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Abstract: This study presents a new method to improve simultaneously reliability and 

minimize active power losses in radial distribution systems (RDS), through a process of 

network reconfiguration. The methodology adopted to enhance reliability uses the Monte 

Carlo (MC) simulation and historical data of the network, such as the severity of the potential 

contingencies in each branch. Due to a large number of possible configurations and the need 

of an efficient search, the optimization is made through an improved genetic algorithm (IGA) 

with adaptive crossover and mutation probabilities, and with other new features. The method 

analyses the RDS considering in a first step, the absence of investment, and in a second step, 

the possibility of placing a limited number of new tie-switches, defined by a decision agent, 

in certain branches. The effectiveness of the proposed method is demonstrated through the 

analysis of a 69 bus RDS. 

Keywords: Improved Genetic Algorithm, Loss Minimization, Network Reconfiguration, 

Reliability. 

 

1. Introduction 

The existing distribution networks are actually growing in complexity, due to the gradual 

increase of power demand and the existence of customers with more sensitive loads. The impact of an 

interruption is nowadays more severe than a few years ago. This fact combined with the analysis of 

customer failure statistics, causing also financial loss for utility companies, reinforces the need to be 

concerned with reliability evaluation of the distribution network. 
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An efficient operation of distribution networks can be achieved by using reconfiguration 

techniques. The network reconfiguration is carried out by changing the on/off status of the 

sectionalizing switches (normally closed) and tie-switches (normally open). The switching must be 

performed in such a way that the radiality of the network is maintained and all the loads are energized. 

Obviously, the greater the numbers of switches, the greater are the possibilities for reconfiguration and 

better are the effects.  

Traditionally, network reconfiguration has been implemented to achieve goals as the reduction of 

power loss, load balancing or voltage stability, in normal operating conditions (Baran and Wu (1989); 

Shirmohammadi and Hong (1989); Borozan et al. (1995); Kashem and Moghavvemi (1998); Sahoo 

and Prasad (2006)). The reconfiguration impacts on the system’s reliability indices usually aren’t 

included.   

 The main aim of this study is to present a methodology for network reconfiguration with the 

objective of finding, in normal operating conditions, the optimal configuration for the distribution 

system that minimizes losses and simultaneously improves reliability by reducing the impact of 

potential contingencies. 

 In the emergency state caused by contingency situations, some research has been made to ensure 

in a shorter time, service restoration reducing the quality of service index figures and causing financial 

losses for utility companies. Shin et al. (2004) presented an approach using a genetic-tabu algorithm to 

find the optimal service restoration and optimal reconfiguration in the distribution network.  More 

recently, Garcia and França (2007) used a local search based heuristic which considers the 

minimization of the load not supplied and the number of switching operations involved.   

 To evaluate the distribution system’s reliability, two techniques have been used, including 

analytical methods and Monte Carlo simulation methods. Ou and Goel (1999) used a Monte Carlo 

simulation to assess the overall distribution system. The study is focused on the impacts of various 

probability distributions for restoration times on load point expected cost and interrupted energy 

assessment. 

To improve reliability, Brown (2003) used an analytical simulation method to predict reliability and an 

annealed local search for feeder reconfiguration. The search adjusts switch positions until an optimal 

solution is identified. More recently, Coelho et al. (2004) adopted a simulated annealing approach for 

network reconfiguration with the objective of minimizing losses taking into account reliability 

constraints, also using an analytical method to estimate reliability.         

 The use of distribution system reconfiguration for loss reduction was first proposed by Merlin 

and Back (1975). They have used a branch and bound type optimization technique to determine the 

minimum loss configuration. Baran and Wu (1989) proposed efficient load flow equations to calculate 

the power flow formulating the loss reduction and load balancing as an integer programming problem. 

Many other heuristic approaches have been suggested, based in the method proposed by Merlin and 

Back (1975) (Shirmohammadi and Hong (1989); Borozan et al. (1995); Das (2006)). 
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Network reconfiguration has received considerable interest in recent years. Most approaches proposed 

so far use some sort of heuristics, mathematical programming or approximate techniques. Thus, the 

computation results are rather approximate or only local optimal solutions. Network reconfiguration 

using simulated annealing and genetic algorithms (GA’s) based approaches have also been used 

(Huang (2002); Sahoo and Prasad (2006); Lin et al. (2000)). 

Conventional genetic algorithms easily get stuck at a local optimum, and often have slow 

convergence speed. In order to overcome these shortcomings, many researchers have made great 

efforts to improve the performance of GA’s (Vasconcelos and Saldanha (1997), Vasconcelos et al. 

(2001)). The significance of the probabilities of crossover (pc) and mutation (pm) in controlling GA’s 

has been acknowledged in GA research, since pc and pm greatly determine whether the algorithm will 

find a near optimum solution or whether it will find a solution efficiently (Zhang et al. (2004)). This 

study proposes an improved genetic algorithm (IGA) with the ability to search global or near global 

optimal solutions. It also introduces some new features improving accuracy and the computational 

efficiency, including a black list of infeasible solutions, a two-termination criterion and also the 

dynamic adaptation of crossover and mutation probabilities according to the genetic diversity in the 

population. 

The next section will describe in more detail the improved genetic algorithm (IGA) and its main 

features. Section 3 is dedicated to the evaluation of the distribution system reliability through Monte 

Carlo simulation. Section 4 defines the fitness function in terms of losses and reliability. In Section 5 

and 6 the case study and the test results will be presented. Finally, the conclusions and references 

complete the research report. 

2. Improved Genetic Algorithm (IGA) 

In a typical RDS, the number of branches is quite large, resulting, with the use of GA’s, in a 

chromosome of very large length with the binary coding technique, i.e. one bit for one branch, as in 

Huang (2002). This kind of technique also results easily in the generation of a large number of 

infeasible solutions, leading to a large computational effort.  

The most crucial aspect of the RDS reconfiguration approaches, using genetic algorithms is that 

proper measures must be taken to ensure the radiality of the network at every stage of the genetic 

evolution, under the application of the genetic operators, i.e. crossover and mutation. If not, invalid 

solutions will probably appear, therefore, prompting the need to make changes to satisfy the radial 

structure constraint (Lin and Tsay (2000); Huang (2002)). 

In this particular case, using the IGA it is possible to ensure the use of a chromosome with a 

small length and also to keep the network radial during the optimization process. For this, the IGA 

uses a suitable coding and decoding technique based on Sahoo and Prasad (2006). 
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2.1 Coding and Decoding Technique  

To maintain the radiality of the network in the process of network reconfiguration, the number of 

open branches should always be equal to the number of tie-switches (Nts). This could be obtained 

through expression (1) where (Nb) represents the number of branches, (Nn) the number of nodes and 

(Nss) the number of substations in the distribution system. 

 ( )ts b n ssN N N N= − −  (1) 

The coding technique depends, on a first step, of the analysis of the network structure, to find the 

branches participating in each loop that is formed as each tie-switch gets closed. In a perspective of 

optimization without investment, it is only considered, in each loop, the branches equipped with a 

sectionalizing switch. In the other perspective of optimization, candidate branches for a tie-switch 

installation are also considered. 

The chromosome consists of N substrings of binary values (‘0’ and ‘1’). Each tie-switch is 

represented by one substring that when decoded, allow the determination of the branch in the loop to 

be opened, guaranteeing the radiality of the network. The number of bits in a substring (Nbit) is decided 

by the number of participating branches in each loop (Nloop) and can be obtained through the 

expression (2) , where ⎣ ⎦ stands for the mathematical “floor” function. 

 2log 1bit loopN N⎢ ⎥= +⎣ ⎦  (2) 

When decoding of each substring, the binary number is converted to its equivalent decimal 

number (Dn), which is used to show which branch should be opened. Three conditions are considered: 

If (Dn) is equal to ‘0’ then the tie-switch is not considered as a candidate to be closed, else if (Dn) is 

less then or equal to  (Nloop) , then (Dn) is used as index to define the branch that should be opened with 

the correspondent tie-switch being closed. If not, is used as index the result of (Dn) – (Nloop).      

2.2 Generation of the initial population 

The initial population is randomly generated considering a specified number of individuals (Nind), 

with bits being either ‘0’ or ‘1’. This will assure a higher genetic diversity in the beginning of the 

optimization process. To avoid the creation of a bigger loop the genetic algorithm gives the guarantee 

that, during the decoding process, the same branch isn’t detected more than once. 

The IGA, if specified, also allows the insertion of the individual that represents the base network 

in the initial population (IndBN). This will assure that the better fitness value, in the initial population, 

is at least equal to the fitness attributed to (IndBN).    
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2.3 Selection mechanism  

The generation gap represents the percentage of individuals to copy to the new population. In this 

study, the IGA uses a fixed size population of size (Nind) and a fixed renewal rate (Rr) in all 

generations. This represents that at least we will have always two solutions in order to allow the 

reproduction process.  

 After generating a random initial population and evaluating the solutions performance, a 

selection mechanism is applied based on the “Roulette Wheel Parent Selection” technique in which 

there is a larger probability of the best fitness individuals being chosen to participate in the next 

generation and where each solution is represented proportionally to its performance. The IGA also 

adopts an elitist selection meaning that the best individual at generation (k) is maintained in the next 

generation (k+1).  

2.4 Genetic Operators 

A new generation of individuals is produced as a result of genetic manipulation applied on 

parents. The crossover is the predominant operator and, therefore, with a higher probability of 

occurrence (pc). This operation is made between pairs of parents randomly chosen and it consists in 

generating new individuals with characteristics of both parents. This also adds new points in the 

feasible space. In this study, due to the coding technique used, and in order to achieve the best 

performance of the IGA, it was applied a multi-point crossover with well defined cutting points, as 

demonstrated in  Figure 1. This will assure that descendents inherit characteristics (after decoded) 

from both parents and with a probability (pc).    

   1    1    0    1    0    1    0    1

   1    0    0    0    0    1    0    0

Parent 1

Parent 2

   1    1Descendent 1

Descendent 2

   1    0    1   0    0    0

   1    0    1    0    0   0    1    0
or

substring 1 substring 2 substring 3

 
Figure 1 – Example of the Multi-point crossover technique. 

 

Another genetic operator applied with a low probability consists in cloning one of the parents to 

generate a new individual with the same characteristics.  

The genetic manipulation ends with the application of the mutation operator to all the new 

individuals generated through crossover or cloning. Mutation is the most important operator 

responsible to introduce new genetic characteristics in the population and thus, maintain the genetic 
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diversity. This is possible by randomly changing some characteristics of the individual to which is 

applied, ensuring that the probability of reaching any point in the search space is never zero. In 

addition, mutation will avoid the problem of premature convergence to local optimum. In this study, 

the mutation operator is applied to each bit of the chromosome with a certain probability (pm) of 

occurrence. Mutation will change the selected bit from ‘0’ to ‘1’ or vice versa as shown in Figure 2. 

   1    0    0    1    0    1    0    0

   0    0    0    1    1    1    0    0

Before mutation

After mutation

substring 1 substring 2 substring 3
 

Figure 2 – Example of the Mutation process in a descendent. 

 

After the new population is generated, all individuals are submitted to a process of evaluation and 

selection. The selected individuals will be responsible for the generation of other individuals through 

genetic manipulation. The genetic manipulation process can be described by Figure 3. 

         Generate a random number j
                 between 0 and 1

no

Initialisation: n = 1
k = number of solutions to generate

yes

     Generate solution n
      through Crossover 

yes

n = k
   ?

n = n + 1

no

Selects randomly 2 solutions
              (parents)

   Mutation process
 

j  <= crossover probability
                   ?

     Generate solution n
      through Cloning

n exists in black list ? yes

no

Output the optimal results
  

Figure 3 – Flowchart of the genetic manipulation approach (IGA). 
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2.5 Genetic Diversity in the Population 

The genetic diversity in the population is related with the genetic variability of individuals and is 

responsible for the scattering of solutions in the feasible space. To measure the similarity of 

individuals, they must be regarded as a multidimensional vector. The measure is the vector distance, as 

in Tang et al. (2008). Suppose individual i is represented as Indi = [gi(1), … , gi(N)], and individual j is 

represented as Indj = [gj(1), … , gj(N)]. To define the distance between individuals i and j the 

following equation is used:       

 2( , ) ( (1) (1)) ... ( ( ) ( ))i j i jd i j g g g N g N= − + + − 2  (3) 

If the distance is below a predefined threshold (Dth), we may assume the two individuals are 

similar; else, the two individuals are dissimilar. The genetic diversity (Gdiv) is measured using the 

following equation: 

 
}{ ( , )

1 1

2

1
100

ind ind

th

N N

d i j D
i j i

div
ind

G
N C

>
= = +

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟
⎝ ⎠

∑ ∑
⎟×
⎟

 (4) 

Gdiv is a variable in the range [0,100]. When the value of Gdiv is zero, this indicates that all 

individuals are similar. On the other hand, if all the individuals in the population are dissimilar, Gdiv 

assumes the value 100.     

2.6 Adaptive Crossover and Mutation Probabilities 

It is known that the choice of the crossover and mutation probabilities critically affect the 

behavior and the performance of the GA. In most studies these probabilities remain unchanged in the 

course of GA execution. Instead of using fixed crossover and mutation probabilities, IGA dynamically 

changes these values during the optimization process and according to the genetic diversity. This 

feature will maintain the genetic diversity in the population and thus prevents IGA to converge 

prematurely to local optimum.  

The heuristic updating principals are; using large pc and small pm when Gdiv in the current 

generation is large. The increase of pc leads to rich information exchange between individuals, while 

the decrease of pm avoids random search (Tang et al. (2008)). In the other case, to avoid premature 

convergence, pc and pm must be changed in such a way to introduce new genetic characteristics and to 

reduce the loss of genetic material. So, pc must be reduced and pm augmented (Vasconcelos et al. 

(2001)).  
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The IGA control parameters pc and pm are adjusted according to the following conditions and 

considering bounds BBmin and BmaxB : 

 min min

max max

,

,
div

div

pc if G B
pc

pc if G B

⎧ <⎪= ⎨
>⎪⎩

 (5) 

 max min

min max

,

,
div

div

pm if G B
pm

pm if G B

⎧ <⎪= ⎨
>⎪⎩

 (6) 

On the other hand, if the genetic diversity in the population is between the considered bounds, 

i.e., BBmin ≤ Gdiv ≤ BmaxB , then pc and pm are calculated through linear interpolation defined by the 

following equations:   

 min max max min min max

min max min max
div

pc pc pc B pc Bpc G
B B B B

⎛ ⎞ ⎛− −
= +⎜ ⎟ ⎜− −⎝ ⎠ ⎝

⎞
⎟
⎠
 (7) 

 max min min min max max

min max min max
div

pm pm pm B pm Bpm G
B B B B

⎛ ⎞ ⎛− −
= +⎜ ⎟ ⎜− −⎝ ⎠ ⎝

⎞
⎟
⎠

 (8) 

2.7 Termination 

Being the genetic algorithm a stochastic search method, it is difficult to formally specify a 

convergence criterion. In IGA the termination criterion is dependent either on the maximum number 

of generations (Npop), or a specified convergence threshold (Cth). If during Cth generations the best 

fitness value in the population, doesn’t suffer any changes, then we may assume the convergence of 

IGA.  

2.8 Black List of infeasible solutions  

An important feature of IGA, responsible for the increase of its efficiency, is the creation of a 

black list with the identification of all the infeasible solutions obtained during the optimization 

process. This list also can remain after the process so that the solutions search, in future simulations 

using the same network, can be more effective.     

All the generated solutions must pass through an admissibility test. A solution is considered 

admissible if, in addition to being radial (condition always guaranteed), the network configuration 

reveals that all the loads are energized, the bus voltage magnitude is between predefined limits and 

transformers capacity and heat capacity of all the branches are satisfied. The infeasible solutions are 

then converted to its equivalent decimal number and added to the list. The same procedure is used in 

the perspective of investment, if the solution reveals a number of tie-switches superior than a specified 

value.   
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3. Evaluation of Distribution System Reliability 

Reliability assessment models are needed to allow feeder configurations to be optimized for 

reliability. These models must be able to predict reliability at each consumer based on system topology 

and component reliability data. 

There are two main categories of reliability worth evaluation methods: Monte Carlo simulation 

method, applied in this study, and analytical methods. The analytical methods are highly developed 

and have been used in practical applications for several decades (Brown (2003)). This method 

represents the system by mathematical models and evaluates the reliability indices from these models 

using mathematical solutions. The exact mathematical equations can become quite involved and 

approximations may be required when the system is complex.  

On the other hand, the Monte Carlo simulation method currently receiving considerable attention, 

computes the reliability indices by simulating the actual process and random behavior of the power 

system, and can include any system effects or system processes which may have to be approximated in 

analytical methods due to the complexity of the system (Billinton and Wang (1999); Ou and Goel 

(1999)).  

3.1 Monte Carlo Simulation Method 

When applied to a distribution system reliability assessment, a Monte Carlo simulation typically 

analyses system behavior for a specific period of time (such as a year) (Brown, 2002). Because each 

simulation will produce different results, many simulations are typically needed. Theoretically, the 

expected value of the simulation ( X ) is equal to the average of the results of each simulation (xi) as 

the number of simulations or trials (Nt), approaches infinity: 

 
1

1lim
t

t

N

iN it

X
N→∞

=

⎛ ⎞
= ⎜

⎝ ⎠
x ⎟∑  (9) 

A Monte Carlo simulation has several advantages when compared to an analytical method. One, 

as previously mentioned, is the ability of a Monte Carlo simulation to produce a distribution of 

possible results rather than the expected value alone. Another is the ability to easily model component 

parameters as random variables characterized by probability distribution functions, rather than as 

constant values. A Monte Carlo simulation can also more easily model complex system behavior such 

as nonexclusive events, cascading failures, conditional probabilities and so forth. 

Various approaches can be followed when performing Monte Carlo simulation on electric power 

systems. In this study, there is a focus on the branch reliability level, a fundamental element to assure 

the continuity of service. If a branch suffers an unexpected event such as a fault or an open circuit 

(contingency situation) this can affect the power distribution system and lead to a blackout state, 

which is caused by the interruption of the power supply for a portion of the network. 
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 To define the reliability level of each network branch it was considered four levels according to 

Table I. 

Table I: Branch reliability levels 

Level Probability of Failure 

1 Very unlikely 
2 Unlikely 
3 Likely 
4 Very likely 

 

As the system behavior does not depend upon past events, contingency situations caused by 

branch failures can be probabilistically selected (according to Table I) and simulated in any arbitrary 

order. Since this process does not necessarily simulate contingencies in order of occurrence, it is 

referred to as a non-sequential Monte Carlo simulation (Brown, 2002). The non-sequential Monte 

Carlo simulation starts with a pool of network branches (Figure 4), i.e., each branch can fail and cause 

a contingency with a certain probability.    

 1

 
10

 6
 7

 3
 8

11

Nb

13
...

14

12
 9

 5
 4

 2

Pool of  Network 
Branches

 5

10

10

 8

14

Probabilistically 
Selected Branches

 5 1010  8 14

Simulation Sequence

 
Figure 4 – Monte Carlo simulation determines all branch failures that will occur before the simulation 

begins. 

 

Contingencies caused by branch failures are randomly selected from a pool of candidate network 

branches based on contingency probabilities (the same branch can be selected to fail more than once).  

After the branches and their number of failure occurrences being selected, it is necessary to 

determine the associated interruption durations. So, in order to better characterize the possible 

contingencies, various degrees of severity were defined based on historical data, each with different 

average interruption durations (Dav). Each branch of the network is also characterized according to a 

certain probability of failure, with the different degrees of severity. Here, past performance statistics 

provide a valuable reliability profile of the existing system.  

The interruption duration associated with each contingency is variable, and follows a normal 

distribution, whose density function (f) is obtained through a normal density curve, characterized by 

standard deviation (σ) and the average (μ).  
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The density function (f) is defined as follows: 

 
2

2
( )
2( ; , )
x

f x e
μ

σμ σ
− −

=  (10) 

The method considers (Nt) trials. In each trial, an annual number of contingency situations (Ncont), 

are simulated and their impact analyzed in terms of number and duration of the interruptions that occur 

in each transformation unit of the RDS. There was no distinction between permanent faults and open 

circuits, i.e., faults are restricted and correctly isolated, and therefore only affect downstream. 

Finally, the expected value of the Monte Carlo simulation ( X ) is obtained according to 

expression (9) allowing the estimation of the annual reliability indices in the considered network 

configuration of the distribution system. The total energy not distributed (TEND) is used as the 

reliability index to minimize in this study.  

4. Fitness Function Definition 

Through IGA it is possible to optimize the RDS in terms of losses and reliability. The objective 

function to minimize is the fitness function used to evaluate the performance of the solutions. The 

fitness function is defined using the equation (11) considering the annual active energy loss (WLoss) and 

total energy not distributed (TEND), obtained through Monte Carlo simulation. 

  (11) 1 2min ( ) 100Lossfitness W TENDα α= + ×

Here, parameters α1 and α2 are calculated in order to reflect the importance of both objectives to 

the decision agent.  

To estimate the annual active energy losses in order to better model seasonal effects and to 

achieve more precise results, the year was considered to have three seasons, summer (July, August and 

September), winter (December, January and February) and half-season (remaining months).  

A daily representative loss profile in MV networks was also considered for each season (provided 

by ERSE1), as shown in Figure 5. The loss profile in each season reflects the existence of different 

types of consumers: residential, commercial and other tertiary activities. 

                                                 
1 ERSE – Energy Services Regulatory Authority 
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Figure 5 – Daily representative loss profile in MV networks by ERSE. 

 

Mathematically the total active power loss on a distribution system can be calculated by summing 

up the power loss of each line through the following equation: 

 
2 2

2
1

iB
i

i
i i

P Qr
V=

+∑ i  (12) 

BB

W

i is the total number of lines; ri the resistance of the i-th line; Pi is the active power flow of the i-

th line; Qi is the reactive power flow of the i-th line; |Vi| is the ending voltage of the i-th line. 
The energy loss, WLoss, is estimated after calculating the peak value of the active power loss 

through a power flow simulation in the distribution system, and also using the patterns of the loss 

profile (Figure 5). For this, the equation (13) is used: 

  (13) 92 90 183Loss W S HSW W W= × + × + ×

Here, variables WW, WS and WHS represent the daily active energy losses in winter, summer and 

half-season, respectively. Finally, the parameters α1 and α2 are calculated in order to reflect the 

importance of both objectives in the fitness function.   

5. Case Study 

This study analyses network reconfiguration in two perspectives. Basically the opportunity is 

given to the decision agent to decide if we want to invest or not in new tie- switches. The first 

perspective of optimization considers no investment, and the benefits achieved are only due to the 

existing switches. The second perspective identifies the optimal branches to be equipped with a new 

tie-switch. The maximum number of tie-switches that can be placed in the network is defined by the 

decision agent as well as the list of candidate places for a tie-switch installation. 

 

12 



The tested case is a 12.66 kV RDS based on Sahoo and Prasad (2006). The network is formed by 

one substation, 73 branches (including 7 sectionalizing switches and 5 tie-switches) and 69 nodes of 

which 48 are transformer units with the total load of 3.8 MW and 2.69 MVAr, as shown in Figure 6. In 

the case study analysis it was also considered a restricted number of branches without constraints in 

tie-switch placement including [9-11-13-17-26-36-40-47-49-53-56-64].  

1 2
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n

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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47 48 49
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67

68

28 29 30 31 32 33 34

27 35

36 37 38 39 40 41 42 43 44 45

51

50

72
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69 71

70

- Tie Switch
- Sectionalizing Switch

 
 Figure 6 – Tested 69 bus radial distribution system. 

 

5.1 IGA Control Parameters 

The genetic control parameters were carefully determined due to its influence in the efficiency of 

IGA. In this study it was possible to achieve more promising results using the values shown in Table 

II. 

Table II: Improved Genetic Algorithm (IGA) Control Parameters 

Control Parameters Considered Value 

Nind 20 
Rr 50% 

Npop 50 
BBmin 0 
BBmax 100 
pcmin  50% 
pcmax 100% 
pmmin 3% 
pmmax 25% 

Dth 3 
Cth 15 
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5.2 Monte Carlo Simulation Parameters 

In the case study, the Monte Carlo Simulation method considers 3000 trials, and, in each trial, the 

occurrence of 15 annual contingencies in predefined locations according to the reliability level 

assigned to each branch, as shown in Figure 7. 
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Figure 7 – Branch reliability levels of the 69 bus RDS. 

 

The parameters that had been considered to characterize the severity of the contingencies are 

mentioned in Table III. Also, according to the reliability level of each branch, were assigned different 

probabilities to the several degrees of failure severity, as shown in Table IV.    

Table III: Degrees of failure severity 

Degree Dav (min.) Standard deviation (σ) 
1 60 3 
2 40 3 
3 15 3 

 

Table IV: Probability (%) of each degree of failure severity 

Degree of failure severity Level of reliability 
1 2 3 

1 60 40 0 
2 40 50 10 
3 20 40 40 
4 0 20 80 

 

6. Results 

After analyzing the base network, the annual study revealed an annual active energy loss of 

3157.5 MWh and a total energy not distributed of 4.2924 MWh, according to Table V. Due to the 

difference between these values a normalization method was used capable to reflect the importance of 
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both objectives. Results demonstrate a first perspective of optimization (Table V) where the same 

weight to WLoss and TEND were considered, i.e., w1 and w2 equal to 0.5. Parameter α1 assumes the 

value 1.5835×10- 4
 and α2 the value 0.1165 in the fitness function. On the other hand, in the second 

perspective of optimization, the possibility to install a new tie-switch was considered, in a first case, 

with the same weights (w1 and w2 equal to 0.5) and, in a second case, with different weights (w1 = 0.3 

and w2 = 0.7) (Table VI). In this last case, parameters α1 and α2 are adjusted respectively to 0.9501×10- 

4
 and 0.1631. 

6.1 Performance of the proposed solutions 

From Table V, using only the sectionalizing and tie-switches already installed in the network, we 

can obtain a first solution with WLoss reduction of 6.5% and TEND reduction of 2.6%. 

Table V: Optimization without investment 

 Base network 1st Solution 

Open Branches [69-70-71-72-73] [19-61-69-71-72] 
WLoss (MWh) 3157.5 2953.1 

TEND (MWh) 4.2924 4.1801 
Fitness value 100 95.45 

 

From Table VI, installing a new tie-switch in branch 56 causes a more significant impact. In the 

first case, WLoss reduction achieved 17.2% and TEND 28.5%. In the second case a higher priority to 

reliability was assumed at the expense of efficiency. Thus, a WLoss reduction of 8.2% and TEND 

reduction of 37.3% were obtained.  

Table VI: Optimization with investment (one new tie-switch) 

 2nd Solution 
(w1 = 0.5; w2 = 0.5) 

3rd Solution 
(w1 = 0.3; w2 = 0.7) 

Open Branches [15-56-61-69-71] [19-45-56-69-73] 
WLoss (MWh) 2613.19 2898.69 

TEND (MWh) 3.0706 2.6758 
Fitness value 77.15 71.17 

 

Note that it is also possible to maximize the voltage stability and the load balancing via loss 

minimization (Kashem and Moghavvemi (1998)). The solutions presented result in substantial 

improvements in these fields (Figure 8 and Figure 9).  As in Kashem and Moghavvemi (1998), Figure 

9 demonstrates that there exists a direct relationship between voltage stability and losses by showing 

that voltage stability is improved when losses are reduced. 
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Figure 8 – Comparison load balancing between base and reconfigured 69 bus RDS. 
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Figure 9 – Comparison voltage profile between base and reconfigured 69 bus RDS. 

 

6.2 Behavior of the Improved Genetic Algorithm (IGA) 

Figure 10 shows the convergence characteristic using IGA. Although the maximum number of 

generations was set to 50, all the runs were terminated under the convergence threshold. It also can be 

observed a fast convergence capability avoiding some considerable time to arrive at the best possible 

solution.  
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Figure 10 – Evolution of best fitness values using IGA. 

 

The behavior of the curves shown in Figure 11 indicates that the evolution of the crossover rate 

and mutation rate are both dependent on each other. This behavior was expected since these operators 

are defined to maintain the genetic diversity in the population. When the values of a probability 

operator change, the values of the other operator must also change to obtain a good genetic diversity in 

the population. Thus, the learning of the crossover and mutation probabilities is dependent on the 

genetic diversity implied in the problem considered. 
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Figure 11 – Dynamic adjustment of genetic operator probabilities in search of the 1st solution. 

7. Conclusions 

In this study an improved genetic algorithm (IGA) has been suggested in a two-perspective 

approach for network reconfiguration with the aim of improved reliability and efficiency. A Monte 

Carlo simulation method, based on the branch reliability, was used to predict the reliability of the 

network configurations.  
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The IGA uses a suitable coding technique ensuring a chromosome with a small length. This 

feature is responsible for a lower computational effort, when compared with other techniques. Other 

important feature of IGA, responsible for the increase of its efficiency, is the creation of a black list 

with the identification of all the infeasible solutions obtained during the optimization process. 

The results demonstrate the good performance of IGA when applied to network reconfiguration 

problems (convergence speed and stability increased). The introduced features, namely dynamic 

crossover and mutation probabilities, allow the maintenance of the genetic diversity in the population 

thus preventing IGA to converge prematurely to a local optimum. 

The optimization method allows considering different weights to both the objectives according to 

the preferences of the decision agent. In this study a 69 bus radial distribution system was considered. 

The results are encouraging, and future work should be directed to the inclusion of new objectives in 

the field of reliability and also to the dynamic variation of other GA parameters.    

Finally this study demonstrates the direct relationship between losses, voltage stability and load 

balancing. It is noted that the efficiency of the distribution system is achieved through the 

minimization of losses which are also responsible for the improvements in voltage stability and load 

balancing.  
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