
1. INTRODUCTION

The packet transport service provided by representative packet-switched networks, including IP networks, is not reliable and the quality-of-service cannot be guaranteed. Packets may be lost due to buffer overflow in switching nodes, be discarded due to excessive bit errors and failure to pass the cyclic redundancy check at the link layer, or be discarded by network control mechanisms as a response to congestion somewhere in the network. Forward Error Correction coding has often been proposed for end-to-end recovery from such packet losses. However, the use of FEC in this application provides a double-edged sword. From an end user’s perspective, FEC can help recover the lost packets in a timely fashion through the use of redundant packets, and generally adding more redundancy can be expected to improve performance provided this added redundancy does not adversely affect the network packet loss characteristics. On the other hand, from the network’s perspective, the widespread use of FEC schemes by end nodes will increase the raw packet-loss rate in a network because of the additional loads resulting from transmission of redundant packets. Therefore, in order to optimize the end-to-end performance, the appropriate tradeoff, in terms of the amount of redundancy added, and its effect on network packet-loss processes, needs to be investigated under specific and realistic modeling assumptions.

We provide a study of the overall effectiveness of packet-level FEC coding, employing interlaced Reed-Solomon codes, in combating network packet losses and provide an information- theoretic methodology for determining the optimum compromise between end-to-end performances and the associated increase in raw packet-loss rates using a realistic model-
based analytic approach. Intuitively, for a given choice of block length we expect that there is an optimum choice of redundancy, or channel coding rate, since a rate too high is simply not powerful enough to effectively recover packet losses while a rate too low results in excessive raw packet losses due to the increased overhead which overwhelms the packet recovery capabilities of the FEC code. The optimum channel coding rate results in an optimum compromise between these two effects.

Here we focus on evaluating the capability of FEC in recovering packet losses over IP networks using residual packet-loss rate as the performance measure. In terms of characterizing end-to-end performance, we assume that performance is directly proportional to the source coding rate, or network load, that can be supported for a fixed residual packet-loss rate. The analytic procedure developed is then used to determine the maximum load that can be supported as a function of coding parameters. By modeling the fully interleaved network transport channel as a block interference channel, we provide information theoretic bound on the performance achievable with FEC. This bound provides a useful context for assessing the efficacy of FEC in this application as a function of coding parameters.

2. PROBLEM DEFINITION

Reliability considerations frequently require that Forward Error Correction techniques be used when Error Detection and Correction strategies are required. The power of FEC is that the system can, without retransmissions, find and correct limited errors caused by a transport or storage system. While there are several approaches to FEC, this note will concentrate on the Reed-Solomon codes. These codes provide powerful correction, have high channel efficiency, and are very versatile. With the advent of VLSI implementations, such as the AHA PerFEC 4000 series, RS codes can be easily and economically applied to both high and low data rate systems. In some new circuits, the FEC function is integrated with data formatters and buffer managers.

Forward error-correction coding is a type of digital signal processing that improves data reliability by introducing a known structure into a data sequence prior to transmission or storage. This structure enables a receiving system to detect and possibly correct errors caused by corruption from the channel and the receiver. As the name implies, this coding technique enables the decoder to correct errors without requesting retransmission of the original information

3. LITERATURE SURVEY
3.1 Forward Error-Correction Coding

Digital communication systems, particularly for military use, need to perform accurately and reliably in the presence of noise and interference. Among many possible ways to achieve this goal, forward error-correction coding is the most effective and economical. The Aerospace Corporation has devoted considerable effort to research and development of forward error-correction techniques, with particular emphasis on one method known as turbo coding. This work has played an important role in supporting several government programs, including the Advanced Extremely High Frequency program, the Advanced Wideband System, and the Geostationary Operational Environmental Satellite System.
3.2 The Evolution of Forward Error Correction

In a communication system that employs forward error-correction coding, a digital information source sends a data sequence to an encoder. The encoder inserts redundant bits, thereby outputting a longer sequence of code bits, called a codeword. Such codewords can then be transmitted to a receiver, which uses a suitable decoder to extract the original data sequence Codes that introduce a large measure of redundancy conveying relatively little information per each individual code bit. This is advantageous because it reduces the likelihood that all of the original data will be wiped out during a single transmission. On the other hand, the addition of parity bits will generally increase transmission bandwidth requirements or message delay.

Algebraic coding was the only type of forward error-correction coding in use when Claude Shannon published his seminal Mathematical Theory of Communication in 1948. With this technique, the encoder intersperses parity bits into the data sequence using a particular algebraic algorithm. On the receiving end, the decoder applies an inverse of the algebraic algorithm to identify and correct any errors caused by channel corruption.

Another forward error-correcting technique, known as convolutional coding, was first introduced in 1955. Convolutional codes process the incoming bits in streams rather than in blocks. The paramount feature of such codes is that the encoding of any bit is strongly influenced by the bits that preceded it. A convolutional decoder takes into account such memory when trying to estimate the most likely sequence of data that produced the received sequence of code bits. Historically, the first type of convolutional decoding, known as sequential decoding, used a systematic procedure to search for a good estimate of the message sequence. However, such procedures require a great deal of memory, and typically suffer from buffer overflow and nongraceful degradation.

At each bit-interval, the Viterbi decoding algorithm compares the actual received code bits with the code bits that might have been generated for each possible memory-state transition. It chooses, based on metrics of similarity, the most likely sequence within a specific time frame. The Viterbi decoding algorithm requires less memory than sequential decoding because unlikely sequences are dismissed early, leaving a relatively small number of candidate sequences that need to be stored.

Some types of algebraic coding are most effective in combating "bursty" errors. Convolutional coding is generally more robust when faced with random errors or white noise; however, any decoding errors occurring in the convolutional decoder are likely to occur in bursts. Joseph Odenwalder combined these two coding techniques to form a concatenated code. In this arrangement, the encoder linked together an algebraic code followed by a convolutional code. The decoder, a mirror image of the encoding operation, consisted of a convolutional decoder followed by an algebraic decoder. Thus, any bursty errors resulting from the convolutional decoder could be effectively corrected by the algebraic decoder. Performance was further enhanced by using an interleaver between the two encoding stages to mitigate any bursts that might be too long for the algebraic decoder to handle. This particular structure demonstrated significant improvement over previous coding systems and is currently being used in the Deep Space Network and Air Force Satellite Control Network as well as in commercial broadcasting services.

FEC code is the most powerful forward error-correction code yet. Using the turbo code, communication systems can approach the theoretical limit of channel capacity, as characterized by the so-called Shannon Limit, which had been considered unreachable for more than four decades.

3.3 Core Java and Java Swing

Java is a platform independent, object oriented application programming language.

Java Swing provides a set of light weight components that abstract the Graphical User Interface management.

The syntax for Java is, indeed, a cleaned-up version of the syntax for C++. There is no need for header files, pointer arithmetic, structures, unions, operator overloading, virtual base classes, and so on. The designers did not, however, attempt to fix all of the clumsy features of C++. For example, the syntax of the switch statement is unchanged in Java. If you know C++, you will find the transition to the Java syntax easy. If you are used to a visual programming environment, you will not find Java simple. There is much strange syntax. More important, you must do a lot more programming in Java. The beauty of Visual Basic is that its visual design environment almost automatically provides a lot of the infrastructure for an application. The equivalent functionality must be programmed manually, usually with a fair bit of code, in Java. There are, however, third-party development environments that provide "drag-and-drop"-style program development.

Java is intended for writing programs that must be reliable in a variety of ways. Java puts a lot of emphasis on early checking for possible problems, later dynamic checking, and eliminating situations that are error-prone.… The single biggest difference between Java and C/C++ is that Java has a pointer model that eliminates the possibility of overwriting memory and corrupting data.

This feature is also very useful. The Java compiler detects many problems that, in other languages, would show up only at run time. As for the second point, anyone who has spent hours chasing memory corruption caused by a pointer bug will be very happy with this feature of Java.

Java is intended to be used in networked/distributed environments. Toward that end, a lot of emphasis has been placed on security. Java enables the construction of virus-free, tamper-free systems.
Architecture Neutral

The compiler generates an architecture-neutral object file format—the compiled code is executable on many processors, given the presence of the Java runtime system. The Java compiler does this by generating bytecode instructions which have nothing to do with particular computer architecture. Rather, they are designed to be both easy to interpret on any machine and easily translated into native machine code on the fly.

Portable

Unlike C and C++, there are no "implementation-dependent" aspects of the specification. The sizes of the primitive data types are specified, as is the behavior of arithmetic on them.
Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to which the interpreter has been ported. Since linking is a more incremental and lightweight process, the development process can be much more rapid and exploratory.

Multithreading including the java.util.concurrent library, locks, condition objects, futures, thread pools, thread-safe collections, threads and Swing Multithreading is extremely useful in practice. For example, a browser should be able to simultaneously download multiple images. A web server needs to be able to serve concurrent requests. The Java programming language itself uses a thread to do garbage collection in the background thus saving you the trouble of managing memory! Graphical user interface programs have a separate thread for gathering user interface events from the host operating environment. This chapter shows you how to add multithreading capability to your Java applications. Multithreading changed dramatically in JDK 5.0, with the addition of a large number of classes and interfaces that provide high-quality implementations of the mechanisms that most application programmers will need.
3.3.1 SWING

Swing is actually part of a larger family of Java products known as the Java Foundation Classes, which incorporate many of the features of Netscape's Internet Foundation Classes as well as design aspects from IBM's Taligent division and Lighthouse Design.

Swing 1.4 contains 85 public interfaces and 451 public classes. Although Swing was developed separately from the core Java Development Kit, it does require at least JDK 1.1.5 to run.

Swing builds on the event model introduced in the 1.1 series of JDKs; you cannot use the Swing libraries with the older JDK 1.0.2. In addition, you must have a Java 1.1-enabled browser to support Swing applets. The Java 2 SDK 1.4 release includes many updated Swing classes and a few new features.

Swing is fully integrated into both the developer's kit and the runtime environment of all Java 2 releases, including the Java Plug-In.
3.4 Java Foundation Classes

The FC is a suite of libraries designed to assist programmers in creating enterprise applications with Java. The Swing API is only one of five libraries that make up the JFC. The JFC also consists of the Abstract Window Toolkit, the Accessibility API, the 2D API, and enhanced support for Drag and Drop capabilities. While the Swing API is the primary focus, here is a brief introduction to the other elements in the JFC:

AWT

The Abstract Window Toolkit is the basic GUI toolkit shipped with all versions of the Java Development Kit. While Swing does not reuse any of the older AWT components, it does build on the lightweight component facilities introduced in AWT 1.1.

Accessibility

The accessibility package provides assistance to users who have trouble with traditional user interfaces. Accessibility tools can be used in conjunction with devices such as audible text readers or Braille keyboards to allow direct access to the Swing components.

Accessibility is split into two parts: the Accessibility API, which is shipped with the Swing distribution, and the Accessibility Utilities API, which is distributed separately. All Swing components support accessibility.
2D API

The 2D API contains classes for implementing various painting styles, complex shapes, fonts, and colors. This Java package is loosely based on APIs that were licensed from IBM's Taligent division. The 2D API classes are not part of Swing.
Drag and Drop

Drag and Drop is one of the more common metaphors used in graphical interfaces today. The user is allowed to click and "hold" a GUI object, moving it to another window or frame in the desktop with predictable results. The DnD API allows users to implement droppable elements that transfer information between Java applications and native applications. Although DnD is not part of Swing, it is crucial to a commercial-quality application.
3.5 Java Swing Features
Pluggable Look-and-Feels

One of the most exciting aspects of the Swing classes is the ability to dictate the L&F of each of the components, even resetting the L&F at runtime. L&Fs have become an important issue in GUI development over the past 10 years. Many users are familiar with the Motif style of user interface, which was common in Windows 3.1 and is still in wide use on UNIX platforms. Microsoft created a more optimized L&F in their Windows 95/98/NT/2000 operating systems. In addition, the Macintosh computer system has its own carefully designed L&F, which most Apple users feel comfortable with.
Lightweight Components

Most Swing components are lightweight. In the purest sense, this means that components are not dependent on native peers to render themselves. Instead, they use simplified graphics primitives to paint themselves on the screen and can even allow portions to be transparent.

4. PROJECT REQUIREMENT DEFINITION

 4.1 Overview

The project requirements definition is an abstract description of the services which the system should provide and the constraints under which the system must operate. It specifies only the external behavior of the system.

4.2 Functional Requirements
· The application should comprise of a source and a destination.
· The source should send packets and transmit the same to the destination.
· The destinations should receive the packets and be able to recover the packet lost.
· The user must be provided with a suitable front-end which enables him to avail the functionalities of the application.
4.3 Non – Functional Requirements
· The main aim is that the system should be computationally effective.
· Interleaving is performed after adding the redundant bits.
· System should feature high stability and accuracy.
· Finally the application should be cost effective, assuring maximum level of reliability.
4.4 Domain Requirements
· The application has been implemented using JDK.0_06 with NetBeans as the IDE.
· The application runs on a simulator which connects the source to the destination.

· The application needs a multiplexer as a queue which receives and sends the bits from the source to the destination.

5. SYSTEM REQUIREMENT SPECIFICATION
Requirement Analysis:-

The requirements for the project “Evaluation of the Efficacy of FEC Coding” which includes Software and Hardware requirements.

Graphical User Interface:-

The front end will be created here using Swing.

Design:-

A window will give us scope to create number of source and destination nodes.

Model the network path in terms of single bottleneck node described as queue.
Implementation of source:-

This module is used to implement the source with interleaving process and sending packets to the queue

Implementation of queue:-

This module is used to implement the network path to transfer the packets to corresponding destination.
Implementation of destination:-

This module is used to implement the destination which receives packets and de-interleaving process is done to get the original data.
Hardware Requirements:
PROCESSOR : PENTIUM IV 2.6 GHz

RAM

: 512 MB

MONITOR
 :
15”

HARD DISK :
20 GB

CDDRIVE
 :
52X

KEYBOARD :
STANDARD 102 KEYS

MOUSE
 :
3 BUTTONS
Software Requirements:

FRONT END : JAVA, SWING

TOOLS USED : JFRAME BUILDER

OPERATING SYSTEM : WINDOWS XP

6. GANTT CHART

[image: image1.jpg]
	
	TASK
	NO OF WEEKS
	START DATE
	END DATE

	T1
	Literature Survey
	2
	Feb 2, 2009
	Feb 15, 2009

	T2
	Requirements Specification
	1
	Feb 16, 2009
	Feb 22, 2009

	T3
	Design
	3
	Feb 23, 2009
	Mar 15, 2009

	T4
	Implementation
	5
	Mar 16, 2009
	Apr 19, 2009

	T5
	Testing
	2
	Apr 20, 2009
	May 3, 2009

	T6
	Documentation
	1
	May 4, 2009
	May 10, 2009

Key:

	Symbol
	Significance

	
	Deliverables

	
	Project Start

	
	Project End

Number of hours/ week: 4 * 15 = 60
 Total Number of Hours: 60 * 14 = 840

7. SYSTEM DESIGN
7.1 System Overview

This design document addresses the different aspects of the design model. It describes the overall aspects of the design effort.

[image: image2.png]
Figure 7.1

Consider the communication system model illustrated in Figure 7.1. Suppose there are homogeneous and independent sources sharing the single-multiplexer and each source generates packets with an average rate. The FEC coder for each source applies an interlaced Reed-Solomon code to the packets from the source, which means for every block of source information packets it creates an additional parity packet to the network. The channel coding rate is given by Rc=k/n. As a result of the channel coding, the packet arrival rate into the network will increase to. Let the random variable Np denote the number of lost packets within a block. If Np<=n-k, we assume all the lost packets within that block can be recovered by the channel decoder.
7.2 Class Diagrams

Figure 7.2

Figure 7.3
7.3 Use Case Diagram

Source Destination

Figure 7.4
8. DETAILED DESIGN
8.1 Definitions
-Source symbol: unit of data used during the encoding process.

-Encoding symbol: unit of data generated by the encoding process.

-Repair symbol: encoding symbol that is not a source symbol.

-Systematic code: FEC code in which the source symbols are part of the encoding symbols.

-Source block: a block of k source symbols that are considered together for the encoding.

-Encoding Symbol Group: a group of encoding symbols that are sent together within the same packet, and whose relationships to the source block can be derived from a single Encoding Symbol ID.

-Source Packet: a data packet containing only source symbols.

-Repair Packet: a data packet containing only repair symbols.

8.2. Formats and Codes

8.2.1. FEC Payload ID

The FEC Payload ID is composed of the Source Block Number and the Encoding Symbol ID. The length of these two fields depends on the parameter m as follows:

The Source Block Number identifies from which source block of the object the encoding symbol in the payload is generated. There are a maximum of 2^m blocks per object.

The Encoding Symbol ID identifies which specific encoding symbol generated from the source block is carried in the packet payload.

There are a maximum of 2^m encoding symbols per block. The first k values identify source symbols; the remaining n-k values identify repair symbols.

There MUST be exactly one FEC Payload ID per source or repair packet. In case of an Encoding Symbol Group, when multiple encoding symbols are sent in the same packet, the FEC Payload ID refers to the first symbol of the packet. The other symbols can be deduced from the ESI of the first symbol by incrementing sequentially the ESI.

The format of the FEC Payload ID for m = 8 and m = 16 is illustrated in Figure 6.1 (FEC Payload ID encoding format for m = 8) and Figure 6.2 (FEC Payload ID encoding format for m = 16) respectively.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Block Number (32-8=24 bits) | Enc. Symb. ID |

+-+

	 Figure 8.1: FEC Payload ID encoding format for m = 8 (default)

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Src Block Nb (32-16=16 bits) | Enc. Symbol ID (m=16 bits) |

+-+

	Figure 8.2: FEC Payload ID encoding format for m = 16

8.3 Reed-Solomon Encoding Algorithm
8.3.1. Encoding Principles

Let s = (s_0, ..., s_{k-1}) be a source vector of k elements over GF(2^m). Let e = (e_0, ..., e_{n-1}) be the corresponding encoding vector of n elements over GF(2^m). Being a linear code, encoding is performed by multiplying the source vector by a generator matrix, GM, of k rows and n columns over GF(2^m). Thus: e = s * GM.

The definition of the generator matrix completely characterizes the RS code. Let us consider that: n = 2^m - 1 and: 0 < k ≤ n. Let us denote alpha the primitive element of GF(2^m) chosen in the list of for the corresponding value of m. Let us consider a Vandermonde matrix of k rows and n columns, denoted by V_{k,n}, and built as follows: the {i, j} entry of V_{k,n} is v_{i,j} = alpha^(i*j), where 0 ≤ i ≤ k - 1 and 0 ≤ j ≤ n - 1. This matrix generates a MDS code. However, this MDS code is not systematic, which is a problem for many networking applications. To obtain a systematic matrix (and code), the simplest solution consists in considering the matrix
 V_{k,k} formed by the first k columns of V_{k,n}, then to invert it and to multiply this inverse by V_{k,n}. Clearly, the product V_{k,k}^-1 * V_{k,n} contains the identity matrix I_k on its first k columns, meaning that the first k encoding elements are equal to source elements. Besides the associated code keeps the MDS property.

Therefore, the generator matrix of the code considered in this document is:
GM = (V_{k,k}^^-1) * V_{k,n}

Note that, in practice, the [n,k]-RS code can be shortened to a [n',k]-RS code, where k ≤ n' < n, by considering the sub-matrix formed by the n' first columns of GM.
8.3.2 Encoding Complexity

Encoding can be performed by first pre-computing GM and by multiplying the source vector by GM .The complexity of the pre-computation of the generator matrix can be estimated as the complexity of the multiplication of the inverse of a Vander monde matrix by n-k vectors (i.e. the last n-k columns of V_{k,n}). Since the complexity of the inverse of a k*k-Vander monde matrix by a vector is O(k * log^2(k)), the generator matrix can be computed in 0((n-k)* k * log^2(k)) operations. When the generator matrix is pre-computed, the encoding needs k operations per repair element.

Encoding can also be performed by first computing the product s * V_{k,k}^-1 and then by multiplying the result with V_{k,n}. The multiplication by the inverse of a square Vandermonde matrix is known as the interpolation problem and its complexity is O(k * log^^2 (k)). The multiplication by a Vandermonde matrix, known as the multipoint evaluation problem, requires O((n-k) * log(k)) by using Fast Fourier Transform. The total complexity of this encoding algorithm is then O((k/(n-k)) * log^2(k) + log(k)) operations per repair element.

8.4. Reed-Solomon Decoding Algorithm

8.4.1. Decoding Principles

The Reed-Solomon decoding algorithm for the erasure channel allows the recovery of the k source elements from any set of k received elements. It is based on the fundamental property of the generator matrix which is such that any k*k-submatrix is invertible .The first step of the decoding consists in extracting the k*k submatrix of the generator matrix obtained by considering the columns corresponding to the received elements. Indeed, since any encoding element is obtained by multiplying the source vector by one column of the generator matrix, the received vector of k encoding elements can be considered as the result of the multiplication of the source vector by a k*k submatrix of the generator matrix. Since this submatrix is invertible, the second step of the algorithm is to invert this matrix and to multiply the received vector by the obtained matrix to recover the source vector.
8.4.2. Decoding Complexity

The decoding algorithm described previously includes the matrix inversion and the vector-matrix multiplication. With the classical Gauss-Jordan algorithm, the matrix inversion requires O(k^3) operations and the vector-matrix multiplication is performed in O(k^2) operations.

This complexity can be improved by considering that the received submatrix of GM is the product between the inverse of a Vandermonde matrix (V_(k,k)^-1) and another Vandermonde matrix (denoted by V' which is a submatrix of V_(k,n)). The decoding can be done by multiplying the received vector by V'^-1 (interpolation problem with complexity O(k * log^2(k))) then by V_{k,k} (multipoint evaluation with complexity O(k * log(k))). The global decoding complexity is then O(log^2(k)) operations per source element.
	Triplet received
	Interpreted as

	000
	0

	001
	0

	010
	0

	100
	0

	111
	1

	110
	1

	101
	1

	011
	1

Table 8.1

8.5 Notations

L denotes the object transfer length in bytes.

k denotes the number of source symbols in a source block.

n_r denotes the number of repair symbols generated for a source block.

n denotes the encoding block length, i.e. the number of encoding symbols generated for a source block. Therefore: n = k + n_r.

max_n denotes the maximum number of encoding symbols generated for any source block.

B denotes the maximum source block length in symbols, i.e. the maximum number of source symbols per source block.

N denotes the number of source blocks into which the object shall be partitioned.

E denotes the encoding symbol length in bytes.

S denotes the symbol size in units of m bit elements. When m = 8, then S and E are equal.
m defines the length of the elements in the finite field, in bits.

q defines the number of elements in the finite field. We have: q = 2^^m in this specification.

G denotes the number of encoding symbols per group, i.e. the number of symbols sent in the same packet.

GM denotes the Generator Matrix of a Reed-Solomon code.

rate denotes the "code rate", i.e. the k/n ratio.

a^b denotes a raised to the power b.

a^-1 denotes the inverse of a.

I_k denotes the k*k identity matrix.

9. IMPLEMENTATION

Implementation is the phase of the project where the plans created during the design phase are put into action. It constitutes a major phase of the pr technologies and tools to develop fec object. The project is brought from concept to reality in this phase.

[image: image3.emf]

Figure 9.1
9.1 Java Development Kit (JDK 6.0)

Java is a very powerful, platform independent and an object oriented language. The whole application was developed using Java and its classes as the base.

Some of the special packages deployed for the development of specific parts of the project are as follows.

9.1.1 Java Swing

Java Swing is a widget toolkit for Java. It is part of Sun Microsystems' Java Foundation Classes— an API for providing a graphical user interface for Java programs.

Swing provides a native look and feel that emulates the look and feel of several platforms, and also supports a pluggable look and feel that allows applications to have a look and feel unrelated to the underlying platform. This was used to build the server side GUI.
9.2 Implementation Details

PSEUDOCODE FOR THE FEC CODING

Source.java

public class FECSource1 extends JFrame // Source File
{

// Variables declaration

public FECSource1() // Performs the operation as source

{

super(); // calls the Super Class FECSource

initializeComponent(); // Initialize the components and Labels

}

private void initializeComponent() // Add Component Without a Layout //Manager (Absolute Positioning)

{

}

private void addComponent(Container container,Component c,int x,int y,int width,int height) // Add the Component to the Container

{

}

private void jTextField1_actionPerformed(ActionEvent e) // To Browse the File

{

}

private void jButton1_actionPerformed(ActionEvent e) // To Perform the specified action for the Button1

{

}

private void jButton2_actionPerformed(ActionEvent e) // FEC Encoding

{

if (k!=5)

{

//Display the error message: Load the File and then Start FEC Encoding";

}

else

{

k=10;

// Starts FEC Encoding

//Separation of each binary values in to 2Dimensional String array

//Printing This values

//Adding redundant Data to the Binary values

//Printing the values

//Merging for Interleaving

//Printing the values

private void jButton3_actionPerformed(ActionEvent e)

// Interleaving

{

if (k!=10)

{

// Display Error Message

}

else

{

k=15;

// Continue with Interleaving

//Printing the values

}

}

for(i=0;i<flen;i++) // Starts / Run from Zero to Length of File

{

for(j=0;j<1;j++) // Checks for Each Packet

{

if((filmer[i].length())==21) // Checks for the Character

{

shufch[i][0]=pakch[i][5];

shufch[i][1]=pakch[i][12];

shufch[i][2]=pakch[i][11];

shufch[i][3]=pakch[i][9];

shufch[i][4]=pakch[i][6];

shufch[i][5]=pakch[i][10];

shufch[i][6]=pakch[i][8];

shufch[i][7]=pakch[i][20];

shufch[i][8]=pakch[i][0];

shufch[i][9]=pakch[i][4];

shufch[i][10]=pakch[i][1];

shufch[i][11]=pakch[i][19];

shufch[i][12]=pakch[i][13];

shufch[i][13]=pakch[i][7];

shufch[i][14]=pakch[i][16];

shufch[i][15]=pakch[i][3];

shufch[i][16]=pakch[i][17];

shufch[i][17]=pakch[i][15];

shufch[i][18]=pakch[i][2];

shufch[i][19]=pakch[i][18];

shufch[i][20]=pakch[i][14];

}

 else if((filmer[i].length())==18) // Checks for the Operator

{

shufch[i][0]=pakch[i][5];

shufch[i][1]=pakch[i][12];

shufch[i][2]=pakch[i][11];

shufch[i][3]=pakch[i][9];

shufch[i][4]=pakch[i][6];

shufch[i][5]=pakch[i][10];

shufch[i][6]=pakch[i][8];

shufch[i][7]=pakch[i][0];

shufch[i][8]=pakch[i][4];

shufch[i][9]=pakch[i][1];

shufch[i][10]=pakch[i][15];

shufch[i][11]=pakch[i][7];

shufch[i][12]=pakch[i][16];

shufch[i][13]=pakch[i][3];

shufch[i][14]=pakch[i][17];

shufch[i][15]=pakch[i][13];

shufch[i][16]=pakch[i][2];

shufch[i][17]=pakch[i][14];

}

else // Checks for the Special Symbols

{

shufch[i][0]=pakch[i][5];

shufch[i][1]=pakch[i][11];

shufch[i][2]=pakch[i][10];

shufch[i][3]=pakch[i][9];

shufch[i][4]=pakch[i][6];

shufch[i][5]=pakch[i][2];

shufch[i][6]=pakch[i][8];

shufch[i][7]=pakch[i][0];

shufch[i][8]=pakch[i][4];

shufch[i][9]=pakch[i][1];

shufch[i][10]=pakch[i][3];

shufch[i][11]=pakch[i][7];

}

}

}

//Bottle neck

if(flen<=50)

{

l=(int)(Math.random()*3);

for(int a=0;a<=3;a+=l)

{

j=(int)(Math.random()*10);

shufch[a][j]='\0';

}

}

else if(flen>=51&&flen<=210)

{

l=(int)(Math.random()*4);

for(int a=31;a<=10;a+=l)

{

j=(int)(Math.random()*10);

shufch[a][j]='\0';

}

}

else if(flen>=251&&flen<=500)

{

l=(int)(Math.random()*4);

for(int a=110;a<=192;a+=l)

{

j=(int)(Math.random()*10);

shufch[a][j]='\0';

}

}

else if(flen>=501&&flen<=750)

{

l=(int)(Math.random()*4);

for(int a=440;a<=501;a+=l)

{

j=(int)(Math.random()*10);

shufch[a][j]='\0';

}

}

else if(flen>=751&&flen<=1000)

{

l=(int)(Math.random()*4);

for(int a=652;a<=751;a+=l)

{

j=(int)(Math.random()*10);

shufch[a][j]='\0';

}

}

else

{

l=(int)(Math.random()*4);

for(int a=500;a<=610;a+=l)

{

j=(int)(Math.random()*10);

shufch[a][j]='\0';

}

}

//Printing the values

//Merging for Transferring

}

private void jButton4_actionPerformed(ActionEvent e) // Send

{

if (k!=15)

{

// Display Error Message

}

else

{

// Send the Packets to Destination and Queue

// Calls the Queue & Destination Class

// By Checking the Queue Address

}

}

private void jButton5_actionPerformed(ActionEvent e) // Exit

{

// Performs Exit Operation

}

public static void main(String[] args)

{

// Look And Feel Commands

try

{

// Load Look and feel Operation

}

catch (Exception ex)

{

// Error

}

new FECSource1();

}

}

FECQueue.java

public class FECQueue extends JFrame // Receive & Send Packets
{

// Variables declaration

public FECQueue() // Receive the Packets and Send

{

super();

initializeComponent();

}

private void initializeComponent() // Initialize the Components

{

}

private void addComponent(Container container,Component c,int x,int y,int width,int height) // Add the Component into Container

{

}

private void jButton1_actionPerformed(ActionEvent e) // Performs action of Button1

{

}

public static void main(String[] args)throws ClassNotFoundException

{

}

}

FECDestination.java

public class FECDestination1 extends JFrame // Receive Packets from Queue
{

// Variables declaration

public FECDestination1()

{

super();

initializeComponent();

}

private void initializeComponent() // Initialize the Action for the Component

{

}

private void addComponent(Container container,Component c,int x,int y,int width,int height) // Add the Component to Container

{

}

private void jTextField1_actionPerformed(ActionEvent e) // De-Interleaving

{

}

private void jButton2_actionPerformed(ActionEvent e) // FEC DeCoding

{

//Printing the values

//De-Interleaving

for(i=0;i<fillen;i++) // Starts / Runs From Zero to Length of File

{

for(j=0;j<1;j++) // Runs for the Particular Packet

{

if((filtfr[i].length())==21) // Checks for the Character

{

bklen=filtfr[i].length();

filreord[i][0]=pakch1[i][8];

filreord[i][1]=pakch1[i][10];

filreord[i][2]=pakch1[i][18];

filreord[i][3]=pakch1[i][15];

filreord[i][4]=pakch1[i][9];

filreord[i][5]=pakch1[i][0];

filreord[i][6]=pakch1[i][4];

filreord[i][7]=pakch1[i][13];

filreord[i][8]=pakch1[i][6];

filreord[i][9]=pakch1[i][3];

filreord[i][10]=pakch1[i][5];

filreord[i][11]=pakch1[i][2];

filreord[i][12]=pakch1[i][1];

filreord[i][13]=pakch1[i][12];

filreord[i][14]=pakch1[i][20];

filreord[i][15]=pakch1[i][17];

filreord[i][16]=pakch1[i][14];

filreord[i][17]=pakch1[i][16];

filreord[i][18]=pakch1[i][19];

filreord[i][19]=pakch1[i][11];

filreord[i][20]=pakch1[i][7];

}

 else if((filtfr[i].length())==18) // Checks for the Operator

{

filreord[i][0]=pakch1[i][7];

filreord[i][1]=pakch1[i][9];

filreord[i][2]=pakch1[i][16];

filreord[i][3]=pakch1[i][13];

filreord[i][4]=pakch1[i][8];

filreord[i][5]=pakch1[i][0];

filreord[i][6]=pakch1[i][4];

filreord[i][7]=pakch1[i][11];

filreord[i][8]=pakch1[i][6];

filreord[i][9]=pakch1[i][3];

filreord[i][10]=pakch1[i][5];

filreord[i][11]=pakch1[i][2];

filreord[i][12]=pakch1[i][1];

filreord[i][13]=pakch1[i][15];

filreord[i][14]=pakch1[i][17];

filreord[i][15]=pakch1[i][10];

filreord[i][16]=pakch1[i][12];

filreord[i][17]=pakch1[i][14];

}

else // Checks for the Special Symbols

{

filreord[i][0]=pakch1[i][7];

filreord[i][1]=pakch1[i][9];

filreord[i][2]=pakch1[i][5];

filreord[i][3]=pakch1[i][10];

filreord[i][4]=pakch1[i][8];

filreord[i][5]=pakch1[i][0];

filreord[i][6]=pakch1[i][4];

filreord[i][7]=pakch1[i][11];

filreord[i][8]=pakch1[i][6];

filreord[i][9]=pakch1[i][3];

filreord[i][10]=pakch1[i][2];

filreord[i][11]=pakch1[i][1];

}

}

}

//Printing the values

private void jButton3_actionPerformed(ActionEvent e) // FEC //Decoding

{

}

//Printing after FEC Decoding

//Conversion of Binary Values to String

}

private void jButton4_actionPerformed(ActionEvent e) // Result

{

}

private void jButton5_actionPerformed(ActionEvent e) // Exit

{

}

public static void main(String[] args)

{

new FECDestination1();

}

}

Result.java

public class Result1 extends JFrame

{

// Variables declaration

public Result1() // Display the Output Message

{

super();

initializeComponent();

}

private void initializeComponent()

{

}

private void addComponent(Container container,Component c,int x,int y,int width,int height) // add Component to the Container

{

}

private void jTextField1_actionPerformed(ActionEvent e) // Efficacy

{

}

private void jTextField2_actionPerformed(ActionEvent e) // Block Length

{

}

private void jTextField3_actionPerformed(ActionEvent e) // Coding Rate

{

}

private void jTextField4_actionPerformed(ActionEvent e) // Shows the Interleaving Depth

{

}

private void jButton1_actionPerformed(ActionEvent e) // Exit

{

}

public static void main(String[] args)

{

new Result1();

}

}

10. TESTING

Testing is a very important phase of the project where the performance of the product implemented is tested. Performance does not only mean being optimal, fast and efficient. We also have to test for the correctness of the implementation. Any errors in the design and implementation phase are discovered while testing and are then corrected.

10.1 Unit Testing

The project was developed in various stages. At each stage, the programs were tested for correctness and optimality. This ensured that all the components of the application are working properly.
[image: image4.png]
Figure 10.1

In computer programming, a unit test is a procedure used to validate that a particular module of source code is working properly. The procedure is to write test cases for all functions and methods so that whenever a change causes a regression, it can be quickly identified and fixed. Each of the subsystems identified earlier are tested with a sample set of data. In an Object-oriented environment, this is usually at the class level, and the minimal unit tests include the constructors and destructors.
10.2 Integration Testing

Integration testing is the phase of software testing in which individual software modules are combined and tested as a group. It follows unit testing and precedes system testing. The purpose of integration testing is to expose the defects in the interfaces and interaction between integrated components .Progressively larger groups of tested software components corresponding to elements of the architectural design are integrated and tested until the software works as a system.

Integration testing is also used to verify functional, performance and reliability requirements placed on major design items. Black Box testing is performed, i.e., the functionality is tested without the knowledge of how it is implemented. All test cases are constructed to test that all components within assemblages interact correctly, for example, across procedure calls or process activations.

The overall idea is a “building block” approach, in which verified assemblages are added to a verified base which is then used to support the Integration testing of further assemblages.

In our software, the skeletal framework for connecting the server and client was developed first. The different modules were added subsequently to both the server and client side for each of the application. Finally, UI was added. Integration testing has been performed at each stage.

10.3 System Testing

System testing tests a completely integrated system to verify that it meets its requirements. System testing takes, as its input, all of the "integrated" software components that have successfully passed integration testing and also the software system itself integrated with any applicable hardware system. The purpose of integration testing is to detect any inconsistencies between the software units that are integrated together called assemblages or between any of the assemblages and the hardware.

10.4 Compatibility and Performance Testing
Compatibility testing is the testing conducted on the application to evaluate the application's compatibility with the computing environment. Performance testing validates whether the quality of service parameters is met by the final product.
11. SNAPSHOTS
 [image: image5.png]
Figure 11.1
 [image: image6.png]
Figure 11.2
[image: image7.png]
Figure 11.3
[image: image8.png]
Figure 11.4
12. CONCLUSION

Forward error-correction coding represents the most efficient, economical, and predictable way of improving the reliability of transmitted or stored data. The turbo code in particular offers designers a powerful tool for ensuring robust communications despite adverse conditions. As concerns over spectrum management and bandwidth efficiency increase, the ability to maximize channel capacity without sacrificing data reliability becomes all the more important. Thanks in part to Aerospace developments, forward error-correcting codes should play a larger role in helping military communication satellites to keep up with increasing system demands.

 FECSource2 ()

Super ()

Initialize Component ()

this.setVisible (true)

 FECSource1 ()

Super ()

Initialize Component ()

this.setVisible (true)

 Queue ()

Super ()

InitializeComponent ()

this.setVisible (true)

 FECDestination2 ()

Super ()

InitializeComponent ()

this.setVisible (true)

 FECDestination1 ()

Super ()

InitializeComponent ()

this.setVisible (true)

 FECSourceN ()

Super ()

InitializeComponent ()

this.setVisible (true)

 Queue ()

Super ()

InitializeComponent ()

this.setVisible (true)

 FECDestinationN ()

Super ()

InitializeComponent ()

this.setVisible (true)

Queue

Result

Send

Interleaving / Deinterleaving

FEC Coding / Decoding

Load / Receive File

PAGE
54
Dept. of MCA

