MOBILE COMPUTATION

ABSTRACT
One of the most important and highly publicized recent developments in the PC world has been the introduction of the mobile gadgets. Mobile computers are turning thousands of computer illiterate people — especially those involved with field-based data collection — into computer users. The market potential and breadth of application requirements for mobile computing has prompted numerous hardware and software companies to focus their efforts in providing solutions to the vertical, form-oriented marketplace.

This paper describes a communication method with data compression and encryption for mobile computing environments. This method offers communication, data compression and encryption from end to end by adding a process via WinSock API without changing the existing TCP/IP-based application. 

We described a communication method with data compression and encryption for use as middle ware in a mobile computing environment. This method can easily achieve secure and efficient communication with all existing communication application programs and popular TCP/IP programs.

Introduction
Mobile computing has been given special attention as the next personal computing and communication environment, because of the enormous improvement in performance of the portable computer, personal digital assistant (PDA), and wireless networking infrastructure. However, mobile communication infrastructures, especially wireless data networks, lack communication speed, reliability and security. Mobile users are worried about information leakage by wireless tapping. Therefore, research and development is needed for communication security of mobile computing environments. Encryption tools and new applications that use exclusive API for security control have been proposed. This paper describes a communication method with data compression and encryption for mobile computing environments. This method offers communication, data compression and encryption from end to end by adding a process via WinSock API without changing the existing TCP/IP-based application. 

<!--[if !vml]-->
Problems of communication, data compression and encryption processing
There are two methods of compressing and encrypting communication data:

<!--[if !supportLists]-->1. <!--[endif]-->Encryption done by the application and compression done by the modem. 

<!--[if !supportLists]-->2. <!--[endif]-->Embedding the functions of encryption and compression into the communication control software. 

Both methods have problems. High-performance compression is not anticipated using method 1, because data randomizing by the first encryption process removes regularity, thereby preventing efficient compression in the compression sequence after the encryption sequence. Applications should have the encrypting function in the case of method 1. There is another problem: In method 2, changing the TCP/IP software is necessary, which is against our goal. The method of data compression and encryption processing in PPP (Point to Point Protocol) is popular, but it only takes effect between client and access server. 

Data compression and encryption by intercepting WinSock command from WinSock API
WinSock API is a standard application programming interface for TCP/IP-based PC communication programs. We achieved embedded data compression and encryption without changing the TCP/IP and application software by intercepting WinSock commands from WinSock API temporarily and adding individual processing. Figure 2 shows intercepting WinSock commands. 

<!--[if !vml]-->[image: image1]<!--[endif]-->

First, our application execution support program changes the linkage between the target application program and WinSock DLL program when the target application program is loaded into memory by the loader before its execution. The secure communication add-in program that we developed intercepts the send command of the application program from WinSock API, compresses its data in the send command, encrypts the data, and then returns this command to WinSock DLL, which is properly transferred. On the other hand, the receive command is intercepted from WinSock API, as with the send command. Also, the secure communication add-in program decrypts the data received from WinSock DLL, decompresses it, and then returns it to the application program, which is properly transferred. Other commands of WinSock are processed in the same way as above. By using this method, we have achieved these features without changing any program or any interfaces. 

A negotiation function is needed to achieve communication between a PC that has a security function and one that does not. However, we do not want to change TCP/IP protocol. So we decided to execute a negotiation sequence in the middle of the original TCP/IP connection establishment sequence without changing TCP/IP protocol and programs. Negotiation sequence is explained in the Figure 3.

<!--[if !vml]-->[image: image2]<!--[endif]-->

Packetizing the stream-type data:In our method, data compression processing is done before transferring to TCP/IP. So the length of data transferred from the application program and the length of data compressed and sent to the other party via TCP/IP are not the same. Also in the non-block mode send sequence of TCP/IP protocol, the return value of the send command should indicate the length of buffering in the send buffer of TCP/IP. However, in our method, the buffering data are part of the compressed data, and the length is measured by compressed data size. So size conversion is necessary. The return value should be indicated by the measuring of real data size, not compressed data size. However, size conversion of one part of the compressed data to real size data is difficult. Figure 5 shows data size conversion for the return value to the application program. 
<!--[if !vml]-->[image: image3]<!--[endif]-->

In addition to this problem, if the compression method uses a dynamic renewing and reconstructing dictionary method in the communication sequence, all of the compressed data should be transferred to the other party completely. If only one of the parts of the compressed data is received, inconsistency of compression dictionary maintenance between the send and receive sites will occur.

<!--[if !vml]-->[image: image4]<!--[endif]-->

Figure 6 shows the unmatch problem of compression dictionary on both sides. In this case, renewed dictionary information should be put back, but this process is difficult. To solve this problem, we considered methods of packetizing the TCP/IP stream-type data. Figure 7 shows the compress and send operation step by step. In our method, a secure communication add-in program divides the stream-type data from the application program into fixed-size frames. It compresses and encrypts every fixed-size frame, packetizes it, and transfers it to TCP/IP. It is very easy to calculate the real data size of send completion data, because every packet is sent completely under the control of the secure communication add-in program; the original real data size of every compressed packet is known and is a multiple of the fixed-size frame. In addition to this processing, put-back operation of the compression dictionary is not necessary, because the compression and send processes are done step by step, and every frame that is compressed is sent. Due to this feature, the application program does not need to know whether the data are compressed in the communication control layer. 

<!--[if !vml]-->[image: image5]<!--[endif]-->

Secure client and server system: A secure client and server system is easy to construct using our method. Every client and server implements our secure communication add-in program. If its network is via the Internet, a firewall will be established. Within the firewall, by implementing proxy function that exchanges secure port communication, secure client and server communication will be achieved in the Internet environment. 
Conclusions: The wireless communication revolution is bringing fundamental changes to telecommunications and computing. Wide-area cellular systems and wireless LANs promise to make integrated networks a reality and provide fully distributed and ubiquitous mobile computing and communications, thus bringing an end to the tyranny of geography. Furthermore, services for mobile users are maturing and are poised to change the nature and scope of communication.
