 8 bit parallel central processing unit (CPU). 
· The 8085 uses a multiplexed data bus. The address is split between the 8bit address bus and the 8bit data bus. 

Pin Description

Figure 1.6 shows the pin diagram of 8085. The following describes the function of each pin:

A8 - A15 (Output 3 State)

Address Bus; The most significant 8 bits of the memory address or the 8 bits of the I/0 address,3 stated during Hold and Halt modes.

AD0 - 7 (Input/Output 3state)

Multiplexed Address/Data Bus; Lower 8 bits of the memory address (or I/0 addresses) appear on the bus during the first clock cycle of a machine state. It then becomes the data bus during the second and third clock cycles. 3 stated during Hold and Halt modes.

ALE (Output)

Address Latch Enable: It occurs during the first clock cycle of a machine state and enables the address to get latched into the on chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold times for the address information.

ALE can also be used to strobe the status information. ALE is never 3stated.

SO, S1 (Output)

Data Bus Status. Encoded status of the bus cycle:

S1 S0

  0   0 

HALT

  0   1 

WRITE

  1   0 

READ

  1   1

 FETCH

S1 can be used as an advanced R/W status.

RD (Output 3state)

READ; indicates the selected memory or 1/0 device is to be read and that the Data

Bus is available for the data transfer.

WR (Output 3state)

WRITE; indicates the data on the Data Bus is to be written into the selected memory or 1/0 location. Data is set up at the trailing edge of WR. 3stated during Hold and Halt modes.

READY (Input)

If Ready is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or receive data. If Ready is low, the CPU will wait for Ready to go high before completing the read or write cycle.

HOLD (Input)

HOLD; indicates that another Master is requesting the use of the Address and Data Buses. The CPU, upon receiving the Hold request. will relinquish the use of buses as soon as the completion of the current machine cycle. Internal processing can continue.

The processor can regain the buses only after the Hold is removed. When the Hold is acknowledged, the Address, Data, RD, WR, and IO/M lines are 3stated.

HLDA (Output)

HOLD ACKNOWLEDGE; indicates that the CPU has received the Hold request and that it will relinquish the buses in the next clock cycle. HLDA goes low after the Hold request is removed. The CPU takes the buses one half clock cycles after HLDA goes low.

INTR (Input)

INTERRUPT REQUEST; is used as a general purpose interrupt. It is sampled only during the next to the last clock cycle of the instruction. If it is active, the Program Counter (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.

INTA (Output)

INTERRUPT ACKNOWLEDGE; is used instead of (and has the same timing as) RD during the Instruction cycle after an INTR is accepted. It can be used to activate the

8259 Interrupt chip or some other interrupt port.

RESTART INTERRUPTS; These three inputs have the same timing as INTR except they cause an internal RESTART to be automatically inserted.

RST 7.5 – Highest Priority

RST 6.5

RST 5.5 – Lowest Priority

The priority of these interrupts is ordered as shown above. These interrupts have a higher priority than the INTR.

TRAP (Input)

Trap interrupt is a nonmaskable restart interrupt. It is recognized at the same time as INTR. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt.

RESET IN (Input)

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA flip flops. None of the other flags or registers (except the instruction register) is affected The CPU is held in the reset condition as long as Reset is applied.

RESET OUT (Output)

Indicates CPlJ is being reset. Can be used as a system RESET. The signal is synchronized to the processor clock.

X1, X2 (Input)

Crystal or R/C network connections to set the internal clock generator X1 can also be

an external clock input instead of a crystal. The input frequency is divided by 2 to

give the internal operating frequency.

CLK (Output)

Clock Output for use as a system clock when a crystal or R/ C network is used as an

input to the CPU. The period of CLK is twice the X1, X2 input period.

IO/M (Output)

IO/M indicates whether the Read/Write is to memory or l/O Tristated during Hold and

Halt modes.

SID (Input)

Serial input data line The data on this line is loaded into accumulator bit 7 whenever a

RIM instruction is executed.

SOD (output)

Serial output data line. The output SOD is set or reset as specified by the SIM instruction.

Vcc

+5 volt supply.

Vss

Ground Reference.

1.5.3 Functional Description

The 8085 is a complete 8 bit parallel central processor. It requires a single +5 volt supply. Its basic clock speed is 3 MHz thus improving on the present 8080's performance with higher system speed. Also it is designed to fit into a minimum system of three IC's: The CPU, a RAM/IO, and a ROM or PROM/IO chip. The functional description of 8085 is shown in figure 1.7.

Address Bus

The 8085 has eight signal lines, A15-A8, which are unidirectional and used as the high order address bus.

Multiplexed Address/Data Bus

The signal lines AD7-AD0 are bidirectional. They serve a dual purpose. They are used as the low-order address bus as well as the data bus. In executing an instruction, during the earlier part of the cycle, these lines are used as the low-order address bus as well as the data bus. During the later part of the cycle, these lines are used as the data bus. However the low order address bus can be separated from these signals by using a latch.
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Figure 1.6 8085 Pin Diagram

Control and Status Signals

Address Latch Enable (ALE) is used to implement the multiplexed address/data bus. The 8085A uses a multiplexed Data Bus. The address is split between the higher 8bit address bus and the lower 8bit Address/Data Bus. During the first cycle the address is sent out. The lower 8bits are latched into the peripherals by the Address Latch Enable (ALE). During the rest of the machine cycle the Data Bus is used for memory or l/O data. The 8085A provides RD, WR, and IO/Memory signals for bus control. Along with IO/M, S1 and S0 can identify various operations, but they are rarely used in small systems. The following table shows the 8085 machine cycle status and control signals.
	Machine Cycle
	IO/M
	S1
	S0
	Control signals

	Opcode Fetch
	0
	1
	1
	RD=0

	Memory Read
	0
	1
	0
	RD=0

	Memory Write
	0
	0
	1
	WR=0

	I/O Read
	1
	1
	0
	RD=0

	I/O Write
	1
	0
	1
	WR=0

	Interrupt Acknowledge
	1
	1
	1
	INTA=0

	Halt
	Z
	0
	0
	RD, WR=z and INTA=1

	Hold
	Z
	X
	X
	RD, WR=z and INTA=1

	Reset
	Z
	X
	X
	RD, WR=z and INTA=1


Power Supply and Clock Frequency

The power supply and frequency signals are as follows:

· Vcc: +5V power supply

· Vss: Ground Reference

· X1, X2: A crystal (or RC, LC network) is connected at these two pins. The frequency is internally divided by two; therefore, to operate a system at 3MHz, the crystal should have a frequency of 6 MHz.
· CLK (OUT) – Clock Output: This signal can be used as the system clock for other devices.

Interrupt and Serial l/O

The8085A has 5 interrupt inputs: INTR, RST5.5, RST6.5, RST 7.5, and TRAP. INTR

is identical in function to the 8080 INT. Each of the three RESTART inputs, 5.5, 6.5, 7.5, has a programmable mask. TRAP is also a RESTART interrupt except it is nonmaskable.

The three RESTART interrupts cause the internal execution of RST (saving the program counter in the stack and branching to the RESTART address) if the interrupts are enabled and if the interrupt mask is not set. The non-maskable TRAP causes the internal execution of a RST independent of the state of the interrupt enable or masks.

The interrupts are arranged in a fixed priority that determines which interrupt is to be recognized if more than one is pending as follows: TRAP highest priority, RST 7.5,

RST 6.5, RST 5.5, INTR lowest priority This priority scheme does not take into account the priority of a routine that was started by a higher priority interrupt. RST 5.5 can interrupt a RST 7.5 routine if the interrupts were re-enabled before the end of the RST 7.5 routine. The TRAP interrupt is useful for catastrophic errors such as power failure or bus error. The TRAP input is recognized just as any other interrupt but has the highest priority. It is not affected by any flag or mask. The TRAP input is both edge and level sensitive.

An Interrupt Acknowledge signal (INTA) is also provided. Hold, Ready, and all Interrupts are synchronized. The 8085A also provides serial input data (SID) and serial output data (SOD) lines for simple serial interface.
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Figure 1.7 Functional Description

System Bus

A typical digital system uses a number of busses, collection of wires, which transmit binary numbers, one bit per wire. A typical microprocessor communicates with memory and other devices (input and output) using three busses: Address Bus, Data Bus and Control Bus.

Address Bus

One wire for each bit, therefore 16 bits = 16 wires. Binary number carried alerts memory to ‘open’ the designated location. A location is also called a box colloquially. Data (binary) can then be put in or taken out. The Address Bus consists of 16 wires, therefore 16 bits. Its "width" is 16 bits. A 16 bit binary number allows 216 different numbers, or 32000 different numbers, i.e. 0000000000000000 up to 1111111111111111. Because memory consists of boxes, each with a unique address, the size of the address bus determines the size of memory, which can be used. To communicate with memory, the microprocessor sends an address on the address bus, e.g. 0000000000000011 (3 in decimal), to the memory. The memory then selects box number 3 for reading or writing data. Address bus is unidirectional, i.e. numbers only sent from microprocessor to memory, not other way.

Data Bus

Data Bus carries ‘data’, in binary form, between microprocessor and other external units, such as memory. Typical size is 8 or 16 bits. It is important to note that size of the data bus is called the word length of the microprocessor. The performance or the data processing capacity of a microprocessor is determined by size of the data bus. As the size of the data bus increases the processing capacity increases in proportion. The data bus of 8085 consists of 8 wires. Therefore, 28 combinations of binary digits are possible. Data bus used to transmit "data", i.e. information, results of arithmetic, etc, between memory and the microprocessor. Data bus is bi-directional. Size of the data bus determines what arithmetic can be done. If only 8 bits wide then largest number is 11111111 (255 in decimal). Therefore, larger number has to be broken down into chunks of 255. This slows the microprocessor. Data bus also carries instructions from memory to the microprocessor. Size of the bus therefore limits the size of the instruction brought from memory.
Control Bus

Control bus are various lines which have specific functions for coordinating and controlling microprocessor operations. E.g.: Read/Write(Active Low) line, single binary digit. Control whether memory is being ‘written to’ (data stored in memory) or ‘read from’ (data taken out of memory) 1 = Read, 0 = Write. May also include clock line(s) for timing/synchronizing, ‘interrupts’, ‘reset’ etc. Typically the microprocessor has 10 control lines. A microprocessor cannot function correctly without these vital control signals. The Control bus carries control signals partly unidirectional, partly bi-directional. Control signals are things like "read or write". This tells memory that we are reading from a location, specified on the address bus, or writing to a location specified. Various other signals are used to control and coordinate the operation of the system. Modern day microprocessors, like 80386, 80486 have much larger busses. They have typically 16 or 32 bit busses, which allow larger number of instructions, more memory location, and faster arithmetic. The term ‘bus’, in relation to control signals, is confusing. These are not group of lines like address or data buses but individual lines that provide a pulse to indicate a microprocessor operation.
Have you understood?

1. Define the word length of a microprocessor.

2. What is the word length of Intel 8085?

3. What is the specialty of accumulator?

4. State the general purpose registers of 8085 and the combination in which they are used as 16-bit registers.

5. What is the purpose of the flag register?

6. Mention the various types of flags supported by 8085.

7. What is the function of ALE signal?

8. Why address and data buses are multiplexed in 8085?

1.6 8085 Based Microcomputer

The 8085 based microcomputer includes devices such as the 8085 microprocessor, input device (keyboard), output device (display) and other interfacing devices. The interfacing devices include latches, decoders and buffers. Figure 1.8 shows the various parts of the 8085 based microcomputer. The octal latch demultiplexes the bus AD7-AD0 using the signal ALE, and the logic gates generate the necessary control signals. Figure 1.8 shows the demultiplexed address bus, the data bus, and the four active low control signals: MEMR, MEMW, IOR and IOW. In addition, to increase the driving capacity of the buses, a unidirectional bus driver is used for the address bus and a bidirectional bus driver is used for the data bus.

The 8085 microprocessor is designed to execute 74 different instruction types. Each instruction has two parts: operation code, known as opcode, and operand. The opcode is a command such as Add, and the operand is an object to be operated on, such as a byte or the commands such as Add, and the operand is an object to be operated on, such as a byte or the contents of a register. Some instructions are 1-byte instructions and some are multibyte instructions. 8085 needs to perform various operations such as Memory Read/Write and IO Read/Write to execute an instruction. However, there is no direct relationship between the number of bytes in an instruction and the number of operations the 8085 has to perform.

Basically, the microprocessor external communication functions can be divided into three categories.

1. Memory Read and Write

2. I/O Read and Write

3. Request Acknowledge 

These functions are further divided into various operations (machine cycles). Each instruction consists of one or more of these machine cycles, and each machine cycle is divided into T states. 

1.6.1 Opcode Fetch Machine cycle

The first operation in any instruction is opcode fetch. The microprocessor needs to get (fetch) this machine code from the memory register where it is stored before the microprocessor can begin to execute the instruction. The steps and the timing of data flow when the instruction code 0100 1111 (4FH-MOV C,A), stored in location 2005H, is being fetched. To fetch the byte (4FH), the MPU needs to identify the memory location 2005H and enable the data flow from memory. This is called fetch cycle. The data flow is shown in figure 1.9 and figure 1.10 shows the timing of how a data byte is transferred from memory to the MPU.

Step 1

The program counter places the 16-bit memory address on the address bus. At T1 the high-order memory address 20H is placed on the address lines A15-A8, the low-order memory address 05H is placed on the bus AD7-AD0 and the ALE signal goes high. Similarly the status signal IO/M goes low, indicating that this is a memory related operation.

Step 2

The control unit sends the control signal RD to enable the memory chip. The control signal RD is sent out during the clock period T2, thus enabling the memory chip. The RD signal is active during two clock periods.

Step 3

The byte from the memory location is placed on the data bus. When the memory is enabled, the instruction byte (4FH) is placed on the data bus AD7-AD0 and transferred to the microprocessor. The RD signal causes 4FH to be placed on bus AD7-AD0, when RD goes high; it causes the bus to go into high impedance.

Step 4

The byte is placed in the instruction decoder of the microprocessor, and the task is carried out according to the given instruction. The machine code or the byte (4FH) is decoded by the instruction decoder, and the contents of the accumulator are copied into register C. The task is performed during the period T4.
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Figure 1.8 8085 based Microcomputer System
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Figure 1.9 Data Flow

1.6.2 Demultiplexing the bus AD7-AD0

The Intel 8085 is an 8-bit microprocessor. Its data bus is 8-bit wide and hence, 8 bits of data can be transmitted in parallel form or to the microprocessor. The Intel 8085 requires a 16-bit wide address bus as the memory addresses are of 16 bits. The 8 most significant bits of the address are transmitted by the address bus (A8-A15). The 8 least significant bits of the address are transmitted by address/data bus (AD7-AD0). The address/data bus transmits data and address information at different times. This is the basic need for demultiplexing the bus AD7-AD0. You understand clearly that Intel has followed this approach to reduce the number of pins in the chip. Figure 1.10 shows that the address on the high-order bus (20H) remains on the bus for three clock periods. However, the low-order address (05H) is lost after the first clock period. This address needs to be latched and used for identifying the memory address. If the bus AD&-AD) is used to identify the memory location (2005H), the address will change to 204FH after the first clock period. 
Figure 1.11 shows a schematic that uses a latch and the ALE signal to demultiplex the bus. The bus AD7-AD0 is connected as the input to the latch 74LS373. The ALE signal is connected to the enable (G) pin of the latch, and the Output control (OC) signal of the latch is grounded.  
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   Figure 1.10 Timing Diagram
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Figure 1.11 Schematic Diagram of Latching Low-Order Address Bus

Figure 1.10 shows that ALE goes high during T1. When the ALE is high, the latch is transparent. This means that the output changes according to input data. During T1, the output of each of the latch is 05H. When the ALE goes low, the data byte 05H is latched until the next ALE and the output of the latch represents the low-order address bus A7-A0 after the latching operation. Intel has circumvented the problem of demultiplexing the low-order bus by designing  special devices such as the 8155 (256 bytes of R/W memory + I/Os), which are compatible with the 8085 multiplexed bus. These devices internally demultiplex the bus using the ALE signal. After carefully examining figure 1.10, we can make the following observations.
1. The machine code 4FH (0100 1000) is a one-byte instruction that copies the contents of the accumulator into register C.

2. The 8085 microprocessor requires one external operation – fetching a machine code from memory location 2005H.
3. The entire operation – fetching, decoding and executing – requires four clock periods.

· Instruction cycle is defined as the time required to complete the execution of an instruction. The 8085 instruction cycle consists of one to six machine cycles or do one to six operations.

· Machine cycle is defined as the time required to complete one operation of accessing memory, I/O, or acknowledging an external request. This cycle may consists of three to six T-states.
· T-state is defined as one subdivision of the operation performed in one clock period. These subdivisions are internal states synchronized with the system clock, and each T state is precisely equal to one clock period. The terms T-state and clock period are used synonymously.

Figure 1.10 shows the RD (Read) as a control signal. Because this signal is used for both reading memory and for reading a input device, it is necessary to generate two different Read signals: one for memory and another for input. Similarly two separate Write signals must be generated.

Figure 1.12 shows that four different control signals are generated by combining the signals RD, WR and IO/M. The signal IO/M goes low for the memory operation. This signal is ANDed with RD and WR signals by using the 74LS32 quadruple two-input OR gates as shown in figure 1.12. The OR gates are functionally connected as negative NAND gates. When both input signals go low, the outputs of the gates go low and generate MEMR (Memory Read) and MEMW (Memory Write) control signals. When the IO/M signal goes high, it indicates the peripheral I/O operation. Figure 1.12 shows that this signal is complemented using the Hex inverter 74LS04 and ANDed with the RD and WR signals. To demultiplex the bus and to generate the necessary control signals, the 8085 microprocessor requires a latch and logic gates to build the MPU, as shown in figure 1.12. The MPU can be interfaced with any memory or I/O.
To illustrate the Memory Read machine cycle, we need to examine the execution of a 2-byte or a 3-byte instruction because in a 1-byte instruction the machine code is an opcode; therefore the operation is always an opcode fetch. Two machine codes – 0011 0111 (3EH) and 0011 0010 (32H) – are stored in memory locations 2000H and 2001H, respectively as shown below. The first machine code (3EH) represents the opcode to load a data byte in the accumulator, and the second code (32H) represents the data byte to be loaded in the accumulator. 

Instruction

MVI A,32H; Load byte 32H in the accumulator

Memory Location
2000H

0011
1110
3EH




2001H

0011
0010
32H


[image: image10]

 Figure 1.12 Schematic to generate control signals for memory

This instruction consists of two bytes. The first is the opcode and the second is the data byte. The 8085 needs to read these bytes first from memory and thus requires at least two machine cycles. The first machine cycle is Opcode Fetch and the second machine cycle is Memory Read, as shown in figure 1.13. This instruction requires seven T-states for these two machine cycles. The timings of the machine cycles are described in the following paragraphs.
1. The first machine cycle M1 is for opcode fetch. At T1, the microprocessor identifies that it is an Opcode Fetch cycle by placing 011 on the status signals (IO/M=0, S1=1). It places the memory address (2000H) from the program counter on the address bus, 20H on A15-A8, and 00H on AD7-AD0 and increments the program counter to 2001H to point to the next machine code. The ALE signal goes high during T1, which is used to latch the low order address 00H from the bus AD7-AD0. At T2, the 8085 asserts the Rd control signal, which enables the memory, and the memory places the byte 3EH from location 2000H on the data bus. Then the 8085 places the opcode in the instruction register and disables the RD signal. The fetch cycle is completed in state T3. During T4, the 8085 decodes the RD signal. The fetch cycle is completed in state T3. During T4, the 8085 decodes the opcode and finds out that a second byte needs to be read. After the T3        state, the contents of the bus A15-A8 are unknown, and the data bus AD7-AD0        goes into high impedance.
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Figure 1.13 Timing for Execution of the Instruction MVI A,32H

2. After the completion of the Opcode Fetch cycle, the 8085 places the address 2001H on the address bus and increments the program counter to the next address 2002H. The second machine cycle M2 is identified as the Memory Read Cycle (IO/M=0, S1=1, S0=0) and the ALE is asserted. At T2, the Rd signal becomes active and enables the memory chip.

3. At the rising edge of T2, the 8085 activates the data bus as an input bus, memory places the data byte 32H on the data bus, and the 8085 reads and stores the byte in the accumulator during T3.

Have you understood?

1. What are the components of an 8085 based microcomputer?
2. State the three categories of external communication functions of 8085.
3. What are the various machine cycles involved in the execution of an instruction?

4. What is the usage of an octal latch in a 8085 based microcomputer system?

5. What are the four control signals generated in a memory-mapped I/O?

1.7 Addressing Modes

It is obvious that each instruction requires certain data on which it has to operate. Now the issue is how to specify the operand so that the specified operation in the instruction is performed over the correct data. To improve the flexibility in writing the assembly language programs, the 8085 MPU permits the programmers to specify the operands (data) in different ways. These various ways of specifying the operands or various formats for specifying the operands is called addressing mode. Some possible techniques to specify data for the instructions are

· 8-bit or 16-bit data may be directly given in the instruction itself.
· The address of the memory location, I/O port or I/O device, where data resides, may be given in the instruction itself.

· In some instructions only one register is specified. The content of the specified register is one of the operands. It is understood that the other operand is in the accumulator.

· Some instructions specify one or two registers. The contents of the registers are the required data.

· In some instructions data is implied. The most instructions of this type operate on the content of the accumulator.
Due to different ways of specifying data for instructions, the machine codes of all instructions are not of the same length. There are three types of Intel 8085 instructions namely single-byte instruction, two-byte instruction and three-byte instruction.

The various ways of specifying the operands for the instructions in 8085 belong to any one of the following address modes.

1. Implicit addressing

2. Immediate addressing

3. Direct addressing

4. Register addressing

5. Register indirect addressing

Implicit addressing
There are certain instructions which operate on the content of the accumulator. Such instructions do not require the address of the operand. Here the content of the accumulator is the implied operand.
Examples: CMA – Complement the contents of accumulator

RAL – Rotate the contents of accumulator to the left through carry
RRC – Rotate the contents of accumulator to the right

In all of the above instructions the implied operand is the contents of the accumulator. In most of the arithmetic operations the content of the accumulator is one of the implied operands. For example in the arithmetic instruction ADD B, register B is one operand and the other operand is accumulator (not specified, but implied). 
Immediate addressing

In this addressing mode, we specify the data (operand) in the instruction itself. In other words, the data is present in the instruction. These instructions do not require the address of the operand.
Examples: MVI R, 05H
                 ADI 06H

In the above instructions the data itself is specified in the instruction itself (05H and 06H are data)

Direct addressing

In this mode of addressing, we specify the address of the operand in the instruction. Please note that operand (data) itself is not specified as in immediate addressing mode. Very often a beginner gets confused between immediate addressing and direct addressing. 
Examples: STA 2400H, IN 02H
In the instruction STA 2400H, we specify the address of the operand (2400H). 2400H is the memory location where the data is present.
In the instruction IN 02H, we specify the port address from which the data is to be accepted.
Register addressing

In register addressing mode the operands are in the general purpose registers. The opcode specifies the address of the registers in addition to the operation to be performed. In short, we can say that data is provided through the registers.

Examples: MOV A, B
                 ADD B

In the instruction MOV A, B, the data is present in the register B and in instruction ADD B; B is the register where the data is present.

Register indirect addressing

In this addressing mode, the memory location is specified by the contents of the registers. Please note that in register addressing or register direct addressing, registers have the operands themselves whereas in register indirect addressing mode registers have only the address of the operand.
Examples: LDAX B
                  STAX D

In the instruction LDAX B, the register pair BC has the address of the location where the data is present and in instruction the register pair DE has the address of the location where the data is to be stored.

Have you understood?

1. What is meant by an addressing mode?

2. What is the necessity of having a variety of addressing modes?

3. In which addressing mode, the operand itself is specified in the instruction?
4. Give an example for implied addressing mode.

5. What is the addressing mode followed in the instruction LXI H, 2050H?

1.8 Instruction Set Classification

An instruction is a binary pattern designed inside a microprocessor to perform a specific function. The entire group of instructions, called the instruction set, determines what functions the microprocessor can perform. These instructions can be classified into the following five functional categories: data transfer (copy) operations, arithmetic operations, logical operations, branching operations, and machine-control operations.

Data Transfer (Copy) Operations

This group of instructions copy data from a location called a source to another location called a destination, without modifying the contents of the source. In technical manuals, the term data transfer is used for this copying function. However, the term transfer is misleading; it creates the impression that the contents of the source are destroyed when, in fact, the contents are retained without any modification. The various types of data transfer (copy) are listed in figure 1.14.

	Types
	Examples

	1. Between Registers
	1. MOV B,D – Copy the contents of the register B into Register D

	2. Specific data byte to a register or a memory location
	2. MVI B,32H – Load register B with the data byte 32H

	3. Between a memory location and a register
	3. LXI H, 2000H
    MOV B,M

From a memory location 2000H to register B

	4. Between an I/O device and the accumulator
	4. IN 05H – The contents of the input port designated in the operand are read and loaded into the accumulator


Figure 1.14 Data Transfer Instructions
Arithmetic Operations

These instructions perform arithmetic operations such as addition, subtraction, increment, and decrement.

Addition - Any 8-bit number, or the contents of a register or the contents of a memory location can be added to the contents of the accumulator and the sum is stored in the accumulator. No two other 8-bit registers can be added directly (e.g., the contents of register B cannot be added directly to the contents of the register C). The instruction DAD is an exception; it adds 16-bit data directly in register pairs.

Examples

ADD B
 – 
[A]   <----- [A]+[B]

ADD M
 -
[A]  <----- [A]+[[HL]]
DAD B 
– 
[HL]  <----- [HL]+[BC]

Subtraction - Any 8-bit number, or the contents of a register, or the contents of a memory location can be subtracted from the contents of the accumulator and the results stored in the accumulator. The subtraction is performed in 2's compliment, and the results if negative, are expressed in 2's complement. No two other registers can be subtracted directly.

Examples

SUB C 
– 
[A] <----- [A]+[C]

SUI 76H 
– 
[A]  <---- [A]-76H

SBB M 
– 
[A] <----- [A]-[[HL]]-[C]

Increment/Decrement - The 8-bit contents of a register or a memory location can be incremented or decrement by 1. Similarly, the 16-bit contents of a register pair (such as BC) can be incremented or decrement by 1. These increment and decrement operations differ from addition and subtraction in an important way; i.e., they can be performed in any one of the registers or in a memory location.

Examples
INR B 
– 
[B]  <------ [B]+1

INX B

– 
[BC]  <----- [BC]+1

DCR M 
– 
[[HL]]  <----- [[HL]]+1

Logical Operations

These instructions perform various logical operations with the contents of the accumulator.

AND, OR Exclusive-OR - Any 8-bit number, or the contents of a register, or of a memory location can be logically ANDed, ORed, or Exclusive-ORed with the contents of the accumulator. The results are stored in the accumulator. 

Examples

ANA C 
– 
[A]   <----- [A] ^ [C]

ANI 85H 
– 
[A]  <----- [A] ^ 85H

ORA M 
– 
[A]  <----- [A] v [[HL]]

XRA B 
– 
[A]  <------ [A] XOR [B]
Rotate- Each bit in the accumulator can be shifted either left or right to the next position.

Examples

RLC 

[An+1]   <----- [An] 
[A0]   <------ [A7]

[CS]  <----- [A7]

RAR 

 [An]  <------ [An+1] 
[CS]  <------ [A0]

[A7]  <------ [CS]

Compare- Any 8-bit number or the contents of a register, or a memory location can be compared for equality, greater than, or less than, with the contents of the accumulator.

Examples

CMP R – The content of register r is subtracted from the content of the accumulator and status flags are set according to the result of the subtraction. But the result is discarded. The content of the accumulator remains unchanged.

CPI data – The second byte of the instruction (data) is subtracted from the contents of the accumulator and the status flags are set according to the result of subtraction. But the result is discarded. The content of the accumulator remains unchanged.

Complement - The contents of the accumulator can be complemented. All 0s are replaced by 1s and all 1s are replaced by 0s.

Examples

CMA
 – 
[A]  <---- [A]’

CMC 
 – 
[CS]  <----- [CS]’

Branching Operations

This group of instructions alters the sequence of program execution either conditionally or unconditionally.

Jump - Conditional jumps are an important aspect of the decision-making process in the programming. These instructions test for a certain conditions (e.g., Zero or Carry flag) and alter the program sequence when the condition is met. In addition, the instruction set includes an instruction called unconditional jump.

Examples

JMP 2050H 
– 
[PC]  <----- 2050H

JZ 3100H
 – 
[PC]  <----- 3100H if Z=1, otherwise [PC]  <----- [PC]+1

JNC 4250H 
–
 [PC]  <----- 4250H if C=0, otherwise [PC]  <----- [PC]+1

Call, Return, and Restart - These instructions change the sequence of a program either by calling a subroutine or returning from a subroutine. The conditional Call and

Return instructions also can test condition flags.

Examples

CALL Addr
[[SP]-1]    <------- [PCH]

[[SP]-1]      <------- [PCL]

[SP]  <----- [SP]-2

[PC]   <----- Addr

CC
-
Call subroutine, if carry status CS=1

CNC
-
Call subroutine if carry status CS=0

CZ
-
Call subroutine if the zero status Z=1

RET

[PCL]   <------ [[SP]]

[PCH]   <------ [[SP]+1]

[SP]  <------ [SP]+2

RC
-
Return from subroutine if carry status CS=1

RNC
-
Return from subroutine if carry status CS=0

RZ
-
Return from subroutine if zero status Z=0

Machine Control Operations

These instructions control machine functions such as Halt, Interrupt, or do nothing.

Examples

HLT

NOP

The microprocessor operations related to data manipulation can be summarized in four functions:

1. Copying data

2. Performing arithmetic operations

3. Performing logical operations

4. Testing for a given condition and alerting the program sequence

The following observations may help you to understand the instruction set of 8085 in a better way.
1. In data transfer, the contents of the source are not destroyed; only the contents of the destination are changed. The data copy instructions do not affect the flags.

2. Arithmetic and Logical operations are performed with the contents of the accumulator, and the results are stored in the accumulator (with some expectations). The flags are affected according to the results.

3. Any register including the memory can be used for increment and decrement.

4. A program sequence can be changed either conditionally or by testing for a given data condition.

Have you understood?

1. Whether the content of the source is changed in a data transfer instruction?

2. In the arithmetic instruction ADD B, the content of register B is added to which register?

3. Which logical instruction can be used to clear the contents of the accumulator?

4. How does the Program Counter register is updated while executing a conditional jump instruction?

5. List down the various rotate instructions supported by 8085.
1.9 Instruction Format

An instruction is a command to the microprocessor to perform a given task on a specified data. Each instruction has two parts: one is task to be performed, called the operation code (opcode), and the second is the data to be operated on, called the operand. The operand (or data) can be specified in various ways. It may include 8-bit (or 16-bit) data, an internal register, a memory location, or 8-bit (or 16-bit) address.

In some instructions, the operand is implicit.

Instruction word size

The 8085 instruction set is classified into the following three groups according to word size:

1. One-word or 1-byte instructions

2. Two-word or 2-byte instructions

3. Three-word or 3-byte instructions

In the 8085, "byte" and "word" are synonymous because it is an 8-bit microprocessor.

However, instructions are commonly referred to in terms of bytes rather than words.

One-Byte Instructions

A 1-byte instruction includes the opcode and operand in the same byte. Operand(s) are internal register and are coded into the instruction.
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These instructions are 1-byte instructions performing three different tasks. In the first instruction, both operand registers are specified. In the second instruction, the operand

B is specified and the accumulator is assumed. Similarly, in the third instruction, the accumulator is assumed to be the implicit operand. These instructions are stored in 8- bit binary format in memory; each requires one memory location.

MOV rd, rs
rd <-- rs 
copies contents of rs into rd.

Coded as 01 ddd sss where ddd is a code for one of the 7 general registers which is the destination of the data, sss is the code of the source register.

Example: MOV A,B

Coded as 01111000 = 78H = 170 octal (octal was used extensively in instruction design of such processors).

ADD r 
A <-- A + r
Add the content of register r with accumulator

Example: ADD B

Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte specifies the operand. Source operand is a data byte immediately following the opcode. For example:

[image: image13.emf]
Assume that the data byte is 32H. The assembly language instruction is written as
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The instruction would require two memory locations to store in memory.

MVI r,data 
r <-- data
data is copied into the register r
Example: MVI A,30H coded as 3EH 30H as two contiguous bytes. This is an example of immediate addressing.

ADI data 
A <-- A + data

Data is added with accumulator and the result is 

                                                            stored in accumulator
Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two

bytes specify the 16-bit address. Note that the second byte is the low-order address

and the third byte is the high-order address.

opcode + data byte + data byte

For example:
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This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte

LXI rp, data16  
rp <-- data16

16 bit data is copied into the register pair rp

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers

Example:

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate addressing.

LDA addr 
A <-- (addr) 
Addr is a 16-bit address in L H order. 
Example: LDA 2134H coded as 3AH 34H 21H. This is also an example of direct addressing.

Have you understood?

1. What are the two parts of an instruction?

2. How many bytes are in the hex code of the instruction MOV A, B?

3. Give examples for three byte instructions.

1.10 Writing an Assembly Language Program

An assembly language program is a set of instructions within the mnemonics of a given microprocessor. These instructions are the commands to the microprocessor to be executed in the given sequence to accomplish a task. One should be familiar with the programming model and the instruction set of the microprocessor for which the assembly language program is to be developed. We have already explained the programming model (the set of general registers, accumulator, flags and pointer registers) and the instruction classification of 8085.
The following steps are to be followed in writing and executing an assembly language program.

1. Define the problem clearly and make the problem statement.

2. Analyze the problem thoroughly. In this step we divide the problem into smaller steps to examine the process of writing programs.

3. Draw the flow chart. The steps listed in the problem analysis and the sequences are represented in a block diagram.

4. Translate the blocks shown in the flowchart into 8085 operations and then subsequently into mnemonics.

5. Convert the mnemonics into Hex code; we need to look up the code in 8085 instruction set.
6. Store the program in Read/Write memory of a single-board microcomputer. This may require the knowledge about memory addresses and the output port addresses.

7. Finally execute the program. This requires us to tell the microprocessor where the program begins by entering the memory address. As soon as the execute key is pushed, the microprocessor loads 2000H in the program counter and the program control is transferred from the monitor program to our program.
Now let us see an example for developing an assembly language program that selects the biggest number in a data array. 
Problem statement

N numbers are stored in an array. The program has to select the largest of these N numbers.

Problem Analysis

Let us assume that N=5. The count is placed in the location 2500H. The numbers are placed in the memory locations 2501H to 2505H. The result is to be stored in the memory location 2450H. 
The 1st number of the series is placed in the accumulator and it is compared with the 2nd number residing in the memory. The larger of the two numbers is placed in the accumulator. Again this number which is in the accumulator is compared with the 3rd number in the series and larger number is placed in the accumulator. This process of comparison is repeated till all the numbers of the series are compared and the largest number is stored in the desired memory location.

Flow Chart

The steps listed in the problem analysis and the sequences are represented in the flow chart as shown in figure 1.15.
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Figure 1.15: Program to find the largest number from a series of numbers
Program
Labels

Mnemonics
Operands

Comments


LXI

H, 2500H

Address for count in HL pair



MOV

C, M


Count in register C



INX

H


Address of 1st number in HL pair



MOV

A, M


1st number in accumulator



DCR

C


Decrement count

LOOP

INX

H


Address of next number



CMP 

M


Compare next number with previous 

                                                                                    maximum. Is next number > 

                                                                                    Previous number?



JNC

AHEAD

No, larger number is in accumulator. 

                                                                                    Go to the label AHEAD.



MOV

A, M


Yes, Get larger number in 

                                                                                     Accumulator

AHEAD

DCR

C


Decrement count



JNZ

LOOP


If more numbers are to be compared 

                                                                                    go to label LOOP

                        STA

2450H


Store result in 2450H



HLT




Stop

Sample Input and Output
DATA

2500 05

2501 38

2502 94

2503 EB

2504 A8

2505 B5

RESULT

     2540
EB

Sample Programs

Write an assembly program to add two numbers

MVI D, 8BH

MVI C, 6FH

MOV A, C

ADD D

OUT PORT1

HLT

Write an assembly program to multiply a number by 8

MVI A, 30H

RRC

RRC

RRC

OUT PORT1

HLT

Write an assembly program to find greatest between two numbers

MVI B, 30H

MVI C, 40H

MOV A, B

CMP C

JZ EQU

JC GRT

OUT PORT1

HLT

EQU: MVI A, 01H

OUT PORT1

HLT

GRT: MOV A, C

OUT PORT1

HLT 
Have you understood?

1. How many columns may be required to write a line of an assembly language program?

2. Which particular field is a must for all lines?

3. What is the purpose of the comment field?

4. What is the purpose of the label field?

5. Which types of instruction is used to construct loops?

1.11 Direct Memory Access
Direct memory access (DMA) facilitates data transfer operations between main memory and I/O subsystems with limited CPU intervention. The majority of I/O devices provide two methods for transferring data between a device and memory. The first method, called programmed I/O (PIO), is fairly easy to implement, but requires the processor to constantly read or write a single memory word (8-bits, 16-bits or 32-bits, depending on the device interface) until the data transfer is complete. Although PIO is not necessarily slower than DMA, it does consume more processor cycles and can be detrimental in a multi-processing environment. The second method, called DMA, allows a system to issue an I/O command to a device, initiate a DMA transaction and then place the process in a waiting queue. The system can now continue by selecting another process for execution, thereby utilizing the CPU cycles typically lost when using PIO. The DMA controller will inform the system when its current operation has been completed by issuing an interrupt signal. Although the data is still transferred 1 memory unit at a time from the device, the transfer to main memory now circumvents the CPU because the DMA controller can directly access the memory unit. Steps involved in the mode of DMA transfer are as follows.

1. Device wishing to perform DMA asserts the processors bus request signal. 

2. Processor completes the current bus cycle and then asserts the bus grant signal to the device. 

3. The device then asserts the bus grant ack signal. 

4. The processor senses in the change in the state of bus grant ack signal and starts listening to the data and address bus for DMA activity. 

5. The DMA device performs the transfer from the source to destination address. 

6. During these transfers, the processor monitors the addresses on the bus and checks if any location modified during DMA operations is cached in the processor. If the processor detects a cached address on the bus, it can take one of the two actions: 

· Processor invalidates the internal cache entry for the address involved in DMA write operation 

· Processor updates the internal cache when a DMA write is detected 

7. Once the DMA operations have been completed, the device releases the bus by asserting the bus release signal. 

8. Processor acknowledges the bus release and resumes its bus cycles from the point it left off. 

Pins of 8085 for DMA

The 8085 microprocessor has two pins available for DMA mode of I/O communication: HOLD (Hold) and HLDA (Hold Acknowledge). Conceptually this is an important technique. It introduces two new signals available on the 8085 – HOLD and HLDA.

· HOLD – Hold. This is an active high input signal to the 8085 from another master requesting the use of the address and data buses. After receiving the HOLD request, the MPU relinquishes the buses in the following machine cycle. All buses are tri-stated and a Hold Acknowledge signal is sent out. The MPU regains the control of buses after HOLD goes low.

· HLDA – Hold Acknowledge. This is an active high output signal indicating that the MPU is relinquishing the control of the buses.

Typically, an external peripheral such as DMA controller sends a request – a high signal – to the HOLD pin. The processor completes the execution of the current machine cycle; floats (high impedance state) the address, the data, and the control lines; and sends the Hold Acknowledge (HLDA) signal. The DMA controller takes control of the buses and transfers data directly between source and destination, thus bypassing the microprocessor. At the end of data transfer, the controller terminates the request by sending a low signal to the HOLD pin, and the microprocessor regains control of the buses.

Have you understood?

1. What is meant by programmed I/O?

2. What are the limitations of programmed I/O?

3. What is meant by cycle stealing?

4. What are the pins present in 8085 for DMA operation?

5. What are the advantages of DMA?

1.12 Interrupt Handling

The interrupt I/O is a process of data transfer where by an external device or a peripheral can inform the processor that it is ready for communication and it requests attention. The process is initiated by an external device and is asynchronous, meaning that it can be initiated at any time without reference to the system clock. However, the response to an interrupt request is directed or controlled by the microprocessor. The interrupt requests are classified into two categories namely maskable interrupts and non-maskable interrupts. A maskable interrupt can be ignored or delayed by the microprocessor, if it is performing some critical task; however, the microprocessor has to respond to a nonmaskable request immediately. The non-maskable interrupt is one which can not be ignored by the microprocessor. The interrupt process allows the microprocessor to respond to these external requests for attention or service on a demand basis and leaves the microprocessor free to perform other tasks. On the other hand, in the polled or the status check I/O, the microprocessor remains in a loop, doing nothing, until the device is ready for data transfer.
In a typical microprocessor system, the software can be divided into 3 possible groups. One is the Operating Loop, another is the Interrupt Service Routines, and the last is the BIOS/OS functions and subroutines. The Operating Loop is the main part of the system. It will usually end up being a sequence of calls to BIOS/OS subroutines, arranged in an order that accomplishes what we set out to do, with a little manipulation and data transfer in between. At the same time, at least it looks like it's happening at the same time, interrupts are being serviced as they happen. In the 8085, there are thirteen (13) possible events that can trigger an interrupt. Five of them are from external hardware interrupt inputs (TRAP, RST 7.5, 6.5, 5.5, and INTR), that can be from whatever hardware we've added to the 8085 that we deem to need servicing as soon as they happen. The remainders are software instructions that cause an interrupt when they are executed (RST 0 – 7). 

To digress just a moment, there are two ways to service, or act on, events that happen in the system. One is to scan or poll them and the other is to use interrupts. Scanning is just what is sounds like. Each possible event is scanned in a sequence, one at a time. This is ok for things that don't require immediate action. Interrupts, on the other hand, cause the current process to be suspended temporarily and the event that caused the interrupt is serviced, or handled, immediately. The routine that is executed as a result of an interrupt is called the interrupt service routine (ISR), or recently, the interrupt handler routine. 

In the 8085, as with any CPU that has interrupt capability, there is a method by which the interrupt gets serviced in a timely manner. When the interrupt occurs, and the current instruction that is being processed is finished, the address of the next instruction to be executed is pushed onto the Stack. Then a jump is made to a dedicated location where the ISR is located.. Some interrupts have their own vector, or unique location where it's service routine starts. These are hard coded into the 8085 and can't be changed (see below). 

TRAP
-  has highest priority and cannot be masked or disabled. A rising-edge pulse will cause a jump to location 0024H.

RST 7.5- 2nd priority and can be masked or disabled. Rising-edge pulse will cause a jump to location 7.5 * 8 = 003CH.

This interrupt is latched internally and must be reset before it can be used again.

RST 6.5 – 3rd priority and can be masked or disabled. A high logic level will cause a jump to location 6.5 * 8 = 0034H.

RST 5.5 – 4th priority and can be masked or disabled. A high logic level will cause a jump to location 5.5 * 8 = 002CH.

INTR –     5th priority and can be masked or disabled. A high logic level will cause a jump to specific location as follows:

When the interrupt request (INTR) is made, the CPU first completes it’s current execution. Provided no other interrupts are pending, the CPU will take the INTA pin low thereby acknowledging the interrupt. It is up to the hardware device that first triggered the interrupt, to now place an 8-bit number on the data bus, as the CPU will then read whatever number it finds on that data bus and do the following: multiply it by 8 and jump to the resulting address location. Since the 8-bit data bus can hold any number from 00 – FFH (0 – 255) then this interrupt can actually jump you to any area of memory between 0*8 and 255*8 ie: 0000 and 07FFH ( a 2K space). N.B: This interrupt does not save the PC on the stack, like all other hardware and software interrupts!

You will notice that there isn't many locations between vector addresses. What is normally done is that at the start of each vector address, a jump instruction (3 bytes) is placed, that jumps to the actual start of the service routine which may be in RAM.. This way the service routines can be anywhere in program memory. The vector address jumps to the service routine. There is more than enough room between each vector address to put a jump instruction. Looking at the table above, there are at least 8 locations for each of the vectors except RST 5.5, 6.5, and 7.5. When actually writing the software, at address 0000h will be a jump instruction that jumps around the other vector locations. 

Besides being able to disable/enable all of the interrupts at once (DI / EI) ie: except TRAP,  there is a way to enable or disable them individually using the SIM instruction and also, check their status using RIM. 

There are other things about interrupts that we will cover as they come up, but this lesson was to get you used to the idea of interrupts and what they're used for in a typical system. It’s similar to the scene where one is standing at a busy intersection waiting for the traffic light to change, when a person came up and tapped us on the shoulder and asked what time it was. It didn't stop us from going across the street, it just temporarily interrupted us long enough to tell them what time it was. This is the essence of interrupts. They interrupt normal program execution long enough to handle some event that has occurred in the system. 

Polling, or scanning, is the other method used to handle events in the system. It is much slower than interrupts because the servicing of any single event has to wait its turn in line while other events are checked to see if they have occurred. There can be any number of polled events but a limited number of interrupt driven events. The choice of which method to use is determined by the speed at which the event must be handled. 

The software interrupts are the instructions RST n, where n = 0 – 7. The value n is multiplied by 8 and the result forms an address that the program jumps to as it vector address ie: RST 4 would jump to location 4*8 = 32 (20H).

Interrupt Handling without hardware support
Here we describe interrupt handling in a scenario where the hardware does not support identifying the device that initiated the interrupt. In such cases, the possible interrupting devices need to be polled in software.

1. A device asserts the interrupt signal at a hardwired interrupt level. 

2. The processor registers the interrupt and waits to finish the current instruction execution. 

3. Once the current instruction execution is completed, the processor initiates the interrupt handling by saving the current register contents on the stack. 

4. The processor then switches to supervisor mode and initiates an interrupt acknowledge cycle. 

5. No device responds to the interrupt acknowledge cycle, so the processor fetches the vector corresponding to the interrupt level. 

6. The address found at the vector is the address of the interrupt service routine (ISR). 

7. The ISR polls all the devices to find the device that caused the interrupt. This is accomplished by checking the interrupt status registers on the devices that could have triggered the interrupt. 

8. Once the device is located, control is transferred to the handler specific to the interrupting device. 

9. After the device specific ISR routine has performed its job, the ISR executes the "return from interrupt" instruction. 

10. Execution of the "return from interrupt" instruction results in restoring the processor state. The processor is restored back to user mode. 

Here we describe interrupt handling in a scenario where the hardware does support identifying the device that initiated the interrupt. In such cases, the exact source of the interrupt can be identified at hardware level.

1. A device asserts the interrupt signal at a hardwired interrupt level. 

2. The processor registers the interrupt and waits to finish the current instruction execution. 

3. Once the current instruction execution is completed, the processor initiates the interrupt handling by saving the current register contents on the stack. 

4. The processor then switches to supervisor mode and initiates an interrupt acknowledge cycle. 

5. The interrupting device responds to the interrupt acknowledge cycle with the vector number for the interrupt. 

6. Processor uses the vector number obtained above and fetches the vector. 

7. The address found at the vector is the address of the interrupt service routine (ISR) for the interrupting device. 

8. After the  ISR routine has performed its job, the ISR executes the "return from interrupt" instruction. 

9. Execution of the "return from interrupt" instruction results in restoring the processor state. The processor is restored back to user mode. 

Have you understood?

1. Whether interrupt I/O is synchronous or asynchronous?
2. What is the advantage of interrupt I/O over programmed I/O?

3. What are the two types of interrupt?
4. What are the interrupt pins available in 8085?

5. What is the non-maskable interrupt provided by 8085?

6. What is meant by interrupt service routine?

Summary
1. The functional components of a digital computer are input, processor (CPU), output and memory.
2. The Central Processing Unit (CPU) has Arithmetic Logic Unit (ALU), Control Unit (CU) and registers (both general purpose and special).
3. The Central Processing Unit (CPU) etched on a single Very Large Scale Integration (VLSI) single chip is called microprocessor.

4. The number of bits that can be processed by the microprocessor at a time is called the word length of the system.
5. The word length of the processor chips has increased form 4 bits to 64 bits.

6. Intel 8085 is an 8 bit microprocessor.

7. 8085 has six 8-bit general purpose registers by name B, C, D, E, H and L. These 8-bit registers can be used as three 16-bit registers namely BC, DE and HL.

8. Accumulator is a special purpose register that is used as an input to the Arithmetic and Logic Unit (ALU) and in most of the arithmetic operations it is one of the operand and the result is stored in it. Moreover this register is considered as a part of the ALU.
9. HL register pair functions like the memory address register, i.e., it functions like the pointer towards the memory.

10. Stack Pointer is a special purpose register that acts like the pointer towards the area of the memory that is used as a Last in First out (LIFO) structure (stack).

11. Program Counter is the special purpose registers that point towards the next instruction to be executed. In other words it functions like the pointer towards the area of the memory where the program is stored.

12. Instruction Register is the special purpose register in which the fetched instruction is received and decoded. Based on the result of decoding a sequence of events take place to execute the instruction.
13. Flag register is a collection of five flip flops which are used to indicate the status of the ongoing activity within the microprocessor. Flags are used by the branch instructions to implement powerful programming constructs like decision making and loops.

14. 8085 Integrated Circuit has pins for address bus, data bus and control bus. To reduce the number of pins low order address bus is multiplexed with data bus. Control bus is actually a collection individual control signals.
15. Instruction cycle is defined as the time required to complete the execution of an instruction.
16. Machine cycle is defined as the time required to complete one operation of accessing memory, I/O, or acknowledging an external request.
17. T-state is defined as one subdivision of the operation performed in one clock period. These subdivisions are internal states synchronized with the system clock, and each T state is precisely equal to one clock period.
18. Each instruction cycle consists of one or more machine cycles and each machine cycle is divided into T states.
19. The way of specifying the operand in an instruction is called addressing mode and 8085 supports a variety of addressing modes to provide flexibility to programmers.
20. Major category of 8085 instructions are data transfer instructions, arithmetic instructions, logical instructions, rotate instructions, compare and testing instructions, branch instructions and machine control instructions.
21. An assembly language program is a set of instructions within the mnemonics of a given microprocessor. These instructions are the commands to the microprocessor to be executed in the given sequence to accomplish a task.
22. Direct memory access (DMA) facilitates data transfer operations between main memory and I/O subsystems with limited CPU intervention.
23. A maskable interrupt can be ignored or delayed by the microprocessor, if it is performing some critical task; however, the microprocessor has to respond to a nonmaskable request immediately. 
In this unit, you have learnt about the architecture, programming and interfacing of 8085 an 8-bit microprocessor. 8085 microprocessor was widely used in special purpose systems and it is not meant for the construction of digital computers. Unit II deals with 8086 a 16-bit microprocessor that was intended to be used as the CPU in a microcomputer.
Exercises

1. While executing a program, when 8085 completes the fetching of the machine code located at the memory address 2047H, what is the content of the program counter?
2. Assume that memory location 2075H has a data byte 47H. Specify the contents of the address bus A15-A7 and the multiplexed bus AD7-AD0 when the MPU asserts the Rd (Active Low) signal?
3. The instruction MOV B,M copies the contents of the memory location in register B. It is 1-byte instruction with two machine cycles and seven T states. Identify the second machine cycle and its control signal. 
4. If the 8085 adds 87H and 79H, specify the contents of the accumulator and the status of S, Z and CY flags.
5. Explain why the number of output ports in the peripheral-mapped I/O is restricted to 256 ports?
6. Explain why a latch is used for an output port, but a tri-state buffer can be used for an input port.
7. Find the Hex machine code for the following instructions from the 8085 instruction summary and identify the number of bytes each instruction.

MVI B,4FH

MVI C,78H

MOV A,C

ADD B

OUT 07H

HLT

8. If the starting address of the system memory is 2000H, and you were to enter the Hex code for the instructions in question 7, identify the memory addresses and their corresponding Hex codes.

9. The following block of data is stored in the memory location from XX55H to XX5AH. Transfer the data to the locations XX80H to XX85H in the reverse order (e.g., the data byte 22H should be stored at XX58H and 37H at XX80H). data(H) 22,A5,B2,99,7F,37
10. A string of six data bytes is stored starting from memory location 2050H. The string indicates some blanks (bytes with zero value). Write a program to eliminate the blanks from the string. Data(H) F2, 00, 00, 4A, 98, 00

Answers

1. The program counter has to point to the memory location from which the next byte is to be read. Hence the content of the program counter will be 2048H.

2. (A15-A8) – 20H, (AD7-AD0) – 47H
3. The second machine cycle is memory read. The processor reads the contents of memory in register B, and the control signal is RD (Active Low)
4. 87H + 79H = 100H. Therefore 00H is stored in the accumulator with a carry of 1. Hence S=0, CY=1 and Z=1

5. The number of output ports in the peripheral I/O is restricted to 256 ports because the operand of the OUT instruction is 8-bit; it can have only 256 combinations.

6. A latch is necessary to hold the output data for the display. However, the input data byte is obtained enabling a tri-state buffer and placed in the accumulator.
7. 06 4F

0E 78

79

80

D3 07

76

      8. 2000H
06

          2001H
4F

          2002H   0E

          2003H   78

          2004H   79

          2005H   80

          2006H   D3

          2007H   07

          2008H   76

      9. START:

LXI 

H,2055H




LXI

D,2085H




MVI

B,06H

        LOOP:

STAX

B




INX

B




DCR

D




JNZ

LOOP




HLT

     10. START:
MVI

B,06H




LXI

H,2050H




LXI

D,2050H


LOOP:

MOV

A,M




ORA A




JNZ 

SKIP




STAX

D




INX

D

            SKIP:

INX

H




DCR

B




JNZ

LOOP




HLT
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